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Abstract: Satellite remote sensing plays a pivotal role in characterizing hydrometeorological
components including cloud types and their associated precipitation. The Cloud Profiling Radar (CPR)
on the Polar Orbiting CloudSat satellite has provided a unique dataset to characterize cloud types.
However, data from this nadir-looking radar offers limited capability for estimating precipitation
because of the narrow satellite swath coverage and low temporal frequency. We use these high-quality
observations to build a Deep Neural Network Cloud-Type Classification (DeepCTC) model to estimate
cloud types from multispectral data from the Advanced Baseline Imager (ABI) onboard the GOES-16
platform. The DeepCTC model is trained and tested using coincident data from both CloudSat
and ABI over the CONUS region. Evaluations of DeepCTC indicate that the model performs
well for a variety of cloud types including Altostratus, Altocumulus, Cumulus, Nimbostratus,
Deep Convective and High clouds. However, capturing low-level clouds remains a challenge for
the model. Results from simulated GOES-16 ABI imageries of the Hurricane Harvey event show
a large-scale perspective of the rapid and consistent cloud-type monitoring is possible using the
DeepCTC model. Additionally, assessments using half-hourly Multi-Radar/Multi-Sensor (MRMS)
precipitation rate data (for Hurricane Harvey as a case study) show the ability of DeepCTC in
identifying rainy clouds, including Deep Convective and Nimbostratus and their precipitation
potential. We also use DeepCTC to evaluate the performance of the Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System
(PERSIANN-CCS) product over different cloud types with respect to MRMS referenced at a
half-hourly time scale for July 2018. Our analysis suggests that DeepCTC provides supplementary
insights into the variability of cloud types to diagnose the weakness and strength of near real-time
GEO-based precipitation retrievals. With additional training and testing, we believe DeepCTC has
the potential to augment the widely used PERSIANN-CCS algorithm for estimating precipitation.

Keywords: geostationary satellites; CloudSat; cloud types; near real-time monitoring; deep learning;
precipitation
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1. Introduction

Clouds play a crucial role, as an element of the Earth system, in a wide range of
hydrometeorological and engineering applications, yet there is not a deep understating of their physical
dynamics. Satellite cloud remote sensing is pivotal in identifying meteorological conditions and
hydrological components such as precipitation [1,2]. Low Earth Orbiting (LEO) satellite observations
are recognized as reliable sources to characterize clouds and their associated precipitation processes
but they are limited due to their narrow satellite swath and low temporal coverage characteristics.
Although data retrieved from Geosynchronous Earth Orbiting (GEO) satellites are reliant solely
on cloud top properties such as temperature and albedo, their high spatiotemporal and spectral
resolution data stream makes them a very attractive to monitor the distribution of various cloud
types. Recent developments in satellite technologies resulting in higher temporal, spatial and spectral
resolutions, along with advancements in machine learning techniques and computational power,
open great opportunities to develop efficient near real-time models to characterize cloud types and
their behaviors.

The history of satellite-based cloud detection using infrared and visible imageries began with
studies by Booth [3] and Hughes [4], followed by Goodman and Henderson-Sellers [5], Rossow [6],
Rossow and Garder [7], Wielicki and Parker [8], Key [9], Yhann and Simpson [10]. Rossow and Schiffer
[11] used cloud top pressure and cloud optical depth information to provide a valuable comprehensive
study about global climatology of clouds, International Satellite Cloud Climatology Project (ISCCP).
Several methods have been developed to classify clouds from single- or multispectral satellite
imageries, including threshold-based [12–16] and machine learning approaches. The main drawback of
threshold-based cloud-type classification (e.g., Reference [17]) is that a threshold over certain situations
may not be applicable for another [18]. Also, a large number of studies have addressed satellite
cloud-type classification from a variety of perspectives but they rely on specific regions. For instance,
Hameg et al. [19] used a naive Bayes classifier and northern Algeria weather radar observations to
find the relationship between predefined spectral parameters from MSG-SEVIRI (Meteosat Second
Generation-Spinning Enhanced Visible and Infrared Imager) for convective clouds differentiation.
Tebbi and Haddad [20] focused on the combination of two machine learning models and Lazri
and Ameur [21] utilized an ensemble of learning algorithms to identify convective or stratiform
precipitation over a small Mediterranean region. It should be pointed out that the computational
expenses and complexity of the implementation of these models are challenging.

One of the primary applications of a classical machine learning methodology in cloud classification
was presented by Lee et al. [22] using a single visible channel of Landsat Multispectral Scanner
sensor to classify Stratocumulus, Cumulus, and Cirrus cloudy images. Yhann and Simpson [10]
combined top-of-atmosphere reflectance and radiance from the National Oceanic and Atmospheric
Administration’s (NOAA) Advanced Very High-Resolution Radiometer (AVHRR) to detect cloudy
pixels. Bankert [23] and Tian et al. [24] investigated the performance of neural-network-based cloud
classifications on AVHRR measurements and multispectral GOES-8 satellite imagery, respectively.
Cloud Automated Neural Network (CANN) was presented by Miller and Emery [25] which
defined different thresholds along with six textural features to distinguish between nine cloud
classes. Hsu et al. [26] used the Self-Organizing Feature Map (SOFM) to classify cloud features into
several groups in the Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks algorithm (PERSIANN) [27]. Mazzoni et al. [28] used a Support Vector Machine
(SVM) cloud-type classifier on NASA’s Terra satellite measurements. Nasrollahi [29] developed
an artificial neural network cloud classification system using CloudSat and MODIS datasets.
Also, Cai and Wang [30] and Wohlfarth et al. [31] applied SVM and neural network cloud classification
algorithms on Fy-2C and Landsat8 images, respectively.

Both supervised (classification) (e.g., Reference [32]) and unsupervised learning (clustering)
(e.g., Reference [33]) techniques have helped in analyzing the large amount of real-time remotely
sensed data (i.e., Big Data) and have proven their abilities to discriminate different cloud characteristics.
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Supervised neural networks classifiers are flexible and fast in learning [34] and they reveal their
capability of dealing with consecutive images from GEO satellites with promising results for
meteorological application [24,31,35]. In recent years, deep learning algorithms have been a popular
solution to overcome the complexity of real-time data mining problems in earth and atmospheric
sciences. Ball et al. [36] reviewed the existing deep learning methods and discussed the advantages of
applying these techniques in remote sensing science. Tao et al. [37] presented a related application
of deep learning techniques to generate binary classification (i.e., rain/no-rain pixels). They showed
the effectiveness of using water vapor and infrared data in deep neural network models which aid in
capturing rainy clouds. However, this research does not attempt to conduct any information of cloud
types and their precipitation potentials.

The purpose of this study is to take advantage of revolutionized Cloud Profiling Radar (CPR)
on National Aeronautics and Space Administration’s (NASA) CloudSat satellite and the new
generation of GEO-based sensors such as the Advanced Baseline Imager (ABI) onboard GOES-16/17
satellites to develop a near real-time global-scale cloud-type classification system. The output
would serve as a valuable real-time source of data for hydrometeorological applications as well as
improving rain detection skills in GEO-based precipitation retrievals such as Precipitation Estimation
from Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System
(PERSIANN-CCS) [16]. This effort will support the current NASA Integrated Multisatellite Retrievals
for Global Precipitation Measurement (IMERG) system [38], which unifies multiple algorithms such as
PERSIANN-CCS and Climate Prediction Center Morphing with Kalman Filter (CMORPH-KF) [39].

PERSIANN-CCS uses an incremental temperature threshold approach for cloud-patch
segmentation and then employs an unsupervised classification technique to differentiate between
cloud patches based on similarity of statistical indices (i.e., features). These features are predefined to
capture coldness, geometry, and texture properties of the clouds with little attention to distinguish
between the cloud types such as Nimbostratus, Cumulus, Altocumulus, or Deep Convective clouds
before rainfall mapping. Deep Convective clouds produce higher rain rates (convective rainfall)
compared to Nimbostratus clouds (stratiform rainfall). It is possible that Cumulus congestus clouds
produce drizzle but they can grow into Cumulonimbus clouds associated with heavy rain. Clearly,
limited features are insufficient to interpret actual cloud types. Therefore, establishing rapid cloud-type
classification will provide supplementary insights into the variability of the vertical structure of clouds,
stages of a cloud’s life cycle, and their associated precipitation systems [29,40].

Our contributions in this paper are summarized as:

(1) Introducing an automatic data generation pipeline to meet the critical demand for an accurately
labeled cloud-type dataset. The integration of CloudSat space-borne radar satellite data with
GOES-16 ABI observations also addresses the spatial and temporal discontinuity in cloud-type
information from narrow satellite swaths.

(2) Using the Deep Neural Network Cloud-Type Classification (DeepCTC) system to perform a rapid
and global cloud-type classification for the new generation of geostationary satellite observations
(e.g., GOES-16 ABI).

(3) Evaluating the performance of PERSIANN-CCS based on DeepCTC to diagnose the weakness
and strength of precipitation estimates over different cloud types. This assessment is performed
over a period of one month (July 2018) for half-hourly precipitation estimates.

The rest of this paper is organized as follows: Section 2 describes the data sets and domain used in
this study. In Section 3, the methodology and general workflow of DeepCTC are reported. Results and
discussions are provided in Section 4. Lastly, Section offers 5 the conclusion and future direction
of DeepCTC. In the rest of the paper, to be consistent in the terminology, “classification” refers to
supervised machine learning techniques which assign single pixels from multispectral imageries to
different classes [41].
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2. Data Sources

2.1. CloudSat

The unique NASA CloudSat CPR is a 94 GHz (3.2 mm) nadir-looking radar, providing a
valuable source of information about the vertical properties of clouds [42]. The nominal vertical
resolution is about 480 m and the horizontal resolution is about 1.4 km and 1.7 km across
and along the track, respectively. In this study, CloudSat Level 2 Cloud Scenario Classification
product (2B-CLDCLASS) [1] is used to train, validate and test the DeepCTC model (from 2017 to
present). The widely used 2B-CLDCLASS product integrates passive remote sensing data from
MODIS (including bands 0.6, 0.8, 1.3, 8.5, 11 and 12 µm), CPR and CALIPSO lidar measurements.
Based on different rules for the vertical and horizontal extent of hydrometeors, the maximum
radar reflectivity factor, indications of precipitation and ancillary data including predicted European
Center for Medium-Range Weather Forecast (ECMWF) temperature profiles and surface topography
height, 2B-CLDCLASS provides most, but not all, tropospheric cloud types. Some studies show
the consistency of cloud-type information from this product with ISCCP data [43], cloud water
content [44], and precipitation occurrence [45]. The 2B-CLDCLASS process description is available at
http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-cldclass?term=88.

Table 1 presents a brief listing of the cloud types which will be used in this study [1]. The High
cloud types include Cirrus, Cirrocumulus and Cirrostratus which are thin in horizontal direction and
are predominantly non-rainy clouds with cold cloud-top temperature in IR images. The Cumulus
cloud-type is Cumulus Congestus and fair weather Cumulus in lower part of the atmosphere with flat
bases. Cumulus clouds are expanded vertically and they can turn into Cumulonimbus clouds in less
than 30 min. Deep Convective and Nimbostratus cloud types are mainly precipitable clouds which
expand from the lower level of the atmosphere to the higher troposphere; Deep Convective clouds
result in higher precipitation intensity than the Nimbostratus type [1,43,46,47].

Table 1. Characteristics of cloud types.

Cloud-Type Vertical Dimension Cloud Base Level Precipitation Horizontal Dimension

1 High clouds (Hi) Moderate High None Continuous
2 Altostratus (As) Moderate Middle None Continuous
3 Altocumulus (Ac) Shallow/ Moderate Middle None/Drizzle Discontinuous
4 Stratus (St) Shallow/ Moderate Low Possible Continuous
5 Stratocumulus (Sc) Shallow Low Possible Discontinuous
6 Cumulus (Cu) Moderate/ Deep Low Possible Isolated
7 Nimbostratus (Ns) Deep Low/ Middle Yes Continuous
8 Deep Convective (DC) Deep Low Yes Continuous

2.2. Geostationary Satellite Observations

For this study, Level 2 Cloud and Moisture Imagery Product (CMIP) from the Advanced Baseline
Imager (ABI) onboard the GOES-R series of NOAA geostationary meteorological/environmental
satellite (GOES-16) is used. The proposed algorithm is flexible to be extended to other GEO-based
observations including GOES-17 ABI and Himawari 8/9 AHI. GOES-16 scans the full disk western
hemisphere every 15 min and Continental United States (CONUS) every 5 min on the “flex” mode.
GOES-16 ABI measures reflected and emitted radiance in two bands at visible wavelengths (0.47 and
0.64 µm central), four near-infrared bands (0.86, 1.37, 1.6 and 2.2 µm central) and ten bands at
thermal infrared with approximate central wavelengths of 3.9, 6.2, 6.9, 7.3, 8.4, 9.6, 10.3, 11.2, 12.3 and
13.3 µm [48]. Additional information about GOES-16 ABI sensors are described in Table 2. ABI can
monitor multiple layers of the Earth-atmosphere system with a wide range of imagery and radiometric
information related to cloud products (chap. 4 and 6 [49]). The nominal spatial resolution at the sub
satellite pixel is 0.5 km for the “Red” band, 1 km for “Blue”, “Vegetation”, “Snow/Ice” bands and 2 km

http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-cldclass?term=88
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for other thermal emissive bands. ABI data implemented in our experiments are resampled (bilinear
interpolation) to 0.01◦ spatial resolution.

A theoretical description of the algorithms used by CMIP can be found in the Algorithm
Theoretical Basis Document by Schmit et al. [50]. The GOES-16 ABI data (from 2017 to present)
is available for public access through the NOAA’s comprehensive Large Array-data Stewardship
System (CLASS) at https://www.avl.class.noaa.gov/saa/products/welcome. In this study, we use
NOAA’s GOES-16 ABI data on Amazon Web Services (AWS) S3 bucket (https://registry.opendata.
aws/noaa-goes/). Using the AWS S3 Command Line Interface (CLI), a list of all available files in the
S3 bucket is created. This list is used to look up time based GOES-16 ABI files in the automated data
generation pipeline which is explained in Section 3.2.

Table 2. Properties of ABI bands.

ABI Bands Descriptive Name Central Wavelength Primary Purpose

1 Blue 0.47 µm Aerosol monitoring
2 Red 0.64 µm Detection of smoke, dust, fog and low level clouds
3 Vegetation 0.86 µm Aerosol and cloud monitoring; Land characterizing (NDVI)
4 Cirrus 1.37 µm Daytime detection of thin/high cirrus clouds
5 Snow/Ice 1.61 µm Snow and ice discrimination, Cloud phase detection
6 Cloud particle size 2.24 µm Cloud particle size and cloud phase discrimination
7 Shortwave window 3.9 µm Fog, low level and stratus cloud identification
8 Upper-level water vapor 6.19 µm Tropospheric water vapor monitoring
9 Middle-level water vapor 6.93 µm Tropospheric water vapor monitoring

10 Lower-level water vapor 7.37 µm Tropospheric water vapor monitoring
11 Cloud top phase 8.44 µm Determining cloud phase
12 Ozone 9.61 µm Dynamics of the atmosphere near tropopause
13 Clean long-wave window 10.33 µm Cloud boundary detection
14 Long-wave window 11.21 µm Cloud boundary detection
15 Dirty long-wave window 12.29 µm Distinguishing dust and volcanic ash from clouds
16 CO2 13.28 µm Cloud top height

2.3. Precipitation Datasets

NOAA/National Severe Storms Laboratory—University of Oklahoma Level-3 half-hourly
gauge-adjusted Multi-Radar Multi-Sensor (MRMS) [51] product at 0.01◦ resolution is used to examine
the performance of the proposed cloud-type classification model and PERSIANN-CCS product.
This high-resolution quality-controlled rain rate mosaic covers an area with latitude bounds of 20◦

and 55◦N and longitude bounds of 130◦ and 60◦W, available from 1 June 2014 (http://wallops-prf.
gsfc.nasa.gov/NMQ/index.html). Level-3 half-hourly MRMS is liquid precipitation and 0.1 mm/h
rain rate was used as a threshold to define rain/no-rain pixels. In order to show high variability of
cloud types and different rainfall pattern during one day, Hurricane Harvey which caused extreme
precipitation [52] during 26–28 August 2017 is considered as a case study. Both GOES-16 and CloudSat
satellites completely monitored this event on 26 August and MRMS rain rates provides independent
data for assessing cloud types covering different precipitation patterns.

The half-hourly MRMS rain rate dataset is mapped to 0.04◦ spatial resolution to evaluate
PERSIANN-CCS product over the CONUS for July 2018. The operational near real-time high resolution
(0.04◦) PERSIANN-CCS product is developed by the Center for Hydrometeorology and Remote Sensing
(CHRS) at the University of California, Irvine (UCI) and is available through the CHRS Data Portal
(http://chrsdata.eng.uci.edu/). As mention earlier, this algorithm uses solely infrared satellite imagery
to map rain rate in near global- scale and details about this product can be found in [16,26].

3. Methodology

3.1. The Architecture and Configuration of DeepCTC

The Deep Neural Network Cloud-Type Classification (DeepCTC) model is a multilayer perceptron
classification system which includes successive layers. Each layer composed of several neurons that

https://www.avl.class.noaa.gov/saa/products/welcome
https://registry.opendata.aws/noaa-goes/
https://registry.opendata.aws/noaa-goes/
http://wallops-prf.gsfc.nasa.gov/NMQ/index.html
http://wallops-prf.gsfc.nasa.gov/NMQ/index.html
http://chrsdata.eng.uci.edu/
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receive outputs from preceding layers by weighted connections. As shown in Figure 1a DeepCTC
consists of one input layer taking a series of normalized values from visible, water vapor and infrared
observations from GOES-16 ABI (16 neurons), 4 sequential fully connected hidden layers and one
output layer (9 neurons). For the node j in the kth hidden layer, the net input xkj is a weighted average
of the outputs of the (k− 1)th layer which is given by:

xkj =
Nk−1

∑
i=1

w(k−1)ijO(k−1)i, where Okj = max(0, xkj). (1)

Figure 1. The workflow of DeepCTC. (a) Structure of deep neural network; (b) GEO- and LEO-based
data integration to generate labeled dataset.

w(k−1)ij is the synapse coefficient of the node i in the (k− 1)th layer to the node j in the kth. Nk is
the number of nodes in the kth layer and Okj is the output of node j in the kth hidden layer which is
computed by Rectified Linear Unit activation function (ReLU). We used ReLU in our backpropagation
model to speed up the training procedure with more accurate results [53]. The last layer, maps the
non-normalized output of the deep neural network to a probability distribution over possible cloud
labels. The activation function in this layer is a normalized exponential function (Softmax) defined by
the following expression:

P(y = c|ξ) = exp(ξTW + b)

∑C
c=1 exp(ξTW + b)

. (2)

ξ and W are output (labeled) and weight vectors of penultimate layer, respectively. ξT is the transpose
of matrix ξ; b is bias vector of the cth cloud class and C is the total number of classes. We used the
Adam optimizer to train the deep neural network and minimize the loss function (Equation (3)); Adam
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is well suited for non-stationary objectives and noisy gradients [54]. The categorical cross entropy loss
function (Adam) represents the dissimilarity of the approximated output distribution from the true
labels given by:

L = −i/N
C

∑
c=1

Yc ln yc; (3)

where the Yc is a vector of cth class and yc is vector of predicted categories [55]. To mitigate the
overfitting issue and improve the performance of the network, DeepCTC is regularized with a
0.1 dropout rate to hidden layers [56].

3.2. Automated Data Generation Pipeline

Providing large, labeled and scientific datasets is one of the most challenging parts of the
supervised deep learning cloud-type classification approach [57]. In most real-time cloud-type
classification studies, limited human-reported datasets are used which rely on experts’ experience.
The unreliability of these datasets stems from their dependency on manual interpretations and
introduces concealed uncertainty in classification results. In this study, we met the critical demand for a
large, accurately labeled dataset concerning the different types of clouds. An automatic data processing
pipeline is implemented to generate multi-class data from coincidences of LEO-based CloudSat
observations and multispectral GEO-based imagery (Figure 1b). One of the benefits of this extendable
scheme is that it can be applied to the new generation of advanced GEO satellites with similar channels
and capabilities such as ABI on GOES-16/17, Advanced Himawari Imager (AHI) on Himawari-8/9,
Advanced Meteorological Imager (AMI) on GEO-KOMPSAT2A, Flexible Combined Imager (FCI) on
Meteosat Third Generation-Imaging (MTG-I) and Advanced Geosynchronous Radiation Imager (AGRI)
on Fengyun-4A. Also, using vertical properties of clouds from the CloudSat satellite, which is nearing
the end of its expected lifetime, is a pioneering effort to be followed by the Earth Clouds, Aerosol and
Radiation Explorer (EarthCARE) mission [58]. Another advantage of training this deep neural network
classification model with reliable and large datasets is the “Transfer Learning” capability; this trained
model can be reused in related investigations [59].

The experimental cloud-type dataset is prepared for all available CloudSat 2B-CLDCLASS data
coincident with GOES-16 ABI observations (CMIP) for 2017 within the bounds of the case study
(CONUS). We achieve this goal by creating an automated data generation pipeline which requires
minimum user involvement. A user simply defines the total number of CloudSat days to be processed
and the training data for DeepCTC model is generated automatically. The key major steps in the
automated data generation pipeline includes: finding the cloud types, searching the appropriate time
based GOES-16 ABI files within a time window, obtaining and pre-processing the 16 bands, generating
multispectral images and finally sampling cloud labels. To speed-up the overall procedure when
handling the high volume of GOES-16 data, parallel processes are utilized which works independently
by processing an individual CloudSat 2B-CLDCLASS data point. The overall procedure for processing
one point using a single process is explained with the help of a task based schematic as shown
in Figure 2.

The key information such as location attributes (latitude and longitude) and the time of the bins
are extracted from a given 2B-CLDCLASS profile. A mode operation is carried out on the bins to
identify cloud types that appear the most frequently. The profile time is used to identify the required
GOES-16 ABI images within a specified 30-second time window since each CloudSat profile represents
160 milliseconds of time and 1.1 km of distance for one horizontal pixel [60]. The S3 bucket download
links for the identified GOES-16 ABI files are looked up from an indexed file containing all the S3
bucket GOES-16 download links. The individual files are downloaded automatically and processed
further for re-projection, scaling pixel values and adding offsets. All 16 bands are combined to create a
single multispectral image (0.01◦ spatial resolution) which gets cropped for the CONUS and is stored to
the disk after carrying out a band wise normalization pre-processing operation. The location attributes
of the cloud-type are used to sample a vector (length 16) from the stored multispectral image. Finally,
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the vector containing the multispectral data along with the cloud-type label provides a single entry of
the dataset. Several vectors are obtained in parallel by multiple processes which completes the dataset
used in this work.

CloudSat data 

Task 5
• Sample 16 channel values for 1 cloud label
• Vector output length: 17 (16+1)

Dataset

Train TestValidate

Task 1
• Extract cloud type using mode operation
• Extract location attributes
• Extract profile time

Task 2
• Construct matching GOES-16 filename
• Look up time based 16 channel files
• Fetch GOES-16 files from S3 bucket

Task 4
• Combine 16 GOES channels
• Channel wise normalization and storage

Number of days to process

P1 P2 P3 P4 P5 P6 P7 P8

Task 3
• Reprojection of individual 16 channels
• Adjustments with scale factor and offset
• Output individual 16 channel images

User input for the number of CloudSat 
days to be processed

Description

Initiate parallel worker processes

Processing CloudSat data points

Finding time based overlap for 
CloudSat and GOES-16

Processing GOES-16 images

Saving GOES-16 images

Sampling and pre-processing stage

Datasets for machine learning 
application

Figure 2. A schematic for automated data generation pipeline.

Once the dataset is ready for the machine learning application, a uniform distribution of cloud
types (same number of classes) is considered in order to avoid class imbalance [29,61]. To perform an
independent evaluation, the data from 26 August 2017 to 28 August 2017 along with 120,000 random
samples (1500 samples from each class) are separated for testing purposes. The remaining 80% of the
data was randomly selected for training and 20% of the data was used for validation. As described
by Sassen and Wang [43], identifying the difference between Stratus and Stratocumulus clouds is
challenging for the CloudSat 2B-CLDCLASS algorithm, so we consider these two middle-level cloud
types in one class. To generate the labeled dataset and DeepCTC implementation, the following
system configuration is used: 2 Intel CPUs each having 48 cores, 128 GB system RAM and 1 NVIDIA
Quadro P6000 GPU. The implementation of DeepCTC is carried out in Python (3.6), using Keras (2.1.6)
with TensorFlow (1.9.0) backend. With respect to our experimental system setup, DeepCTC is able to
identify cloud types every 5 min over the study area (CONUS).

4. Results and Discussion

In order to assess the performance of the DeepCTC model, common statistical verification indices
for multi-class classification models are reported; then some sample cloud-type results from GOES-16
ABI imageries during Hurricane Harvey are illustrated over the CONUS. All of the comparisons cover
the test datasets (not including in the training dataset) and are based upon matching data pairs between
GOES-16 and CloudSat with a spatial resolution of 0.01◦. The MRMS half-hourly rain rate dataset is
used as reference precipitation information to evaluate the ability of DeepCTC to identify different
patterns of rain rates regarding cloud-type information. Furthermore, DeepCTC is used to examine
the performance of high spatiotemporal resolution satellite precipitation estimates, PERSIANN-CCS,
based on individual cloud types.

First, the confusion matrix is prepared with respect to the completely independent test dataset
(Table 3). This cross-tabulation provides brief information on predicted cloud types (DeepCTC) against
the reference data (CloudSat 2B-CLDCLASS) (described in Appendix A). By comparing cloud-type
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results to the CloudSat 2B-CLDCLASS data, we can see the highest confusion is between the class
of Stratus/Stratocmulus (actual) cloud types and No Cloud class (predicted), which is about 27%
of Stratus/Stratocmulus sample data. Also, about 15% of Cumulus clouds are miscategorized as
Stratus and Stratocmulus types. These confusions confirm the difficulty of visible- and infrared-based
classification models in recognizing shallow/low level clouds (see the Table 1 for more detailed
information on cloud types). Note that DeepCTC model performs very well in capturing warm clouds
compared to previous studies such as Nasrollahi [29]. Moreover, the model shows its capability in
recognizing the difference between Deep Convective and Nimbostratus cloud types.

Table 3. Confusion matrix (∼ 12, 000 total test samples).

Predicted Cloud-Type (DeepCTC)
Hi As Ac St, Sc Cu Ns Dc No Cloud

Reference (CloudSat)

Hi 1239 46 33 8 2 1 10 161
As 53 1317 40 13 9 1 55 9
Ac 39 44 1182 83 22 4 27 99

St, Sc 51 7 33 968 16 0 2 417
Cu 43 44 71 218 998 6 14 112
Ns 35 70 38 2 9 1312 34 0
DC 23 76 23 13 10 22 1329 4

No Cloud 39 2 4 47 0 0 0 1408

The common statistical indices for evaluation of a multi-class classification model are shown in
Table 4 for each cloud type; these indices are described in Appendix A. In terms of TNR and NPV,
DeepCTC performs very well by correctly identifying all cloud types. The probability of true negative
(NPV) is more than 95% for all classes and the TNR index which indicates the specificity of predicted
cloud-type is high, especially for cloud type Cu (cumulus Congestus and fair weather cumulus) and
Ns (Nimbostratus). The values of PPV in Table 4 demonstrate the good agreement between predicted
cloud types and the CloudSat reference data. The precision is also high for cloud types Cu and Ns,
about 93% and 97%, respectively. However, we can see lower skill in the No Cloud class because of
the high confusion in capturing shallow clouds (see Table 3). The high value of TPR shows the recall
or effectiveness of DeepCTC in identifying cloud types, which is about 93% for the No Cloud class.
Furthermore, false alarm ratio is significantly low for all cloud types (less than 0.03) and 0.07 for the
No Cloud class.

In general, the average accuracy of the DeepCTC model is approximately 85%. It can be
argued that DeepCTC is notably skillful in classifying High clouds, Altostratus, Altocumulus,
Cumulus, Nimbostratus and Deep Convective Clouds but it is less accurate in the case of Stratus and
Stratocumulus clouds. This mainly results from the expected confusion between low level clouds
and clear sky, especially in high altitude regions in which the elevation of clouds may be at the same
elevation as the surface.

Table 4. Results for statistical evaluation of DeepCTC.

Cloud Type
Index Hi As Ac St, Sc Cu Ns DC No Cloud

PPV 0.81 0.82 0.83 0.71 0.93 0.97 0.90 0.63
TPR 0.82 0.87 0.78 0.64 0.66 0.87 0.88 0.93
TNR 0.97 0.97 0.97 0.96 0.99 0.99 0.98 0.92
NPV 0.97 0.98 0.96 0.95 0.95 0.98 0.98 0.99
FPR 0.02 0.02 0.02 0.03 0.00 0.00 0.01 0.07
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4.1. Visualization of Cloud-Type Information over the CONUS

Hurricane Harvey is chosen as a case study to illustrate the life cycle of different cloud types.
Figure 3a–c displays samples from ABI’s 16 bands (0.47 to 13.28 µm) as DeepCTC inputs on
26 August 2017 at 17:30 UTC and the simulated cloud types from DeepCTC are shown in Figure 3d.
We take the argument of the maxima from the probability of cloud types (Softmax outputs) at each pixel
to obtain the distribution of different classes (Figure 3d). This figure illustrates the Deep Convective,
Altostratus and High cloud types over the southern area of Texas, the Gulf of Mexico and East
Coast instantaneously with detecting the Altocumulus clouds over the central US on 26 August 2017
at 17:30 UTC. The proposed high resolution automated DeepCTC system provides a large-scale
perspective of cloud types and meets the need for rapid and consistent cloud-type tracking over the
CONUS and the future extension of the model to the globe.

Figure 3. Visualization of (a) visible bands (0.47 µm, 0.64 µm, 0.86 µm), (b) Midlevel Water Vapor
Band (6.9 µm), (c) infrared band (10.3 µm) and (d) DeepCTC output from the GOES-16 ABI images,
Hurricane Harvey event 26 August 2017 at 17:32 UTC.

Since DeepCTC simulates consecutive images, 288 frames per day over the CONUS, we select four
random DeepCTC results during one day (26 August 2017) to demonstrate high variability and changes
of cloud types during that day (Figure 4). We can see the clouds are mainly Deep Convective within the
hurricane; high level clouds spiral “anticyclonically outward” and low level clouds move “cyclonically
inward”, as time passes from panel a to d in Figure 4 (chap. 10 [47]). The spatial distribution of the
MRMS precipitation rate within the bounds of these clouds (Figure 4e–h) shows similar motions and
exhibits a strong relation between cloud types and rainy regions.
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Figure 4. Visualization of cloud types for the Hurricane Harvey event compared to half-hourly MRMS
rain rate contours on 26 August 2017. Cloud types (a) at 03:32 UTC, (b) at 11:57 UTC; (c) at 18:32 UTC
and (d) at 20:02 UTC. Half-hourly rain rate (e) from 03:00 to 03:30 UTC; (f) from 11:30 to 12:00 UTC,
(g) from 18:00 to 18:30 UTC, (h) from 19:30 to 20:00 UTC.

4.2. Assessment of DeepCTC Through Precipitation

The outputs of DeepCTC over the CONUS allow the exploration of spatial distribution
of rainfall for various cloud types. Figure 5 displays the distinctive variation of rain rates
within retrieved cloud types from DeepCTC. MRMS rain rates are 30-minute accumulated values
(e.g., from 17:30 to 18:00 UTC) and cloud types in pixels are the most frequent cloud types in the same
30 min time interval. The comparison is from 0 to 10 mm/h of rain intensity on 26 August 2017.
Some of the rain intensities extend to higher values but are truncated here to better represent the
variability between the classes. The bin size of histograms are 0.2 mm/h and each plot shows the
relative frequencies greater than a minimum 0.001 for rainfall information. A large amount of
precipitation can be observed across cloud types Ns and DC, which is compatible with the observations
in Figure 4. It should be mentioned that Altostratus clouds are composed of water droplets and
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ice crystals and they do not produce significant precipitation at the surface. However, these clouds
occasionally alter to either Stratus clouds (low rain rate may occur) or Nimbostratus clouds (causes
stratiform precipitation) [47]. The histogram in Figure 5b accounts for these instantaneous cloud
conversions. Changes in the spatial patterns of precipitation can be seen in Figure 4.

Figure 5. Plots of relative frequency of MRMS rain rates (temporal resolution 30 min) for different
cloud types (a–h) on 26 August 2017. Number on the x axis represents rain rate boundaries with a bin
size of 0.1 mm/h and the y axis is logarithmic scale of the relative frequency of rain-rate occurrence.

Further details for distribution of rain rates over Deep Convective and Nimbostratus clouds are
shown in Figure 6. Deep Convective and Nimbostratus clouds mostly cover extreme rainfall intensities
which is consistent with the definition of these cloud types. Deep Convective clouds produce high
rain rates (0.1 mm/h to about 18 mm/h) where rain drops melted from large ice particles above the
freezing level are known as convective precipitation (Figure 6b).

Figure 6. Histogram and density curve of rain rate (≥0.1 mm/h with a bin size of 0.2 mm/h) for
(a) Nimbostratus cloud; (b) Deep Convective clouds for one day of simulation, 26 August 2017.

These clouds are often surrounded spatially by Nimbostratus clouds (see Figure 4a–d). Moreover,
stratiform rainfall, which results from Nimbostratus clouds, shows lower precipitation rates (0.1 mm/h
to about 7 mm/h in Figure 6a) compared to that from Convective clouds (0.1 mm/h to about 18 mm/h
in Figure 6b). Also, the maximum density for Nimbostratus and Deep Convective clouds are 0.65 and
0.37 in about 0.5 mm/h and 1.5 mm/h rain rates, respectively. Our comparison between different
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cloud types and precipitation rates is a good evidence of DeepCTC’s ability for real-time global-scale
cloud-type classification and identification of their associated precipitation potential.

4.3. Evaluation of Half-Hourly PERSIANN-CCS According to Cloud-Type Information

We used the proposed DeepCTC model to evaluate the performance of the operational
PERSIANN-CCS product based on different cloud types with respect to MRMS rain rate data as
a reference, at a half-hourly scale over the CONUS. Both the MRMS and DeepCTC datasets are
resampled to 0.04◦ for each 30 min to be comparable with the PERSIANN-CCS product [62]. Table 5
provides the verification statistics including Pearson correlation coefficient (Corr), bias ratio (bias)
and root mean square error (RMSE) of the satellite-based precipitation estimates compared to MRMS
for individual cloud types for July 2018. These continuous verification metrics are explained in
Appendix A. The bias values show that PERSIANN-CCS underestimates about 65% of precipitation
ratesfor cloud-type Ac. This cloud-type also has the lowest RMSE value and lowest correlation with
reference data. Precipitation retrievals for cloud types Ac and Ns (with bias ratios of 1.19 and 0.82)
are significantly better than other cloud types. However, PERSIANN-CCS overestimates rain rates
by over 65% for High clouds (Hi). The best correlation can be seen over cloud type St, Sc with a low
RMSE value of about 1.4 mm/h. The highest RMSE is associated with cloud-type DC, about 5.6 mm/h
(which are the deep convective clouds with mostly high rain rates).

We examine the performance of PERSIANN-CCS with reference to MRMS data utilizing
volumetric categorical indices [63] such as Volumetric Hit Index (VHI), Volumetric False Alarm Ratio
(VFAR) and Volumetric Critical Success Index (VCSI) in addition to Probability of Detection (POD),
False Alarm Ratio (FAR) and Critical Success Index (CSI). These categorical metrics are explained in
Appendix A. Figure 7 displays the summary of volumetric indices for each cloud-type for evaluating
the entire distribution of precipitation estimation with a 0.1 mm/h rain rate threshold for July 2018
over the CONUS. Notice that 1-FAR and 1-VFAR are plotted instead of FAR and VFAR so that the ideal
value of all indicators is 1. This figure shows that about 52% of the reference observations (MRMS)
are detected correctly by PERSIANN-CCS over cloud-type DC (POD = 0.52) and it estimates about
80% of the volume of observed precipitation (VHI = 0.79) for this cloud type. The low values of POD
and VHI for cloud-type AC indicate that PERSIANN-CCS often fails to capture precipitation over this
type, about 0.05 and 0.3, respectively. The FAR ranges from 0.3 to 0.5 and VFAR values are less than
0.4 for all cloud types, with 0 being perfect FAR and VFAR. The FAR value is relatively high for High
clouds (Hi), about 0.5, while VFAR shows that false precipitations for this cloud-type is below 40%
of the volume of rainfall related to reference data. One can see that PERSIANN-CCS has less false
precipitation (higher values of 1-FAR and 1-VFAR) over cloud types St, Sc and Cu compared to other
cloud types.

Table 5. Evaluation of PERSIANN-CCS across the United States for July 2018; MRMS dataset is used
as a reference.

Cloud Type
Metrics Hi As Ac St, Sc Cu Ns DC

Bias 0.69 1.19 0.32 0.70 0.39 0.82 1.56
RMSE (mm/h) 2.14 2.63 1.28 1.44 2.03 3.08 5.61

Corr 0.26 0.27 0.17 0.36 0.22 0.17 0.26

The CSI index decomposes the POD and FAR and identifies the overall skill of PERSIANN-CCS
relative to MRMS rain rate data. Furthermore, VCSI provides the general volumetric performance
of PERSIANN-CCS associated with the volume of hit, false and miss components of precipitation.
As clearly shown in Figure 7, the overall performance of PERSIANN-CCS over Deep Convective
(DC) clouds is superior to all other cloud types in capturing precipitation. The CSI value over
cloud-type DC is approximately 0.42, whereas the VCSI indicates a better skill of about 0.64 with
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respect to the amount of precipitation. CSI and VCSI for cloud-type Ac expresses the challenges of
the PERSIANN-CCS algorithm in detecting rainy events over shallow clouds. One of the probable
sources of bias over this cloud-type (Altocumulus clouds) can be the “virga” phenomenon [64],
which radar-based measurements (e.g., MRMS) are able to detect but not GEO-based precipitation
algorithms like PERSIANN-CCS.

Figure 7. Evaluation of PERSIANN-CCS across the United States for July 2018. Categorical verification
metrics: Probability Of Detection (POD), Volumetric Hit Index (VHI), False Alarm Ratio (FAR),
Volumetric False Alarm Ratio (VFAR), Critical Success Index (VCSI) and Volumetric Critical Success
Index (VCSI). MRMS rain rate data is used as a reference.

5. Conclusions and Future Direction

The Deep Neural Network Cloud-Type Classification model (DeepCTC) in this paper deploys high
spatiotemporal and multispectal images from advanced geostationary satellites to provide dynamic
cloud-type information. The goal is to have an accurate and flexible algorithm to overcome the lack
of real-time high temporal and spatial resolution cloud-type data over the globe. In order to train
DeepCTC, we use CloudSat CPR measurements which provide a valuable source of information
on the vertical structure and properties of clouds; this is a pioneering effort to be followed by
using the EarthCARE satellite observations. In this study, experiments are achieved by applying
DeepCTC on GOES-16 ABI multispectal imageries. This approach can be applied on other imageries
from the new generation geostationary sensors such as ABI on GOES-17, Advanced Himawari
Imager (AHI) on Himawari-8/9, Advanced Meteorological Imager (AMI) on GEO-KOMPSAT2A,
Flexible Combined Imager (FCI) on Meteosat Third Generation-Imaging (MTG-I) and Advanced
Geosynchronous Radiation Imager (AGRI) on Fengyun-4A.

Regarding statistical and visual evaluation, DeepCTC classifies multispectral data into different
cloud types and our evaluation displays the ability of DeepCTC for effective near real-time global-scale
cloud-type monitoring. DeepCTC distinguishes rainy clouds (e.g., Deep Convective and Nimbostratus
clouds) with different rainfall patterns very well, so this information can be used toward diagnosing
the source of uncertainties in GEO-based precipitation retrievals regarding well-known cloud types.
The evaluation of PERSIANN-CCS for individual cloud types for July 2018 shows that this GEO-based
precipitation algorithm has the best overall performance over cloud-type DC. However, it mainly fails
to capture precipitation for cloud-type Ac. In terms of FAR and VFAR, PERSIANN-CCS performs better
over cloud types Cu and DC than it does for cloud-type Hi. In terms of VHI and POD, PERSIANN-CCS
is also effective at capturing precipitation related to Deep Convective, as shown in Figure 7. Since the
PERSIANN-CCS algorithm clusters cloud features into different subgroups without any interpretation
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of the vertical structure of clouds, DeepCTC’s future direction will be mainly integrating cloud-type
information into this GEO-based precipitation algorithm. It should be noted that a broader statistical
analysis for spatial and temporal variation is needed to draw more comprehensive conclusions. Overall,
the advantages of the DeepCTC model are its simplicity in algorithm, the ability to rapidly identify
cloud types over large-scale areas (every 5 min for the CONUS, 15 min for a full disk), and the ability
to transfer learning to other multispectral classification models.
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Appendix A

To evaluate the performance of multi-class classification model a two-dimensional matrix called
“confusion matrix” is used where each row indicates the number of the actual class and each column
belongs to the predicted class [65]. The number of true positives (TP) or hits for each class are on the
main diagonal of confusion matrix; true negatives (TN) are the number of correct rejection classes;
false positives (FP) are the number of false alarms and false negatives (FN) are the number of misses
for each class [66]. Following that, we supplemented the evaluation of DeepCTC by calculating
well-known statistical indices for classification models, including the Positive Predictive Value (PPV)
or Precision index, True Positive Rate (TPR) (or Recall/Sensitivity/Hit Rate), True Negative Rate (TNR)
or Specificity, Negative Predictive Value (NPV), and False Positive Rate (FPR):

PPV =
TP

TP + FP
(A1)

TPR =
TP

TP + FN
(A2)

TNR =
TN

TN + FR
(A3)

NPV =
TN

TN + FN
(A4)

FPR =
FP

FP + TN
(A5)

Note that 1 is desirable value for PPV, TPR, TNR, and NPV, while 0 the best score for FPR.
Total classification accuracy (ACC) is also defined as

ACC =
TP + TN

TP + TN + FP + FN
(A6)
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Probability of Detection (POD), False Alarm Ratio (FAR) and Critical Success Index (CSI) are
defined as

POD =
H

H + M
(A7)

FAR =
F

F + H
(A8)

CSI =
H

H + F + M
(A9)

where H (hit) indicates that both PERSIANN-CCS and MRMS reference observation detect the event,
M (miss) identifies events captured by MRMS but missed by PERSIANN-CCS, F (false alarm) indicates
events captured by MRMS but not confirmed by PERSIANN-CCS [67].

Continuous verification metrics such as Pearson correlation coefficient (Corr), bias ratio (bias),
and root mean square error (RMSE) are widely used in order to evaluate the precipitation estimates:

Bias =
1
n

n

∑
i=1

CCSi
MRMSi

(A10)

RMSE =

√
1
n

n

∑
i=1

(CCSi −MRMSi)2 (A11)

Corr =
1
n

∑n
i=1(CCSi − CCS)(MRMSi −MRMS)√

∑n
i=1(CCSi − CCS)2

√
∑n

i=1(MRMSi −MRMS)2
(A12)

CCS represents PERSIANN-CCS satellite precipitation estimation and MRMS refers to
reference observations. Furthermore, to estimate the volume of precipitation detected correctly by
PERSIANN-CCS the Volumetric Hit Index (VHI) [68] can be expressed as

VHI =
∑n

i=1(CCSi|(CCSi > t&MRMSi > t))
∑n

i=1(CCSi|CCSi > t&MRMSi > t) + ∑n
i=1(MRMSi|(CCSi ≤ t&MRMSi > t))

. (A13)

t is the threshold above which the volumetric indices are computed with sample size of n. VHI
can be summarized as the total volume of hit precipitation related to volume of correct precipitation
estimation and missed observations above the threshold t. A similar threshold concept can be utilized
to define Volumetric False Alarm Ratio (VFAR) [63] as follows:

VFAR =
∑n

i=1(CCSi|(CCSi > t&MRMSi ≤ t))
∑n

i=1(CCSi|CCSi > t&MRMSi > t) + ∑n
i=1(MRMSi|(CCSi > t&MRMSi ≤ t))

. (A14)

Following the CSI concept, the Volumetric Critical Success Index (VCSI) was proposed by [63] as

VCSI = ∑n
i=1(CCSi |(CCSi>t&MRMSi>t))

∑n
i=1(CCSi |CCSi>t&MRMSi>t)+(MRMSi |(CCSi≤t&MRMSi>t))+(CCSi |(CCSi>t&MRMSi≤t)) . (A15)
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