Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Authors = Pooja Kumari

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3436 KiB  
Article
A Multi-Modal Light Sheet Microscope for High-Resolution 3D Tomographic Imaging with Enhanced Raman Scattering and Computational Denoising
by Pooja Kumari, Björn Van Marwick, Johann Kern and Matthias Rädle
Sensors 2025, 25(8), 2386; https://doi.org/10.3390/s25082386 - 9 Apr 2025
Viewed by 661
Abstract
Three-dimensional (3D) cellular models, such as spheroids, serve as pivotal systems for understanding complex biological phenomena in histology, oncology, and tissue engineering. In response to the growing need for advanced imaging capabilities, we present a novel multi-modal Raman light sheet microscope designed to [...] Read more.
Three-dimensional (3D) cellular models, such as spheroids, serve as pivotal systems for understanding complex biological phenomena in histology, oncology, and tissue engineering. In response to the growing need for advanced imaging capabilities, we present a novel multi-modal Raman light sheet microscope designed to capture elastic (Rayleigh) and inelastic (Raman) scattering, along with fluorescence signals, in a single platform. By leveraging a shorter excitation wavelength (532 nm) to boost Raman scattering efficiency and incorporating robust fluorescence suppression, the system achieves label-free, high-resolution tomographic imaging without the drawbacks commonly associated with near-infrared modalities. An accompanying Deep Image Prior (DIP) seamlessly integrates with the microscope to provide unsupervised denoising and resolution enhancement, preserving critical molecular details and minimizing extraneous artifacts. Altogether, this synergy of optical and computational strategies underscores the potential for in-depth, 3D imaging of biomolecular and structural features in complex specimens and sets the stage for future advancements in biomedical research, diagnostics, and therapeutics. Full article
(This article belongs to the Special Issue AI-Based Computer Vision Sensors & Systems)
Show Figures

Figure 1

23 pages, 4727 KiB  
Article
Self-Supervised and Zero-Shot Learning in Multi-Modal Raman Light Sheet Microscopy
by Pooja Kumari, Johann Kern and Matthias Raedle
Sensors 2024, 24(24), 8143; https://doi.org/10.3390/s24248143 - 20 Dec 2024
Cited by 2 | Viewed by 1327
Abstract
Advancements in Raman light sheet microscopy have provided a powerful, non-invasive, marker-free method for imaging complex 3D biological structures, such as cell cultures and spheroids. By combining 3D tomograms made by Rayleigh scattering, Raman scattering, and fluorescence detection, this modality captures complementary spatial [...] Read more.
Advancements in Raman light sheet microscopy have provided a powerful, non-invasive, marker-free method for imaging complex 3D biological structures, such as cell cultures and spheroids. By combining 3D tomograms made by Rayleigh scattering, Raman scattering, and fluorescence detection, this modality captures complementary spatial and molecular data, critical for biomedical research, histology, and drug discovery. Despite its capabilities, Raman light sheet microscopy faces inherent limitations, including low signal intensity, high noise levels, and restricted spatial resolution, which impede the visualization of fine subcellular structures. Traditional enhancement techniques like Fourier transform filtering and spectral unmixing require extensive preprocessing and often introduce artifacts. More recently, deep learning techniques, which have shown great promise in enhancing image quality, face their own limitations. Specifically, conventional deep learning models require large quantities of high-quality, manually labeled training data for effective denoising and super-resolution tasks, which is challenging to obtain in multi-modal microscopy. In this study, we address these limitations by exploring advanced zero-shot and self-supervised learning approaches, such as ZS-DeconvNet, Noise2Noise, Noise2Void, Deep Image Prior (DIP), and Self2Self, which enhance image quality without the need for labeled and large datasets. This study offers a comparative evaluation of zero-shot and self-supervised learning methods, evaluating their effectiveness in denoising, resolution enhancement, and preserving biological structures in multi-modal Raman light sheet microscopic images. Our results demonstrate significant improvements in image clarity, offering a reliable solution for visualizing complex biological systems. These methods establish the way for future advancements in high-resolution imaging, with broad potential for enhancing biomedical research and discovery. Full article
Show Figures

Figure 1

16 pages, 5991 KiB  
Article
Advanced Imaging Integration: Multi-Modal Raman Light Sheet Microscopy Combined with Zero-Shot Learning for Denoising and Super-Resolution
by Pooja Kumari, Shaun Keck, Emma Sohn, Johann Kern and Matthias Raedle
Sensors 2024, 24(21), 7083; https://doi.org/10.3390/s24217083 - 3 Nov 2024
Cited by 5 | Viewed by 2391
Abstract
This study presents an advanced integration of Multi-modal Raman Light Sheet Microscopy with zero-shot learning-based computational methods to significantly enhance the resolution and analysis of complex three-dimensional biological structures, such as 3D cell cultures and spheroids. The Multi-modal Raman Light Sheet Microscopy system [...] Read more.
This study presents an advanced integration of Multi-modal Raman Light Sheet Microscopy with zero-shot learning-based computational methods to significantly enhance the resolution and analysis of complex three-dimensional biological structures, such as 3D cell cultures and spheroids. The Multi-modal Raman Light Sheet Microscopy system incorporates Rayleigh scattering, Raman scattering, and fluorescence detection, enabling comprehensive, marker-free imaging of cellular architecture. These diverse modalities offer detailed spatial and molecular insights into cellular organization and interactions, critical for applications in biomedical research, drug discovery, and histological studies. To improve image quality without altering or introducing new biological information, we apply Zero-Shot Deconvolution Networks (ZS-DeconvNet), a deep-learning-based method that enhances resolution in an unsupervised manner. ZS-DeconvNet significantly refines image clarity and sharpness across multiple microscopy modalities without requiring large, labeled datasets, or introducing artifacts. By combining the strengths of multi-modal light sheet microscopy and ZS-DeconvNet, we achieve improved visualization of subcellular structures, offering clearer and more detailed representations of existing data. This approach holds significant potential for advancing high-resolution imaging in biomedical research and other related fields. Full article
Show Figures

Figure 1

26 pages, 12048 KiB  
Article
Parametric Investigation of Die-Sinking EDM of Ti6Al4V Using the Hybrid Taguchi-RAMS-RATMI Method
by Chitrasen Samantra, Abhishek Barua, Swastik Pradhan, Kanchan Kumari and Pooja Pallavi
Appl. Sci. 2024, 14(16), 7139; https://doi.org/10.3390/app14167139 - 14 Aug 2024
Cited by 2 | Viewed by 1349
Abstract
Ti6Al4V is a widely used alloy due to its excellent mechanical qualities and resistance to corrosion, which make it fit for automotive, aerospace, defense, and biomedical sectors. Due to its high strength and limited heat conductivity, it is difficult to machine. Both the [...] Read more.
Ti6Al4V is a widely used alloy due to its excellent mechanical qualities and resistance to corrosion, which make it fit for automotive, aerospace, defense, and biomedical sectors. Due to its high strength and limited heat conductivity, it is difficult to machine. Both the workpiece’s and the electrode’s conductivity are important factors that impact the electro-discharge machining (EDM) process. In this case, the machining efficiency is also influenced by the electrode selection. As a result, choosing the right electrode and machining parameters is essential to improving EDM performance on the Ti6Al4V alloy. Research on EDM for Ti6Al4V is limited, with little focus on electrode material selection and shape. The impact of EDM settings on MRR, TWR, and surface roughness is complex, and a comprehensive optimization strategy is needed. Copper electrodes are widely used, but further investigation is needed on EDM’s effects on Ti6Al4V’s surface properties and surface integrity. Addressing these research gaps will improve the understanding and application of EDM for Ti6Al4V, focusing on parameter optimization, surface integrity, and thermal and mechanical effects. By employing copper tools to optimize four crucial EDM process parameters—peak current, duty cycle, discharge current, and pulse-on time—this research aims to increase surface integrity and machining performance. A comprehensive Taguchi experimental design is used to systematically alter the EDM settings. By optimizing parameters using tolerance intervals and response modelling, the recently developed RAMS-RATMI approach improves the dependability of the EDM process and increases machining efficiency. With the optimized EDM settings, there were notable gains in depth of cut enhancement, surface roughness minimization, tool wear rate (TWR) reduction, and material removal rate (MRR). The results of the surface integrity examination showed fewer heat-affected zones, fewer microcracks, and a thinner recast layer. Analysis of variance was used to verify the impact and resilience of the optimized parameters. Superior machining performance, higher surface quality, and increased operational dependability were attained with the Ti6Al4V-optimized EDM process, providing industry practitioners with insightful information and useful recommendations. Full article
Show Figures

Figure 1

13 pages, 5378 KiB  
Article
Morpho-Biochemical Responses of Brassica Coenospecies to Glyphosate Exposure at Pre- and Post-Emergence Stages
by Anamika Kashyap, Sujata Kumari, Pooja Garg, Ranjeet Kushwaha, Shikha Tripathi, Jyoti Sharma, Navin C. Gupta, Rajeev Ranjan Kumar, Harinder Vishwakarma, Ramcharan Bhattacharya, Rashmi Yadav, Jai Chand Rana and Mahesh Rao
Agronomy 2023, 13(7), 1831; https://doi.org/10.3390/agronomy13071831 - 10 Jul 2023
Cited by 7 | Viewed by 1813
Abstract
Crop wild relatives (CWRs) belonging to the Brassicaceae family possess extensive genetic diversity and have frequently been utilized in the enhancement of cultivated Brassica species. However, their tolerance to glyphosate, a widely used herbicide, has remained unknown. Our study examined the glyphosate response [...] Read more.
Crop wild relatives (CWRs) belonging to the Brassicaceae family possess extensive genetic diversity and have frequently been utilized in the enhancement of cultivated Brassica species. However, their tolerance to glyphosate, a widely used herbicide, has remained unknown. Our study examined the glyphosate response of 20 genotypes from the Brassicaceae family, which included genotypes within the U triangle and their wild relatives. We evaluated their behaviour based on morpho-biochemical responses, specifically focusing on the traits of germination percentage, root length, and survival percentage. By calculating the mean membership function value (MFV) for each genotype’s response to these traits, we classified them into three distinct groups: susceptible, moderately tolerant, and tolerant. Among these genotypes, Brassica rapa (NRCPB rapa 8) demonstrated tolerance to glyphosate, as indicated by their mean MFV value of 0.68. Moderate tolerance to glyphosate was observed in Brassica juncea (Pusa Jaikisan) with a mean MFV of 0.52. Conversely, Diplotaxis catholica, Diplotaxis muralis, and Enarthrocarpus lyratus were susceptible, with mean MFV values of 0.37, 0.35, and 0.34, respectively. These findings revealed varying levels of response to glyphosate among these genotypes, with some displaying significant tolerance. The study provides valuable insights into the herbicide tolerance of Brassica CWRs and emphasizes the potential use of phenotypic and biochemical markers in evaluating herbicide tolerance. Full article
Show Figures

Figure 1

13 pages, 5642 KiB  
Article
Solvatochromism as a Novel Tool to Enumerate the Optical and Luminescence Properties of Plastic Waste Derived Carbon Nanodots and Their Activated Counterparts
by Savita Chaudhary, Manisha Kumari, Pooja Chauhan, Ganga Ram Chaudhary, Ahmad Umar, Sheikh Akbar and Sotirios Baskoutas
Nanomaterials 2023, 13(8), 1398; https://doi.org/10.3390/nano13081398 - 18 Apr 2023
Cited by 2 | Viewed by 1739
Abstract
Herein, we have developed a one-pot methodology to synthesise three types of C-dots and their activated counterparts from three different types of waste plastic precursors such as poly-bags, cups and bottles. The optical studies have shown the significant change in the absorption edge [...] Read more.
Herein, we have developed a one-pot methodology to synthesise three types of C-dots and their activated counterparts from three different types of waste plastic precursors such as poly-bags, cups and bottles. The optical studies have shown the significant change in the absorption edge in case of C-dots in comparison to their activated counterparts. The respective variation in the sizes is correlated with the change in electronic band gap values of formed particles. The changes in the luminescence behaviour are also correlated with transitions from the edge of the core of formed particles. The obtained variations in the Stokes shift values of C-dots, and their ACs were used to explore the types of surface states and their related transitions in particles. The mode of interaction between C-dots and their ACs was also determined using solvent-dependent fluorescence spectroscopy. This detailed investigation could provide significant insight on the emission behaviour and the potential usage of formed particles as an effective fluorescent probe in sensing applications. Full article
Show Figures

Figure 1

19 pages, 8640 KiB  
Review
A Brief Review on Cerium Oxide (CeO2NPs)-Based Scaffolds: Recent Advances in Wound Healing Applications
by Ishita Allu, Ajay Kumar Sahi, Pooja Kumari, Karunya Sakhile, Alina Sionkowska and Shravanya Gundu
Micromachines 2023, 14(4), 865; https://doi.org/10.3390/mi14040865 - 17 Apr 2023
Cited by 35 | Viewed by 5096
Abstract
The process of wound healing is complex and involves the interaction of multiple cells, each with a distinct role in the inflammatory, proliferative, and remodeling phases. Chronic, nonhealing wounds may result from reduced fibroblast proliferation, angiogenesis, and cellular immunity, often associated with diabetes, [...] Read more.
The process of wound healing is complex and involves the interaction of multiple cells, each with a distinct role in the inflammatory, proliferative, and remodeling phases. Chronic, nonhealing wounds may result from reduced fibroblast proliferation, angiogenesis, and cellular immunity, often associated with diabetes, hypertension, vascular deficits, immunological inadequacies, and chronic renal disease. Various strategies and methodologies have been explored to develop nanomaterials for wound-healing treatment. Several nanoparticles such as gold, silver, cerium oxide and zinc possess antibacterial properties, stability, and a high surface area that promotes efficient wound healing. In this review article, we investigate the effectiveness of cerium oxide nanoparticles (CeO2NPs) in wound healing—particularly the effects of reducing inflammation, enhancing hemostasis and proliferation, and scavenging reactive oxygen species. The mechanism enables CeO2NPs to reduce inflammation, modulate the immunological system, and promote angiogenesis and tissue regeneration. In addition, we investigate the efficacy of cerium oxide-based scaffolds in various wound-healing applications for creating a favorable wound-healing environment. Cerium oxide nanoparticles (CeO2NPs) exhibit antioxidant, anti-inflammatory, and regenerative characteristics, enabling them to be ideal wound healing material. Investigations have shown that CeO2NPs can stimulate wound closure, tissue regeneration, and scar reduction. CeO2NPs may also reduce bacterial infections and boost wound-site immunity. However, additional study is needed to determine the safety and efficacy of CeO2NPs in wound healing and their long-term impacts on human health and the environment. The review reveals that CeO2NPs have promising wound-healing properties, but further study is needed to understand their mechanisms of action and ensure their safety and efficacy. Full article
(This article belongs to the Special Issue Biomaterials, Biodevices and Tissue Engineering)
Show Figures

Figure 1

16 pages, 1513 KiB  
Review
Treatment with Testosterone Therapy in Type 2 Diabetic Hypogonadal Adult Males: A Systematic Review and Meta-Analysis
by Kajol Kumari, Rohan Kumar, Areeba Memon, Beena Kumari, Moniba Tehrim, Pooja Kumari, Muhammad Shehryar, Hamza Islam, Rabia Islam, Mahima Khatri, Satesh Kumar and Ajay Kumar
Clin. Pract. 2023, 13(2), 454-469; https://doi.org/10.3390/clinpract13020041 - 20 Mar 2023
Cited by 21 | Viewed by 6744
Abstract
Testosterone replacement therapy (TRT) has been used to treat hypogonadal males with type 2 diabetes mellitus (T2DM) for a long time, despite variable results. This meta-analysis examines TRT’s role in hypogonadal males with T2DM. The databases PubMed, Embase, and Google Scholar were searched [...] Read more.
Testosterone replacement therapy (TRT) has been used to treat hypogonadal males with type 2 diabetes mellitus (T2DM) for a long time, despite variable results. This meta-analysis examines TRT’s role in hypogonadal males with T2DM. The databases PubMed, Embase, and Google Scholar were searched for relevant RCTs and observational studies. Estimated pooled mean differences (MDs) and relative risks with 95% confidence intervals were used to measure the effects of TRT (CIs). When compared to the placebo, TRT improves glycemic management by significantly reducing glycated hemoglobin (HBA1c) levels (WMD = −0.29 [−0.57, −0.02] p = 0.04; I2 = 89.8%). Additionally, it reduces the homeostatic model assessment levels of insulin resistance (WMD = −1.47 [−3.14, 0.19]; p = 0.08; I2 = 56.3%), fasting glucose (WMD = −0.30 [−0.75, 0.15]; p = 0.19; I2 = 84.4%), and fasting insulin (WMD = −2.95 [−8.64, 2.74]; however, these results are non-significant. On the other hand, HBA1c levels are significantly reduced with TRT; in addition, total testosterone levels significantly increase with testosterone replacement therapy (WMD = 4.51 [2.40, 6.61] p = 0.0001; I2 = 96.3%). Based on our results, we hypothesize that TRT can improve glycemic control and hormone levels, as well as lower total cholesterol, triglyceride, and LDL cholesterol levels while raising HDL cholesterol in hypogonadal type 2 diabetes patients. To this end, we recommend TRT for these patients in addition to standard diabetes care. Full article
(This article belongs to the Special Issue 2023 Feature Papers in Clinics and Practice)
Show Figures

Figure 1

17 pages, 4966 KiB  
Article
Indexing Resilience to Heat and Drought Stress in the Wild Relatives of Rapeseed-Mustard
by Anamika Kashyap, Sujata Kumari, Pooja Garg, Ranjeet Kushwaha, Shikha Tripathi, Jyoti Sharma, Navin C. Gupta, Rajeev Ranjan Kumar, Rashmi Yadav, Harinder Vishwakarma, Jai Chand Rana, Ramcharan Bhattacharya and Mahesh Rao
Life 2023, 13(3), 738; https://doi.org/10.3390/life13030738 - 9 Mar 2023
Cited by 11 | Viewed by 3491
Abstract
Wild species are weedy relatives and progenitors of cultivated crops, usually maintained in their centres of origin. They are rich sources of diversity as they possess many agriculturally important traits. In this study, we analysed 25 wild species and 5 U triangle species [...] Read more.
Wild species are weedy relatives and progenitors of cultivated crops, usually maintained in their centres of origin. They are rich sources of diversity as they possess many agriculturally important traits. In this study, we analysed 25 wild species and 5 U triangle species of Brassica for their potential tolerance against heat and drought stress during germination and in order to examine the early seedling stage. We identified the germplasms based on the mean membership function value (MFV), which was calculated from the tolerance index of shoot length, root length, and biochemical analysis. The study revealed that B. napus (GSC-6) could withstand high temperatures and drought. Other genotypes that were tolerant to the impact of heat stress were B. tournefortii (RBT 2002), D. gomez-campoi, B. tournefortii (Rawa), L. sativum, and B. carinata (PC-6). C. sativa resisted drought but did not perform well when subjected to high temperatures. Tolerance to drought was observed in B. fruticulosa (Spain), B. tournefortii (RBT 2003), C. bursa-pastoris (late), D. muralis, C. abyssinica (EC694145), C. abyssinica (EC400058) and B. juncea (Pusa Jaikisan). This investigation contributes to germplasm characterization and the identification of the potential source of abiotic stress tolerance in the Brassica breeding programme. These identified genotypes can be potential sources for transferring the gene(s)/genomic regions that determine tolerance to the elite cultivars. Full article
(This article belongs to the Special Issue Regulation of Abiotic Stress Resistance in Crops)
Show Figures

Figure 1

13 pages, 2825 KiB  
Article
Synthesis of Mixed-Phase TiO2–ZrO2 Nanocomposite for Photocatalytic Wastewater Treatment
by Pooja Kumari, Rajib Saha, Gaurav Saikia, Aditya Bhujel, Mahua Gupta Choudhury, Pravin Jagdale and Samrat Paul
Toxics 2023, 11(3), 234; https://doi.org/10.3390/toxics11030234 - 28 Feb 2023
Cited by 15 | Viewed by 2969
Abstract
The use of TiO2 nanoparticles for photocatalysis for the degradation of organic dyes under UV light for wastewater treatment has been widely studied. However, the photocatalytic characteristics of TiO2 nanoparticles are inadequate due to their UV light response and higher band [...] Read more.
The use of TiO2 nanoparticles for photocatalysis for the degradation of organic dyes under UV light for wastewater treatment has been widely studied. However, the photocatalytic characteristics of TiO2 nanoparticles are inadequate due to their UV light response and higher band gap. In this work, three nanoparticles were synthesized: (i) TiO2 nanoparticle was synthesized by a sol-gel process. (ii) ZrO2 was prepared using a solution combustion process and (iii) mixed-phase TiO2–ZrO2 nanoparticles were synthesized by a sol-gel process to remove Eosin Yellow (EY) from aqueous solutions in the wastewater. XRD, FTIR, UV-VIS, TEM, and XPS analysis methods were used to examine the properties of the synthesized products. The XRD investigation supported the tetragonal and monoclinic crystal structures of the TiO2 and ZrO2 nanoparticles. TEM studies identified that mixed-phase TiO2–ZrO2 nanoparticles have the same tetragonal structure as pure mixed-phase. The degradation of Eosin Yellow (EY) was examined using TiO2, ZrO2, and mixed-phase TiO2–ZrO2 nanoparticles under visible light. The results confirmed that the mixed-phase TiO2–ZrO2nanoparticles show a higher level of photocatalytic activity, and the process is accomplished at a high degradation rate in lesser time and at a lower power intensity. Full article
(This article belongs to the Special Issue Innovative Strategies to Decompose Pollutants)
Show Figures

Figure 1

31 pages, 2978 KiB  
Review
Carbon-Based Fluorescent Nano-Biosensors for the Detection of Cell-Free Circulating MicroRNAs
by Pooja Ratre, Nazim Nazeer, Roshani Kumari, Suresh Thareja, Bulbul Jain, Rajnarayan Tiwari, Arunika Kamthan, Rupesh K. Srivastava and Pradyumna Kumar Mishra
Biosensors 2023, 13(2), 226; https://doi.org/10.3390/bios13020226 - 4 Feb 2023
Cited by 25 | Viewed by 4962
Abstract
Currently, non-communicable diseases (NCDs) have emerged as potential risks for humans due to adopting a sedentary lifestyle and inaccurate diagnoses. The early detection of NCDs using point-of-care technologies significantly decreases the burden and will be poised to transform clinical intervention and healthcare provision. [...] Read more.
Currently, non-communicable diseases (NCDs) have emerged as potential risks for humans due to adopting a sedentary lifestyle and inaccurate diagnoses. The early detection of NCDs using point-of-care technologies significantly decreases the burden and will be poised to transform clinical intervention and healthcare provision. An imbalance in the levels of circulating cell-free microRNAs (ccf-miRNA) has manifested in NCDs, which are passively released into the bloodstream or actively produced from cells, improving the efficacy of disease screening and providing enormous sensing potential. The effective sensing of ccf-miRNA continues to be a significant technical challenge, even though sophisticated equipment is needed to analyze readouts and expression patterns. Nanomaterials have come to light as a potential solution as they provide significant advantages over other widely used diagnostic techniques to measure miRNAs. Particularly, CNDs-based fluorescence nano-biosensors are of great interest. Owing to the excellent fluorescence characteristics of CNDs, developing such sensors for ccf-microRNAs has been much more accessible. Here, we have critically examined recent advancements in fluorescence-based CNDs biosensors, including tools and techniques used for manufacturing these biosensors. Green synthesis methods for scaling up high-quality, fluorescent CNDs from a natural source are discussed. The various surface modifications that help attach biomolecules to CNDs utilizing covalent conjugation techniques for multiple applications, including self-assembly, sensing, and imaging, are analyzed. The current review will be of particular interest to researchers interested in fluorescence-based biosensors, materials chemistry, nanomedicine, and related fields, as we focus on CNDs-based nano-biosensors for ccf-miRNAs detection applications in the medical field. Full article
Show Figures

Figure 1

24 pages, 3735 KiB  
Review
Silk-Based Biomaterials for Designing Bioinspired Microarchitecture for Various Biomedical Applications
by Ajay Kumar Sahi, Shravanya Gundu, Pooja Kumari, Tomasz Klepka and Alina Sionkowska
Biomimetics 2023, 8(1), 55; https://doi.org/10.3390/biomimetics8010055 - 28 Jan 2023
Cited by 19 | Viewed by 4932
Abstract
Biomaterial research has led to revolutionary healthcare advances. Natural biological macromolecules can impact high-performance, multipurpose materials. This has prompted the quest for affordable healthcare solutions, with a focus on renewable biomaterials with a wide variety of applications and ecologically friendly techniques. Imitating their [...] Read more.
Biomaterial research has led to revolutionary healthcare advances. Natural biological macromolecules can impact high-performance, multipurpose materials. This has prompted the quest for affordable healthcare solutions, with a focus on renewable biomaterials with a wide variety of applications and ecologically friendly techniques. Imitating their chemical compositions and hierarchical structures, bioinspired based materials have elevated rapidly over the past few decades. Bio-inspired strategies entail extracting fundamental components and reassembling them into programmable biomaterials. This method may improve its processability and modifiability, allowing it to meet the biological application criteria. Silk is a desirable biosourced raw material due to its high mechanical properties, flexibility, bioactive component sequestration, controlled biodegradability, remarkable biocompatibility, and inexpensiveness. Silk regulates temporo-spatial, biochemical and biophysical reactions. Extracellular biophysical factors regulate cellular destiny dynamically. This review examines the bioinspired structural and functional properties of silk material based scaffolds. We explored silk types, chemical composition, architecture, mechanical properties, topography, and 3D geometry to unlock the body’s innate regenerative potential, keeping in mind the novel biophysical properties of silk in film, fiber, and other potential forms, coupled with facile chemical changes, and its ability to match functional requirements for specific tissues. Full article
(This article belongs to the Special Issue Bioinspiration in Silk Biomaterial Designing)
Show Figures

Graphical abstract

10 pages, 478 KiB  
Article
Diversity, Abundance and Impact of Insect Visitors in Litchi chinensis Production
by Pooja Kumari, Shagun Rana, Bhavya Bhargava and S. G. Eswara Reddy
Agronomy 2023, 13(2), 298; https://doi.org/10.3390/agronomy13020298 - 18 Jan 2023
Cited by 2 | Viewed by 2698
Abstract
Litchi chinensis is the “queen of fruits”, and pollination is an essential requirement for fruit set and production. The present study was conducted in litchi orchards to study the diversity/abundance of insect visitors, the impact of pollination on quantitative parameters, and different modes [...] Read more.
Litchi chinensis is the “queen of fruits”, and pollination is an essential requirement for fruit set and production. The present study was conducted in litchi orchards to study the diversity/abundance of insect visitors, the impact of pollination on quantitative parameters, and different modes of pollination. The results showed that 75 insect species during flowering were reported including Hymenoptera, Lepidoptera, Diptera, and Coleoptera. In natural pollination, the abundance of insect visitors of Hymenoptera was more during morning and evening (50.25% and 44.89%, respectively) compared to Lepidoptera (21.83 and 26.67%) and Diptera (24.37 and 23.33%). Similarly, natural pollination with one Apis mellifera colony also showed higher abundance of insect visitors of Hymenoptera during morning and evening (50.15 and 57.31%, respectively) as compared to Lepidoptera and Diptera. The Dipteran insect visitors under natural pollination showed significant positive correlation with temperature, wind speed and UV. The fruit/seed size, peel weight, juice pH, pulp weight, moisture, and total soluble solids were higher in natural pollination with A. mellifera. The percentage of fruit set and fruit weight (g) was significantly higher in natural pollination with A. mellifera (23.24 ± 1.40% and 1.60 ± 0.11 g, respectively). There was no fruit set observed in bagged panicles with nylon mesh. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

45 pages, 8865 KiB  
Review
Citrus Essential Oils in Aromatherapy: Therapeutic Effects and Mechanisms
by Pooja Agarwal, Zahra Sebghatollahi, Mehnaz Kamal, Archana Dhyani, Alpana Shrivastava, Kiran Kumari Singh, Mukty Sinha, Neelima Mahato, Awdhesh Kumar Mishra and Kwang-Hyun Baek
Antioxidants 2022, 11(12), 2374; https://doi.org/10.3390/antiox11122374 - 30 Nov 2022
Cited by 69 | Viewed by 26767
Abstract
Citrus is one of the main fruit crops cultivated in tropical and subtropical regions worldwide. Approximately half (40–47%) of the fruit mass is inedible and discarded as waste after processing, which causes pollution to the environment. Essential oils (EOs) are aromatic compounds found [...] Read more.
Citrus is one of the main fruit crops cultivated in tropical and subtropical regions worldwide. Approximately half (40–47%) of the fruit mass is inedible and discarded as waste after processing, which causes pollution to the environment. Essential oils (EOs) are aromatic compounds found in significant quantities in oil sacs or oil glands present in the leaves, flowers, and fruit peels (mainly the flavedo part). Citrus EO is a complex mixture of ~400 compounds and has been found to be useful in aromatic infusions for personal health care, perfumes, pharmaceuticals, color enhancers in foods and beverages, and aromatherapy. The citrus EOs possess a pleasant scent, and impart relaxing, calming, mood-uplifting, and cheer-enhancing effects. In aromatherapy, it is applied either in message oils or in diffusion sprays for homes and vehicle sittings. The diffusion creates a fresh feeling and enhances relaxation from stress and anxiety and helps uplifting mood and boosting emotional and physical energy. This review presents a comprehensive outlook on the composition, properties, characterization, and mechanism of action of the citrus EOs in various health-related issues, with a focus on its antioxidant properties. Full article
(This article belongs to the Special Issue Antioxidant Activity of Essential Oils)
Show Figures

Figure 1

23 pages, 3225 KiB  
Article
An Enhanced User Authentication and Key Agreement Scheme for Wireless Sensor Networks Tailored for IoT
by Pooja Tyagi, Saru Kumari, Bander A. Alzahrani, Anshay Gupta and Ming-Hour Yang
Sensors 2022, 22(22), 8793; https://doi.org/10.3390/s22228793 - 14 Nov 2022
Cited by 7 | Viewed by 2155
Abstract
A security protocol for wireless transmission is essential to defend sensitive information from malicious enemies by providing a variety of facilities such as privacy of the user’s information, secure session key, associated authentication, and user-repeal facility when a person’s authorizations are suddenly disclosed. [...] Read more.
A security protocol for wireless transmission is essential to defend sensitive information from malicious enemies by providing a variety of facilities such as privacy of the user’s information, secure session key, associated authentication, and user-repeal facility when a person’s authorizations are suddenly disclosed. Singh et al. proposed an improved user authentication and key agreement system for wireless sensor networks (WSNs). Authors are sure that their protocol is secure from various attacks. Here, we find several security pitfalls in their scheme, such as an offline password-guessing attack, failure to protect the session key, and a man-in-the-middle attack. To remove the identified pitfalls found in Singh et al.’s scheme, we design an enhanced authentication scheme for WSNs tailored for IoT. We prove the reliability of our proposed protocol using the real or random (RoR) model. We also evaluate the proposed scheme with the associated schemes and show its superior efficacy as compared to its counterparts. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop