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Abstract: Currently, non-communicable diseases (NCDs) have emerged as potential risks for humans
due to adopting a sedentary lifestyle and inaccurate diagnoses. The early detection of NCDs using
point-of-care technologies significantly decreases the burden and will be poised to transform clinical
intervention and healthcare provision. An imbalance in the levels of circulating cell-free microRNAs
(ccf-miRNA) has manifested in NCDs, which are passively released into the bloodstream or actively
produced from cells, improving the efficacy of disease screening and providing enormous sensing
potential. The effective sensing of ccf-miRNA continues to be a significant technical challenge, even
though sophisticated equipment is needed to analyze readouts and expression patterns. Nanoma-
terials have come to light as a potential solution as they provide significant advantages over other
widely used diagnostic techniques to measure miRNAs. Particularly, CNDs-based fluorescence
nano-biosensors are of great interest. Owing to the excellent fluorescence characteristics of CNDs,
developing such sensors for ccf-microRNAs has been much more accessible. Here, we have critically
examined recent advancements in fluorescence-based CNDs biosensors, including tools and tech-
niques used for manufacturing these biosensors. Green synthesis methods for scaling up high-quality,
fluorescent CNDs from a natural source are discussed. The various surface modifications that help
attach biomolecules to CNDs utilizing covalent conjugation techniques for multiple applications,
including self-assembly, sensing, and imaging, are analyzed. The current review will be of particular
interest to researchers interested in fluorescence-based biosensors, materials chemistry, nanomedicine,
and related fields, as we focus on CNDs-based nano-biosensors for ccf-miRNAs detection applications
in the medical field.

Keywords: nanosensor; circulating nucleic acids; biomarkers; point-of-care test; translational research

1. Introduction

The development of non-invasive diagnostic methods, such as liquid biopsy, represents
a significant advancement for people on the route to treating non-communicable diseases,
including cancers. The significant benefits of liquid biopsy are that these tests are non-
invasive, quick, accurate, and notably real time. Circulating tumor cells (CTC), DNA,
and circulating tumor RNA are the central focus of emerging liquid biopsy tests. Liquid
biopsy offers a wide range of potential applications in the detection and treatment of
cancer, including screening for early detection. Because of their quick reaction times
and enhanced analyte-discovering signals even in limited concentrations, carbon-based
biosensors are currently attracting a lot of scientifi attention. Semiconductor quantum
dots (QDs) were a modern form of nanostructure that demonstrated excellent qualities
for diagnosis and therapy [1]. Controlling QDs size and distribution made it simple to
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adjust their electrical and optical characteristics. Yet, since certain semiconductor QDs
include hazardous substances such as, cadmium, arsenic, selenium, and mercury, they have
several disadvantages. One such disadvantage is cytotoxicity [2]. As a result, these QDs
are neither environmentally friendly nor biodegradable. On the other hand, since their
inception in 2004, carbon nanodots (CNDs) have been recognized as a strong contender to
replace the extremely dangerous metallic semiconductor class of quantum dots [3]. This
is partly because the characteristics of carbon quantum dots are widely acknowledged to
include their nanoscale size, roughly flat or spherical morphologies, great water solubility,
broad absorption in the UV-visible light spectrum, and vibrant fluorescence [4]. CNDs
have an amorphous or nanocrystalline center, mainly sp2 carbon, graphite grid spacing,
and outside oxygenic functional groups, allowing for water solubility and subsequent
complexation. [5]. Graphene, graphene oxide, fullerenes, diamond nanoparticles, carbon
quantum dots, and carbon nanotubes are derivatives of carbonaceous nanomaterials which
have been broadly used in sensing applications. As the current form of carbon nanomaterial,
CNDs is motivating considerable research efforts. Recent years have seen a rise in the
popularity of CNDs with zero dimensions as eco-friendly, biocompatible, and inexpensive
materials whose properties have sparked interest in a variety of applications [6].

These are organic molecular nanocrystals made up of several tiny sp2 carbon nan-
odomains with a sp3-hybridized carbon backbone [7]. They feature several intriguing
and advantageous characteristics, including great biocompatibility, biological selectivity,
minimal toxicity, and a stronger quantum size impact, and they are produced utilizing
affordable manufacturing procedures. CNDs play a crucial role in disease-related small
biomolecule analysis through the creation of diverse nanoplatforms, which have the bene-
fits of being simple, cheap, and quick to detect. Specific circulating markers can be detected
using fluorescence, colorimetric, electrochemical [8], photoelectrochemical (PEC), and elec-
trochemiluminescence (ECL) approaches [9]. The major factors contributing to the carbon
nanodots’ huge achievement are its facile manufacturing and the comparatively established
synthesis techniques using various physical or chemical techniques [10]. These methods
are often classified as top–down or bottom–up procedures. Top–down ways include cutting
large carbon-based components into nanosized fragments, whereas bottom–up approaches
require synthesizing molecules that act as nanostructured precursors [11]. Green one-step
techniques for creating CNDs have recently received a lot of emphasis due to their ease
of use, ability to save time, lack of pollution, and low price [12]. Several plant species are
used as renewable carbon sources in the production of green CNDs. The leaves, flowers or
roots of a plant are the components that are utilized most frequently. According to reports,
green-synthesized CNDs have quantum yield (QY) ranging from 3 to 75%, with a typical
QY of 14% [13]. Their size can also be adjusted by adjusting the bandgap of the element
used in synthesis. In contrast to the conventional techniques based on straight CNDs–
analytes reactions, future work in green CNDs sensing can take these concepts to sensing
analytes into consideration [14]. Owing to CNDs’ typically low cytotoxicity and resilience
to photobleaching, sensing is one of the most researched uses of CNDs. Because of their
advantageous photostability, photoluminescence, and charge transfer, CNDs are useful as
optical sensor components. For biosensing applications, CNDs must be able to identify
markers through precise couplings with target molecules (such as antibodies, aptamers,
and enzymes) and modify their optical characteristics (or start catalysis) as a result of
those interactions [15]. Biomarkers are frequently viewed as a type of quantitative tag that
denotes certain biological states of human bodies amid these molecular analytes [16]. As a
result, biomarker sensors have immense promise for illness early detection and individual-
ized treatment. Small non-coding RNAs known as microRNAs (miRNAs) are thought to
contribute significantly in the identification of disease signatures [17]. Furthermore, there is
a strong correlation between disease progression and exosomal miRNA levels. Numerous
techniques have been employed to date for the identification of miRNAs, notably North-
ern blot, quantitative real-time polymerase chain reaction (qRT-PCR), gene microarrays,
electrochemistry and electrochemiluminescence. Such methods still have flaws, though,
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such as complicated maintenance and high expenses [18]. Because of their versatility,
label-free monitoring, and extraordinary sensitivity, photonic biosensor technologies such
as CNDs have generated a lot of attention [19]. Additionally, photonic biosensors may be
multiplexed and made smaller, which meets the needs of point of care testing. As a result,
label-free nanophotonic biosensors have gained attention as a viable solution for the cre-
ation of fresh methods for the detection of circulating miRNAs. Nanophotonic biosensors
have proven their detection efficiency and clinical diagnostic capabilities [20,21]. For many
nanophotonic applications, the ability to create novel nanomaterials with carefully crafted
optical properties is of great interest [22]. These papers provided a thorough description of
CNDs applications for miRNA detection, including everything from green production to
surface functionalization techniques and physiochemical features.

2. Physicochemical Properties
2.1. Structural Properties

CNDs have an amorphous nanostructure that is quasi-spherical in shape. According
to the studies, the photoluminescence in CNDs is mostly caused by their surface character-
istics, with lesser interaction from sp2 clusters (crystallinity) and the quantum confinement.
As a result, the energy band gap of CNDs is influenced both by the quantum confine-
ment phenomenon and the surface-active group. CNDs have the lattice constant which is
halfway in between the range of a graphene or graphite lattice. CNDs are often intrinsically
linked to surface passivation via derivatization or modifications. Several carboxyl groups
impart excellent biocompatibility and water solubility to the CNDs surface, and various
synthesis processes result in different chemical compositions for CNDs [23]. CNDs are
carbon nanomaterials with or without a crystalline phase and have a sphere form [24]. Its
layers are spaced around 0.34 nm apart, which is consistent with the crystalline graphite’s
gap [25]. They have a system of linked or altered chemical organic compounds, such as
oxygen- as well as amino-based groups, etc., on their top. They are basically hybridized
with oxygen-containing functional groups and have an external sp3 configuration and an
inside sp2 configuration [26].

2.2. Optical Properties
2.2.1. Light Absorption of CNDs

Generally, CNDs exhibit an evident absorption coefficient in the UV-visible spectrum.
Regardless of what method they use to make, the majority of CNDs have an absorbance
peak that ranges from 260 to 323 nm [27]. Absorption peaks in spectroscopic analysis may
occasionally be caused by the n-p transition of C-O bonds or the p-p shift of C-C molecules.
It is discovered that passivating the coating of CNDs with different compounds causes
the absorbance to shift to higher wavelength [28], for instance. The absorption region was
extended in Cl-doped CNDs, and the photo-excited particles were pushed to separate.
Recently, enhanced CNDs with strong visible optical absorption and a near-IR optical
absorption edge have been produced and are being used in the fields of bioimaging and
sensing [29].

2.2.2. Photoluminescence (PL)

One of the most intriguing optical properties of CNDs dots is its PL [30]. The principal
components of luminescence are their intrinsic state and defect state emission. Whereas
the precise process is uncertain, several factors have been connected to luminescence,
including carbon excitons, emissive trapping, the quantum confinement impact, aromatic
structures, oxygen-containing units, free zigzag domains and edge defects [31]. Most
C-dots have a similar PL range mainly spanning the blue area (wavelengths between 400
and 500 nm). The dependence of the emission peak position on the excitation wavelength is
an interesting feature of the PL of CNDs [32]. An intriguing aspect of the PL of CNDs is the
dependency of the emission peak position on the excitation wavelength. which might be
affected by surface reorganizations, electrical state alterations, and both core and external
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functional groups [33]. They differ from other nanomaterials, such as ordinary quantum
dots, due to this peculiarity. The transition gap between the lowest unoccupied molecular
orbital (LUMO) and the highest occupied molecular orbital (HOMO), which is inversely
proportional to size, affects the size reliance of CNDs [34]. Additionally, 10 nm CNDs
displayed better PL than 30–50 nm CNDs, which is reasonable considering that smaller
CNDs have a higher surface area to volume ratio. Since it is dependent on the carbon center
and the presence of an oxygen-functional group, it is easy to tune PL CNDs and may be
beneficial for biosensing applications [35].

2.3. Chemical Properties

A typical description of CNDs is a carbogenic core with surface functional groups.
The most prevalent elements are carbon and oxygen, which are coupled with several
carboxylic acids [36]. To enhance the chemical properties of carbon nanodots, two main
strategies include doping and surface functionalization. The top of CNDs may have a wide
variety of oxygen-containing groups, such as epoxy/ether, carboxylic acid, carbonyl, and
hydroxyl [37]. Furthermore, it is simple to dope additional elements, particularly N and S,
into CNDs. In addition to being a crucial link between CNDs and intriguing biomedical
applications, surface functionalization, or changing the functional groups on the surface of
C-dots, is an effective technique for modifying the emission characteristics of C-dots [38].
It enables the production of a wide range of C-dots for sensing applications by altering
their functional groups on the surface, which serve as receptors, thus establishing a solid
association between C-dots and biological systems [39].

2.4. Photostability

For a prolonged period of sustained illumination, photostability indicates that the
fluorescence emission brightness of tagged cells holds steady [40]. It is important to
consider how well CNDs work as fluorescent probes for cell imaging by comparing their
photostability in various cancerous and healthy cells [41]. CNDs feature lower toxicity
and therefore possibly higher bioactivity than semiconducting QDs such as CdSe and CdS
due to their improved photostability over flashing and photobleaching. The fluorescence
of nitrogen- and boron-doped CNDs was strong and steady despite pH changes and
exhibited great photostability. In addition, the excision of an oxygen group from CNDs
might improve their photostability and reduce their cytotoxicity, providing molecular scale
data to help with the development of far better and biocompatible CNDs. These all show
that perhaps the CNDs are quite stable and would have high photostability for the modern
sensing applications (Figure 1) [42].
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3. Synthesis of CNDs

Both “bottom–up” and “top–down” strategies may be used to create semiconductors
based on CNDs. Bottom–up strategies encompass thermal decomposition, electrochemical
carbonization, microwave irradiation synthesis, and hydrothermal/solvothermal treatment.
Top–down methods includes laser ablation, ultrasonication, arc discharge and electrochem-
ical oxidation. For both these processes, a strict reaction environment is frequently needed,
including high-grade carbon substrates, extreme heat, powerful alkali/acid solutions, and
hazardous organic solvent [43].

3.1. Top–Down Approach

Due to their simplified preparation procedures, top–down approaches are appropriate
for the mass manufacturing of CNDs nanomaterials. The top–down approach “cuts” car-
bon particles including CNTs and graphite into CNDs via an arc discharge, laser ablation,
or chemical oxidation [44]. Arc discharge and laser ablation are the most commonly used
top–down methods for producing CNDs. Gonçalves et al. used laser ablation in water
solution, N-acetyl-l-cysteine, and NH2-polyethylene glycol (PEG200) to create passivated
CNDs [45]. Chemical oxidation involves introducing oxygen-containing hydrophilic func-
tional groups into carbon nanostructure complexes by oxidizing them with a potent acid.
The carbon nanostructures become water-soluble, which facilitates their discharge into the
fluid [46]. Scientists have also produced CNDs by hydrothermally slicing graphene sheets.
Wang et al. used graphene oxide as the precursor to create C-dots using the hydrothermal
process with microwave assistance. Carbon dots that are hydrophilic, hydrophobic, or
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even amphiphilic can be made using microwave-assisted synthesis. A simple one-step
microwave-assisted synthesis of hydrophobic C-dots was described by Mitra et al. Using
glucose as a starting material, Ma et al. reported the ultrasonic synthesis of N-doped C-dots
(Figure 2) [47].
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3.2. Bottom–Up Approach

In a “bottom–up” approach, CNDs are synthesized from small carbon molecules using
microwave, hydrothermal, and pyrolysis methods. Basic principles involve burning and
heating carbon precursors. CNDs can be prepared very efficiently through a bottom–up
approach using a plethora of starting materials, and the choice of reactants determines their
properties, especially in surface coating. Much more important is the fact that the roots of
the carbon substrate can have a massive effect on the CNDs’ characteristics, including their
sensing capabilities. Another advantage of the bottom–up approach is the easy addition
of heteroatoms and other dopants. Sucrose, citric acid, amino acids, and food waste are
carbon sources [48].

Direct pyrolysis, the pyrolytic technique, or the carbonization of precursor materials
at high temperatures are standard methods for producing carbon dots. Zhu et al. were the
first to employ microwave pyrolysis as a synthesis mode, using a dissolved saccharide and
PEG-200. The size of CNDs increased with reaction time as this solution was heated in a
500 W microwave [49]. The yield of CNDs increases, and side reactions are reduced during
microwave pyrolysis. Many CNDs variants have been created through direct thermal
decomposition, in which precursors are heated in an inert environment until they are
carbonized. Solvents are then used to extract them. The carbonization of small molecular
precursors is used in the bottom–up synthesis of CND. One of the most common bottom–up
synthesis approaches produces CND from a mixture of citric acid and a nitrogen-containing
molecule such as urea [50]. When these molecular precursors are pyrolyzed by microwaves
or in an autoclave, the synthesis readily produces a black nanopowder of CNDs, which is
highly dispersible in water and displaying remarkable fluorescent properties. Depending
on the conditions, these CNDs can display blue, green, or red emissions, although extensive
purification is often needed to isolate CNDs from molecular intermediates produced during
the synthesis. Bottom–up methods were efficient routes to produce fluorescent CNDs on
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a large scale. For example, small molecules and polymers can undergo dehydration and
further carbonization to form CNDs [51].

3.3. Preparation of CNDs Using Green Approach

CNDs synthesized from biological sources play a significant role in biomedical and
environmental applications, including bioimaging, biosensing, metal ions detection and
electrocatalytic oxidations [52]. Green synthesis has attracted the interest of scientists
because it is cost-effective, less hazardous, eco-friendly, less time-consuming, and requires
lower temperatures (Table 1) [53]. The production of CNDs from mostly reusable substrates
includes naturally available raw materials that are relatively cheap and simple to make.
CNDs made from natural sources can be used to transform low-value biomass waste into
rich and valuable products. The low manufacturing cost and constant availability of raw
ingredients for CNDs synthesis have made it a viable procedure for the industry also.
Additionally, no dangerous organic solvents are required; instead, an aqueous solution
may be used, increasing the CNDs water solubility (Figure 3) [54].

Recently, Hashemi et al. manufactured CNDs using a low-cost, simple, and green
one-step hydrothermal process, producing luminous CNDs with high quantum yield from
red beetroot as an organic source. According to the paper, red beetroot was sliced into
small pieces and mixed with deionized water, continuously swirling for 20 min before
being sonicated for an hour. The mixture was then placed in a Teflon-lined autoclave and
heated in the oven (180◦ for 10 h). It was then centrifuged (1000 rpm for 30 min) and filtered
to obtain the CNDs solution. To obtain a pure CNDs solution, the mixture was dialyzed
for three days to remove contaminants [55]. As a result, in the current context, the green
synthesis approach of C-dots produces high C-dot yields at a cheap cost because of low-cost
raw materials. The simple procedure adopted, as well as the fluorescence qualities found
in C-dots derived from environmentally sourced materials, open the way for harmless
and biocompatible C-dots to be used in sensing approaches. The study describes a single-
step hydrothermal strategy to synthesize colored CNDs from maple leaves to specifically
capture cesium ions. The CNDs made emit blue fluorescence and varied in size from 1 to
10 nm. Based on the electron transfer method, these CNDs were successfully employed in
glycerol electro-oxidation catalysts and cesium-detecting probes [56]. Arumugham et al.
made CNDs using catharanthus roseus (white) leaves as the carbon source without the
addition of an oxidizing agent or an encapsulant. These CNDs have excellent antioxidant
activity and bioimaging potential against MCF-7 cells as well as strong fluorescence (FL)
emission, high water solubility, stability, and non-toxicity, among other properties [57].
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Table 1. List of Various Natural Sources Used in the Preparation of Carbon Nanodots Using Different Green Synthesis Methods.

S.
No. Source Method of Synthesis Size Percentage Yield Detection Limit Inference References

1 Banana peel Microwave treatment 5 to 15 nm 16.0% 1.82 × 10–17/mol

CNDs are fabricated by the microwave
treatment of banana peels in a single pot for

the determination of colitoxin DNA in
human serum.

[58]

2 Sargassum fluitans Hydrothermal 2–8 nm 18.2% -
A hydrothermal method is used to produce

CNDs from waste seaweed sargassum
fluitans (S. fluitans) to detect DNA.

[59]

3 Tomato juice Hydrothermal 1.3–3.7 nm 13.9% 0.3 ng/mL
CNDs are synthesized by hydrothermal

treatment of tomato juice for the sensing of
carcinoembryonic antigen.

[60]

4 Limes Pyrolyzing 5-10 nm - -
The pyrolyzing process is used to synthesize

CNDs for the detection of hepatitis B
virus DNA.

[61]

5 Lemon juice Carbonization 6–9 nm - 0.23 mM Carbonization of lemon juice is performed to
form CNDs for the detection of l-tyrosine. [62]

6 Lemon Pyrolyzing 10 nm - 0.0049 µM

Synthesis of CNDs from a lemon by the
process of pyrolysis for the detection of

doxorubicin hydrochloride in
human plasma.

[63]

7 Syringa oblata lindl Hydrothermal 1.0–5.0 nm 12.4%, 0.11 µM
A hydrothermal method is used to fabricate
CNDs from syringa oblata lindl for sensors

and cell imaging.
[64]

8 Grapefruit Hydrothermal >30 nm 20% -
Grapefruit is used to create CNDs using a
hydrothermal process for the detection of

E. coli bacteria.
[65]

9 Alfalfa and garlic Hydrothermal 1.3–6.9 nm 10% 86 nM

A hydrothermal method is used to form
CNDs from alfalfa and garlic as a fluorescent

probe for cysteine, glutathione,
and homocysteine.

[66]

10 Catharanthus roseus
(white flowering plant)

Hydrothermal
carbonization - - -

Catharanthus roseus (white flowering plant)
is hydrothermally carbonized to create
CNDs to detect the Al3+ and Fe3+ ions.

[57]

11 Lemon juice Hydrothermal - - -
The one-pot facile hydrothermal approach
was used to create highly luminous carbon

dots (C-dots) from lemon juice.
[67]
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Table 1. Cont.

S.
No. Source Method of Synthesis Size Percentage Yield Detection Limit Inference References

12 Daucus carota Hydrothermal - 7.60% -
A hydrothermal method is used to produce

CNDs from Daucus carota to
detect mitomycin.

[68]

13 Natural polymer starch Hydrothermal 2.25–3.50 nm - - Hydrothermal treatment of natural polymer
starch is performed to produce CNDs. [69]

14 P. acidus Hydrothermal 5 nm 12.5% - CNDs are produced by a hydrothermal
process from P. Acidus for live cell imaging. [70]

15 Citrus peel powder Sand bath heat-assisted
method 4.6 ± 0.28nm - -

The sand bath heat-assisted method is
utilized to form CNDs from citrus peel
powder for free radical scavenging and

cell imaging.

[71]

16 Lentil Hydrothermal 7 ± 4 µm 10% 3.0 µg
A hydrothermal method is used to form
CNDs from lentils for the colorimetric

determination of thioridazine hydrochloride.
[72]

17 Rose flowers Hydrothermal 1.0–5.0 nm - 0.02–10 µM
CNDs are produced by a hydrothermal

process from rose flowers for the
determination of diazinon.

[73]

18 Saffron Hydrothermal >20 nm 23.6% 1.8 n/mol
A hydrothermal method is used to produce

CNDs from saffron for the sensing
of prilocaine.

[74]

19 Valerian root Hydrothermal >10 nm 14% 0.6 ng/mL
Valerian root has been used to make CNDs

using a hydrothermal process for the
determination of imipramine.

[75]

20 Rosemary leaves Hydrothermal Approx. 5 nm. 18% 8 ng/mL
Rosemary leaves have been used to make

CNDs using a hydrothermal process for the
determination of thiabendazole in juices.

[76]

21 Beetroot Microwave 5 & 8 nm 6% & 5% -
CNDs made from aqueous beetroot extract
by the process of a microwave for in vivo

live animal imaging applications.
[77]

22 Eutrophic algal blooms Chemical oxidation Approx. 8 nm 13% -
Eutrophic algal blooms have been used to
make CNDs using chemical oxidation for

in vitro imaging.
[78]

23 Green tea leaf Pyrolyzation 2 nm 14.8% -
Synthesis of CNDs from green tea leaf by the

process of pyrolysis for the sensing
of gefitinib.

[79]
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Table 1. Cont.

24 Waste tea residue Chemical oxidation 3.2 nm 2.47% Be 0.04 µg /mL
Waste tea residue has been used to make
CNDs using chemical oxidation for the

quantification of tetracycline.
[80]

25 Palm shell powder Chemical oxidation 4–10 nm 6.8% 0.079 µM
CNDs are synthesized by the chemical

oxidation method from palm shell powder
for the sensing of nitrophenol.

[81]

26 Soybeans Ultrasonic-assisted
method 2.4 nm 16.7% 0.9µM

An ultrasonic-assisted method is used to
produce CNDs from soybeans to

detect Fe3+ ions.
[82]

Abbreviations: nanometer (nm), millimeter (mm), micrometer (µm), carcinoembryonic antigen (CEA), Escherichia coli (E. coli), Phyllanthus acidus (P. acidus), nanograms (ng).
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Kumar et al. simply heated orange juice at 120 ◦C for 150 min without using any
specialized methods or chemicals. These spherical CNDs have a restricted size distribution,
as seen by recorded electron microscopy. The hydrothermal technique used for this study
is a reactive technique that produces CNDs of good yield and high quality [83]. In a
recent article, Saleem et al. present a one-step flexible approach to produce fluorescent
CNDs utilizing carrot root species. The synthesized CNDs worked as nano-vehicles for
the mitomycin medication delivery. By breaking hydrogen bonds in the moderately acidic
extracellular milieu of the tumor, the manufactured CNDs efficiently interacted with the
mitomycin drug. This caused the release of the mitomycin [84].

As probes for the detection of heavy metal ions, fluorescent nitrogen-doped CNDs
with 5.23% nitrogen content were made utilizing a one-pot microwave processing of lotus
roots. The properties of egg yolk oil (EYO) were studied by Zhao et al., who utilized
microscopy, spectrophotometry, and chromatography to detect the CNDs that were present
in the EYO after it had been extracted and purified using water, dialysis, and ultrafiltration
(EYO CNDs). The bleeding periods of mice treated with CNDs were noticeably shorter than
those of control animals in tests on liver and tail hemorrhaging. According to coagulation
tests, EYO CNDs stimulate and activate the fibrinogen system as well as the intrinsic
blood coagulation system. Therefore, EYO CNDs has the capacity to stimulate hemostasis,
which may prompt more research into this component of traditional Chinese medicine [85].
Xiao et al. present an inexpensive, easy, and effective microwave pyrolysis method to
synthesize highly amino-functionalized fluorescent (CNDs). Through the dehydration of
chitosan, the formation and functionalization of CNDs were successfully accomplished.
Using a brand-new, quick microwave-assisted method that entails two stages, CNDs
with an average size of 9 nm were created from an aqueous solution of raw cashew gum
(RCG). A composite of partly depolymerized CG and CNDs was created at the end of the
procedure [86].

In a study, the ecologically friendly one-step electrodeposition method for creating
GR-based hybrids was employed which avoids chemically reducing graphene oxide (rGO),
which would cause further pollution. The entire process is straightforward and takes
only a few minutes. Combining the benefits of GR, CNTs, and CS, the GR/CNTs/CS
hybrid was created and might be used to trap organophosphate pesticides [87]. In an-
other study, a simple, cost-effective, and environmentally friendly method for producing
ternary nanocomposites of carbon, polydopamine, and gold was demonstrated. The tech-
nique did not employ harsh reaction conditions such as those found in hydrothermal
or high-temperature techniques. Excellent electrocatalytic activity was demonstrated by
the CNTs/PDA/AuNPs modified electrode to oxidize chloramphenicol [88]. One more
research study covered a synthesis of multiwall carbon nanotube/Cu2O-CuO ball-like
composite (MWCNTs/Cu2O-CuO) adopting a green hydrothermal approach which had
been investigated as a novel sorbent for the solid-phase extraction of uranium utilizing
inductively coupled plasma mass spectrometry [89].

4. CNDs Surface Functionalization Using Various Chemistry

The absorbance and photoluminescence characteristics of the carbon dots are signifi-
cantly influenced by surface functionalization and passivation through modifications to
their capacity to interact with other organic compounds, ions, drugs, and living things [90].
The starting constituent and synthesis process also influence the degree of bioconjugation
of CNDs, which affects their functional properties, such as biosensing and imaging. It is
advantageous for therapeutic applications when functionalization methods leave CNDs
surfaces with neutral or negative net charges [91]. As a result, proteins circulate in the
blood for a longer period because negatively charged surface groups may hinder protein
binding due to electrostatic repulsion. In contrast, neutral groups can evade immune
system clearance. A crucial stage in the hydrodispersion of CNDs is the alteration of their
surface. However, to provide a focused interaction between the fluorescent nanocrys-
tals and the biological target, crosslinking with macromolecules is required. By affixing
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them to specific ligands such as vitamins, proteins, peptides, or antibodies, luminescent
CNDs may be particularly useful for cellular-focused imaging. The functionalizing ligands
could be coupled directly to the organically surface layer of the CNDs, or they could be
linked via a substance such as polyethylene glycols, 2,2′-(methylenedioxy)-bis-ethylamine,
nickel-nitrilotriacetic acid, or the biotin–streptavidin complex. It is important to remem-
ber that the innate activity of biological agents coupled to CNDs should be preserved
during conjugation with biomolecules [92]. CNDs surfaces can contain a wide variety of
oxygen-containing groups, including carbonyl, hydroxyl, carboxylic acid, and epoxy/ether,
because of oxidation processes. In addition, components such as N and S can easily be
doped into CNDs. Covalent conjugation between CNDs and biomolecules takes place in
the reaction of one functional group with another, resulting in the formation of a covalent
bond. Covalent linking among CNDs and molecules or other particles can be accomplished
using different types of coupling agents [93].

4.1. Amine–Amine Coupling

Amine–amine coupling is a class of homo-bifunctional reaction in which the amine groups
of two molecules bind to each other covalently using a dithiobis(succinimidylpropionate (DSP)
as a linker. Each end of DSP has two distinct amine-reactive sites [94]. After being activated
by N-Hydroxysulfo succinimide, CNDs bind in one, and at another end, amine-containing
biomolecules bind. This coupling reaction can alternatively be carried out in two steps or in
one step. All ingredients (biomolecules, CNDs, and DSP-coupling reagents) are combined
together in the case of a single step. In a two-stage process, the DSP linker is used to first
activate the amine group on CNDs, and then, in the second phase, the activated CNDs are
combined with aminated biomolecules [95]. Other linkers used for conjugating aminated
CNDs with amine group biomolecules are glutaraldehyde and aldehyde from the Schiff
base [96].

4.2. Amine–Thiol Conjugation

Indirect crosslinking between the amines in CNDs and the thiols in biomolecules is
the most popular method for producing nanoconjugates. Water-soluble sulfosuccinimidyl-
4-(N617 maleimidomethyl) cyclohexane-1-carboxylate (sulfo-SMCC) as a linker forms a
stable amide bond with the amine group of CNDs at one end and a thioether bond with
the thiol group of the biomolecule at another end [97]. A nucleophilic reaction takes place
between the sulfhydryl group and the maleimide double bond to form a thioether bond.
Compounds of maleic anhydride are frequently employed as functional group bonds [98].

4.3. Histidine–Nickel Nitrilotriacetic Acid Conjugation

Fluorescent dyes, such as CNDs coupled to the Ni-NTA complex, have demonstrated
the capacity to detect biological processes by selective binding to His-tagged biomolecules.
The intriguing aspect of this interaction is that it remains unaffected by high salt, non-ionic
detergent, or highly thermal decomposition environments [99]. The reaction mechanism
involves the coating of CNDs by aminated polymer followed by its activation using sulfo-
SMCC, which is a hetero-bifunctional crosslinker in borate buffer. In the next step, the
NTA reacted with activated CNDs to obtain NTA-modified CNDs. The NTA-modified
CNDs were treated to form the Ni complex by reacting with an excess of NiCl2·6H2O
to obtain Ni–NTA modified QDs, which is highly specific for binding with his-tagged
biomolecules [100].

4.4. Thiol–Maleimide Conjugation

The thiol–maleimide reaction is used to conjugate CNDs onto biomolecules via thiol
conjugation. For functionalization on CNDs, there are amine to thiol sensitive cross-linkers.
Sulfosuccinimidyl-4-(N-maleimido-methyl) cyclohexane-1-carboxylate (sSMCC) has an end
NHS and a maleimide on another end. In this process, DNA that has been tagged with an
amine first reacts with NHS to produce DNA maleimide [101]. The polymer-capped CNDs
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that have been reduced to exhibit thiols are then coupled to the DNA maleimide. Proteins
and antibodies might be conjugated to CNDs using the same approach [95]. Alternately,
a more traditional use of this strategy is attaching CNDs that exhibit primary amines to
DNA that has undergone thiol modification [102].

4.5. Conjugation of Thiol with Amine Group by SPDP Linker

This is a another type of conjugation that links amine group of biomolecules to a thiol
group of CNDs. Succimidyl 3-(2-pyridyldithio)propionate (SPDP) is a bifunctional linker
utilized to functionalize amine-ending DNA to CNDs [103]. The linker has a cleavable
pyridyl disulfide with one side and an NHS group on another side. In the first step,
the functionalization of amine-DNA with the linker is performed using the linker. The
disulfide bond is split in the second stage in the vicinity of a reductant to produce reactive
thiols [104]. The reducing agent and the resulting pyridine-2 thione group are eliminated,
and the DNA functionalized with a reactive thiol is combined with CNDs that have been
maleimide-functionalized [105].

4.6. Antigen–Antibody Conjugation

Antibodies can be substantially specific, attaching to just a tiny segment (epitope) of
an antigen, and they can distinguish between significantly similar epitopes. They detect
proteins relying on both their structure and their content [106]. Antibodies conjugation
with CNDs requires two basic chemistries, carbodiimide and site click [107]. During the site
click linkage process, azide-alkyne cycloaddition mediator-adapted CNDs were attached
to an azide-modified antibody. Similar to EDC-NHS mediated coupling, carboxyl groups
of CNDs are activated for direct interaction with primary amines of antibody and nucleic
acid via amide crosslinking in carbodiimide conjugation [108].

4.7. Conjugation of CNDs Containing Epoxide Functionality

Mounting the epoxide group on the edge of CNDs can be highly beneficial since it
interacts with various functional groups that are present on biomolecules. When amine,
thiol, or hydroxyl group bearing molecules interact with CNDs that possess epoxide,
secondary amine bonds, thioether bonds, and ether bonds are formed [109]. For instance,
the fabrication of multiplex immunosorbent assays for the identification of three mycotoxins
makes use of the synthesis of silica-based CNDs that are linked with epoxide group. An
epoxide ring-opening reaction with an amines group of biomolecules (antibodies and
nucleic acids) was used to conjugate epoxy-terminated Si-CNDs (Figure 4) [110].



Biosensors 2023, 13, 226 14 of 31Biosensors 2023, 13, 226 15 of 33 
 

 

Figure 4. Conjugation of biomolecules with carbon nanodots via different chemistries and cross-

linkers. (a) Amine–amine conjugation by using DSP crosslinker. (b) Conjugation via amine-thiol and 

SMCC as crosslinker. (c) Histidine–nickel nitrilotriacetic acid-based conjugation of biomolecules 

with CNDs. (d) Conjugation of CNDs with biomolecules by using thiol maleimide. (e) Conjugation 

of thiol containing biomolecules with CNDs by using SPDP crosslinker. (f) Antigen–antibody-based 

conjugation of CNDs with biomolecules. (g) Conjugation of CNDs containing epoxide functionality 

with biomolecules. 

5. Cell-Free Circulating MiRNAs 

Small non-coding RNAs, or miRNAs, are a subclass that includes short 18–27 nucle-

otide sequences that function as essential gene regulators by inhibiting translation or in-

terfering with RNA degradation [111]. Non-coding nucleotide sequences have an impact 

on a variety of vital cellular processes, including cell differentiation, proliferation, growth, 

motility, and apoptosis, as well as the development of diseases. These molecules may 

serve as potential biomarker candidates for the diagnosis and prognosis of various ill-

nesses. Several studies have found that some miRNAs are significantly altered during de-

velopment and disease, including cancer, heart disease, diabetes, nervous system, renal, 

and liver diseases. It is worth noting that miRNA expression is a dynamic process, and 

cell-free nucleic acid measurement has the potential to be a cost-effective, non-invasive 

technique for disease screening and prognostic assessment [112]. miRNAs are typically 

found in the cellular microenvironment; according to studies, however, a significant frac-

tion of miRNAs, known as cell-free circulating miRNAs (ccf-miRNAs) or extracellular 

miRNAs, are in the extracellular milieu. These circulating miRNAs were eventually dis-

covered in blood plasma, serum, saliva, urine, and other bodily fluids. However, depend-

ing on a person's health and the disease's cause, the concentration of miRNAs may change 

significantly. These molecular entities can represent current pathophysiological condi-

tions and are thought to be derived from blood cells, circulating tumor cells, or other dis-

ease-affected tissue cells [113]. 

  

Figure 4. Conjugation of biomolecules with carbon nanodots via different chemistries and cross-
linkers. (a) Amine–amine conjugation by using DSP crosslinker. (b) Conjugation via amine-thiol and
SMCC as crosslinker. (c) Histidine–nickel nitrilotriacetic acid-based conjugation of biomolecules with
CNDs. (d) Conjugation of CNDs with biomolecules by using thiol maleimide. (e) Conjugation of
thiol containing biomolecules with CNDs by using SPDP crosslinker. (f) Antigen–antibody-based
conjugation of CNDs with biomolecules. (g) Conjugation of CNDs containing epoxide functionality
with biomolecules.

5. Cell-Free Circulating MiRNAs

Small non-coding RNAs, or miRNAs, are a subclass that includes short 18–27 nucleotide
sequences that function as essential gene regulators by inhibiting translation or interfering
with RNA degradation [111]. Non-coding nucleotide sequences have an impact on a
variety of vital cellular processes, including cell differentiation, proliferation, growth,
motility, and apoptosis, as well as the development of diseases. These molecules may
serve as potential biomarker candidates for the diagnosis and prognosis of various illnesses.
Several studies have found that some miRNAs are significantly altered during development
and disease, including cancer, heart disease, diabetes, nervous system, renal, and liver
diseases. It is worth noting that miRNA expression is a dynamic process, and cell-free
nucleic acid measurement has the potential to be a cost-effective, non-invasive technique
for disease screening and prognostic assessment [112]. miRNAs are typically found in the
cellular microenvironment; according to studies, however, a significant fraction of miRNAs,
known as cell-free circulating miRNAs (ccf-miRNAs) or extracellular miRNAs, are in the
extracellular milieu. These circulating miRNAs were eventually discovered in blood plasma,
serum, saliva, urine, and other bodily fluids. However, depending on a person’s health
and the disease’s cause, the concentration of miRNAs may change significantly. These
molecular entities can represent current pathophysiological conditions and are thought
to be derived from blood cells, circulating tumor cells, or other disease-affected tissue
cells [113].

5.1. MiRNAs Biogenesis

Non-coding RNAs are molecules that do not translate into proteins (ncRNAs). Most of
the human genomes are translated into non-coding RNAs, according to recent discoveries
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(ncRNAs) [114]. About 30% of miRNA genes are found in intergenic regions or the antisense
orientation of genes, each having its promoter and regulatory units. Numerous miRNAs
are found in exons and introns. The precursor-miRNA is produced in the nucleus after
the transcribed miRNA (80 nucleotides) is processed to form the pri-miRNA stem-loop
structure (pre-miRNA). After a series of enzymatic processes and transfer from the nucleus
to the cytoplasm, the mature miRNA is then created. These mature miRNAs are loaded
onto the AGO and combined to form the effector miRNA-induced silencing complex C
(miRISC). Either the RISC complex deteriorates, or the passenger strand is loaded with the
complex [115].

The degree of complementarity between the effector miRNA and the target mRNA
influences the process of miRNA-mediated gene silencing. The effector miRNA directs
miRISC to the target mRNA. In summary, there are three stages to miRNA biogenesis. The
first occurs in the nucleus due to the nuclear RNase III enzyme Drosha cleaving an 80 nt
primary or primiRNA translated from the genome [116]. Pre-miRNA is created. As a result,
a 60–70 nucleotide stem-loop intermediate is actively transported into the cytoplasm by Ran–
GTP and Exportin–5. The RNase III endonuclease Dicer complex breaks down pre-miRNA
in the cytoplasm, producing a 20–22 nucleotide double-stranded fragment incorporated
into the RNA-induced silencing complex (RISC). The 3’ UTR on target messenger RNA
(mRNA) transcripts is where the five regions of miRNAs bind. Frequently, this results in
translational inhibition or mRNA destruction (Figure 5) [117].
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The precise quantification of the expression of circulating miRNAs is crucial for bio-
logical research and early clinical diagnosis. High sensitivity and accuracy are necessary
for detecting miRNA targets. Since miRNAs have a small size, short survival time, similar
member sequences, and low abundance enrichment in human body fluids, quantitative
analysis of miRNAs is a challenge [118]. Conventional detection strategies for miRNA, in-
cluding Northern blotting, quantitative real-time reverse-transcription (qRT-PCR), miRNA
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microarrays, fluorescence in situ hybridization, deep sequencing of the transcriptome
(RNAseq), and cloning, are basically and widely used technologies [119].

5.2. Detection Strategies for MiRNAs
5.2.1. Northern Blotting

A well-known miRNA detection technique is Northern blotting (NB), which was used
in the initial identification of a miRNA. It can be used to detect miRNA precursors in
addition to mature miRNAs. The earliest attempt to methodically measure the expression
profile of miRNAs was Northern blotting. It is widely used to visualize the expression
of miRNAs of all lengths, from the long primordial miRNA to the mature form [120].
The method involves transferring the extracted RNA to a blotting membrane after first
separating it by size using electrophoresis. Following the separation of the RNAs, the
membrane is fixed, and sequences of interest are labeled by combining complementary
DNA probes. Finally, hybridization with labeled, sequence-specific oligonucleotide probes
is used to detect or quantify mature miRNAs. Once the free search has been washed,
miRNAs can be identified using autoradiography or other appropriate methods [121]. The
RNA was often crosslinked to the blotting membrane to increase the sensitivity of Northern
blots. To crosslink RNAs to the nylon membrane, 1-ethyl-3-(3-dimethyl aminopropyl)
carbodiimide (EDC) was used as an alternative, leading to a 25–50-fold increase in the
sensitivity of miRNA detection. NB analysis has the advantage of implementing a multiplex
miRNA detection method using color-coded detection probes, simultaneously detecting
mature miRNAs and miRNA precursors [122].

5.2.2. Quantitative Real-Time Reverse-Transcription PCR

A wide dynamic range is typically covered by quantitative real-time reverse tran-
scription (qRT-PCR), which is frequently referred to as the gemstone for measuring gene
expression. Reverse transcription of miRNA to cDNA and real-time qPCR monitoring of
reaction product accumulation are the two main components of qRT-PCR-based circulating
miRNA profiling. Target miRNAs could be reverse transcribed using either general or
specific RT primers during the cDNA synthesis step for exact miRNA quantification [123].
Fluorescence is used to monitor the amplification in real time either by using fluorescence
probes or a dye that is specific to double-stranded DNA (such as SYBR Green I). Since qRT-
PCR techniques have been developed, high-sensitivity miRNA detection has been reduced
to a few nanograms of total RNA. The poly(A) polymerase method is more appropriate for
detecting multiple miRNAs from a minimal amount of starting material, such as plasma.
The "gold standard" for miRNA detection is the TaqMan miRNA assay using stem-loop RT
primers and miRNA-specific TaqMan probes [124]. It is well known that RT-qPCR is an
effective method for finding miRNAs. However, this method is time-consuming, complex,
and expensive thermal cycling equipment is required for amplification and quantification,
and it is not appropriate for POC testing [125].

5.2.3. MiRNAs Microarray Technology

The most popular technique for the quick and thorough detection of miRNAs is the
microarray. The specific receptors of each target are spatially separated using this detection
method to enable multiplexing. Nucleic acid hybridization between target molecules
and their complementary probes is the basis for microarrays [126]. Planar arrays and
suspension (or on-particle) array are the two basic groups into which these techniques
could be separated. Every particle in a suspension array is assigned a matching “barcode”
that identifies the analyte it is intended to detect and is attached to capture probes for that
analyte. Given the variety of accessible particles, many barcoding techniques, including
size, graphic, and often fluorescence labeling, were used. Planar arrays, also known as
flat arrays, specifically target catch probes on a flat plane, with each spot focusing on a
distinct analyte, using separation as a multiplexing method. Both strategies have intriguing
qualities, particularly when it comes to multiplexing [127].
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5.2.4. Next-Generation Sequencing

NGS has become a crucial tool in cancer research for identifying microRNAs (miR-
NAs) and understanding their role in the disease. This technology allows for creating a
comprehensive map of miRNA expression across different samples and conditions, which
can provide insight into the underlying molecular mechanisms of cancer. RNA sequencing
(RNA-seq) begins with extracting and purifying RNA from the sample, which is followed
by adding adapters to the 5′ and 3′ ends of each RNA strand. Reverse transcription, PCR
amplification, and sequencing are the next steps. One method, called the MicroRNA NGS
Data Analysis (miND assay), developed by Khamina et al., allows for the determination
of absolute concentrations of miRNAs in total RNA samples obtained from plasma and
other liquid biopsies, enabling the comparison of data within or across sample types, which
can be helpful in the context of liquid biopsy [128]. In addition, NGS also enables the
identification of miRNA–mRNA regulatory networks that are altered in cancer, which can
provide insight into the underlying molecular mechanisms of the disease. Furthermore, a
recent approach that combines bioinformatics and next-generation sequencing technolo-
gies to detect cell-free circulating miRNAs has been reported [129]. In addition to these
methods, there is an extensive database entitled Mirandola. According to their extracellular
form, miRNAs are divided into four groups: miRNA-Ago2, miRNA-exosome, miRNA-
high-density lipoprotein, and miRNA-circulating. The database gives users access to a
wide range of data, comprising details on the linked disorders, the tissues, the techniques
used to extract the miRNAs, and the experiment’s summary [130]. These miRNAs can be
used as biomarkers for the early detection, diagnosis, and monitoring of cancer. In 2016,
Oxford Nanopore Technologies successfully launched a portable sequencer that utilized a
biological nanopore in its design, opening up the potential for a wide range of practical
applications for nanopore sensing technology, including liquid biopsy, point-of-care testing,
and personalized medicine [131]. Nanopore sensing is a new and emerging technology
for the detection of single molecules, such as oligonucleotides, that can be moved through
nanochannels of proteins that make up the pore; in this technique, nano-scale holes are
embedded in a thin membrane structure to detect potential changes when charged bio-
logical molecules more diminutive than the nanopore passes through the hole. It has also
shown clear blocking currents at the single-molecule level. Therefore, nanopore technology
has the potential to sense and analyze single-molecule amino acids, DNA, RNA, etc. [132].
Many studies have used biological and solid-state nanopores to detect miRNAs in various
tissues. For example, Meni et al. demonstrated the potential of this approach by detecting
liver-specific miRNAs at microgram levels in rat liver using nanopore technology for the
rapid detection of probe-specific miRNAs (miRNA-122a and miRNA-153) [133]. Wang et al.
used hemolysin-based nanopore sensors to detect single-molecule miRNAs in plasma
samples from lung cancer patients. The sensor generates target-specific signals using pro-
grammable oligonucleotide probes to quantify sub-millimolar levels of cancer-associated
miRNAs [134]. These methods have potential application value for quantitative miRNA de-
tection, detection of disease markers, and non-invasive early cancer diagnosis. In addition,
the nanopore gene sequencing method allows researchers to investigate the mechanisms of
miRNA overexpression. Multiplexed detection of let-7 miRNA is also possible through a
nanopore. The thelet-7 family of miRNAs plays a vital role in human development and can
be used as biomarkers for disorders such as cancer [135].

5.2.5. In Situ Hybridization

In situ hybridization (ISH) makes it possible to identify nucleic acid motifs at the
molecular level in cell lines. The ISH method identifies the cellular basis of translation
and offers details on translation levels in various tissue divisions and cell types for the
identification of individual miRNAs and mRNAs. This tissue expression study is essential
for understanding the functions of miRNAs in cellular and biochemical functions. This
method, first applied to detecting miRNA in 2006, uses labeled complementary nucleic
acid probes to find single-stranded DNA or RNA in tissue sections or fixed cells [136]. This
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technique can now see multiple miRNAs per reaction thanks to the recent development of
directly labeled fluorescence probes. The ability to validate these platforms in diagnostic
FISH POC settings will be strengthened by additional research into discovering more
disease-specific probes and labeling techniques [137]. Even though these methods had
sufficient responsiveness, they were time-consuming, needed severe conditions such as
high potentials, and demand an expensive equipment and consumables. Therefore, it is
critically necessary to create novel techniques for the quick, easy, sensitive, focused, and
quantitative detection of miRNAs at low potentials (Figure 6).
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6. Carbon Nanodots in Biosensing of MiRNAs

Macromolecules and circulating analytes in biological systems must be detected in a
way that is efficient, reliable, and inexpensive. Recent developments in the field of biosen-
sors have aided the development of functionalized nanosensors that have the potential
to provide a cost-effective, efficient, and quick diagnostic approach for the detection of
circulating miRNAs. Along with this, some unique properties—such as biocompatibility,
high stability and water dispersibility, and accessible green synthesis, surface functionaliza-
tion of C-dots that creates a strong interaction between CNDs and biological processes—all
these makes them significant for sensing circulating analytes [138]. Fluorescent, colori-
metric, chemiluminescent, and surface plasmon resonance are the most common sensing
systems used to detect circulating miRNAs [139]. This is due to the relative ease of making
fluorescent CNDs and their photostability, which can be used as low-cost alternatives for
sensing significant biomarkers (Table 2). Fluorescence-based analytical approaches allow
for the accurate, efficient, and reproducible detection of biomarkers and nucleic acids.
Furthermore, changes in fluorescent signals caused by biological events such as nucleic
acid probe hybridization are detectable. Thus, fluorescence-based detection technologies
have become increasingly popular due to these benefits [140].
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Table 2. List of Various Carbon Nanodots Used in Biosensing of Cell Free Circulating MiRNAs Using Along with Synthesis Sources, Conjugation Chemistry,
Analytical Methods, Target miRNAs and Detection Limit.

S. No. Carbon Nanomaterial Source and Synthesis Conjugation
Chemistry

Biomolecule
(Analyte) Analytical Method Detection Limit Inference References

1 Carbon nanodots
(CNDs)

O-phenylene diamine,
2-amino terephthalic acid
by solvothermal method

EDC-NHS miRNA-21 Fluorescent biosensor 0.03 fM
CNDs are synthesized and

conjugated via EDC-NHS chemistry
to detect miRNA-21.

[141]

2 PEI-Carbon dots Polyethyleneimine (PEI)
by hydrothermal method - miRNA-21 Fluorescence biosensor -

The synthesized CNDs is employed
to detect miRNA-21 by
fluorescence biosensor.

[142]

3 CNDs/AO Citric acid in formamide π-π conjugation miRNA-92a-3p Fluorometric assay
(FRET) 0.14 nM

To detect miRNA-92a-3p, CNDs are
fabricated and conjugated using

π–π conjugation.
[143]

4 CNDs–DNA walker Citric acid and urea by
microwave-assisted method EDC-NHS miRNA-21

miRNA-155
Electrochemiluminescence

biosensor
33 fM for miRNA-21.

33 aM for miRNA-155

CNDs are created and conjugated via
EDC-NHS chemistry to discover

miRNA-21 and miRNA-155.
[144]

5 CNDs Oxidized maple leaf by a
pyrolytic method EDC-NHS miRNA-21 Electrochemiluminescence

biosensor 21 aM

CNDs are synthesized and
conjugated via EDC-NHS chemistry
to detect miRNA-21 associated with

breast cancer.

[140]

6 CNDs Tiger nut milk by
carbonization - miRNA-21 Chemiluminescence

biosensor 0.721 fM
Synthesized CNDs are used to detect

miRNA-21 associated with
cardiovascular disease.

[145]

7 CNDs
Glutaraldehyde, nitro

benzaldehyde by
solvothermal method

- miRNA-21 Fluorescence sensor 0.03 fM

An miRNA-21 associated with breast
cancer is identified using a

fluorescence sensor that is based on
carbon dots.

[146]

8 CNDs Malic acid centrifugation EDC-NHS miRNAs Fluorescence 0.03 pM
The synthesized CNDs is conjugated
via EDC NHS chemistry and used to

detect miRNA.
[147]

9 CNDs Citric acid by
microwave method π-π stacking miRNAs Fluorescence biosensor 2.78 fM

CNDs were synthesized and
employed to detect miRNAs by

fluorescence biosensor.
[148]

10 CNDs Tree leaves by
hydrothermal method EDC-NHS miRNA-155 Fluorescence biosensor

FRET 0.3 aM

CNDs were synthesized and
conjugated via EDC-NHS chemistry
and were used to detect miRNA-155

by fluorescence biosensor.

[149]

11 CNDs/BHQ 2 Ethane diamine,
p-benzoquinone Maleimide-thiol miRNA-141 FRET 16.5 pM

miRNA-14 is conjugated with
synthesized CNDs via

maleimide–thiol conjugation
chemistry and detected by a

fluorimetry test.

[150]
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Table 2. Cont.

S. No. Carbon Nanomaterial Source and Synthesis Conjugation
Chemistry

Biomolecule
(Analyte) Analytical Method Detection Limit Inference References

12 Carbon nanotubes
(CNTs)

Hydrogen
tetrachloroaurate

trihydrate
EDC-NHS miRNA-21 Fluorescence biosensor 36 pM

A synthesized CNT is conjugated via
EDC-NHS chemistry to detect

intracellularlymiRNAs-21.
[151]

13 CNDs Pyrolysis synthesis Amine-amine
conjugation miRNA-21 Ratiometric

fluorescence 1 pM
Synthesized CNDs were used to

detect miRNA-21 associated with
gastrointestinal cancer.

[152]

14 CNDs Citric acid ethylene
diamine/carbonization Amine -glutaraldehyde miRNA-155 FRET 0.1 aM Fabricated CNDs are used to identify

miRNA-155 present in cancer cells. [153]

15 CNTs
(MWCNT/AuNCs)

Carboxylic
acid-ultrasonic cell

disruption
Thiol conjugation miRNA-155 FRET 33.4 fM CNTs are synthesized and used to

detect miRNA-155. [154]

16 CNDs Citric acid–
hydrothermal π-π stacking micro-RNA Fluorescence A CNDs is used to detect miRNA by

fluorescence method. [155]

17 CNTs - miRNA-21 Electrochemical
biosensor 1.95 fM

miRNA-21 is detected by a carbon
nanotube-based

electrochemical biosensor.
[156]

18s Carbon nanofibers/SPE - Amine-carboxylic acid
conjugation miRNA-34a Electrochemical

biosensor 54 pM
The electrochemical biosensor is

utilized to detect miRNA-34a using
carbon nanofibers.

[157]

19 DNA-CNDs/CNTs - π-π stacking miRNA-7f Photoelectrochemical
biosensor 34 fM A CNTs is used to detect miRNA-7f

by a photoelectrochemical method. [158]

20
Carbon

nanoparticles/ssDNA
probe

Graphite electrode by an
electro-oxidation method π-π stacking miRNA let-7a Fluorescence 0.35 pM

Synthesized carbon nano-particles
conjugated via π–π stacking are used

to detect miRNA let-7a.
[159]

Abbreviations: Forster resonance energy transfer (FRET), Single-stranded DNA (ssDNA), Ethyl(dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide (EDC-NHS), Screen-printed
electrodes (SPEs), Black hole quencher 2 (BHQ-2), Multiwalled carbon nanotube (MWCNT), Gold nanocomposites (AuNCs), Polyethyleneimine (PEI), Acridine orange (AO), Femtomolar
(fM), Nanomolar (nM), Attomolar (aM), Picomolar (pM).
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When a target interacts with a recognition element, a fluorescent biosensor translates
information quantitatively or semi-quantitatively. After hybridizing complementary nu-
cleic acid with its target miRNA, fluorescent-based nucleic acid detection can be generally
achieved via signal-on (signal production) and signal-off (signal quenching). For DNA
hybridization and tumor marker detection, carbon nanomaterial biosensors based on the
FRET mechanism have practical utility in research and clinical practice. A FRET sensing
platform for sensitive miRNAs detection using the miRNA-155 probe-labeled C-dots as
a fluorophore and MnO2 nanosheets as a quenching agent was also studied. FRET from
modified C-dots to MnO2 nanosheets can dramatically reduce the fluorescence of modified
C-dots. The quenched fluorescence could be recovered when the target analyte miRNA-155
was introduced [160]. The principal mechanism for sensing miRNA is when the C-dots-
miRNA probe is mixed with MnO2 nanosheets, which absorb the C-dots-miRNA probe
on its surface. Due to FRET, the fluorescence of the C-dots-miRNA probe decreases as the
concentration of MnO2 nanosheets increases [161]. When the complementary target miRNA
was added, specific binding occurred between the search and the target miRNA, causing
the C-dots labeled miRNA hybrid to separate from the MnO2 nanosheets. As a result, as
the concentration of miRNA rises, fluorescence intensity is restored and increased [162].
In recent report using the colorectal cancer-specific miRNA miR-92a-3p as such a target,
the efficacy of a ratiometric fluorescence biosensor made of CNDs and acridine orange
is evaluated. The variables that determine the viability of the ratiometric fluorescence
bioassay are the charges properties of the DNA probe, target miRNA, CNDs, and AO,
as well as the fluorescent properties of CDs and AO. The targeted miRNA has a detec-
tion limit for the ratiometric fluorescence biosensor: 0.14 nM [143]. CNDs are also used
in paper-based analytical devices (PADs), which were previously reported for detecting
circular RNA and miRNA-21 from the hippocampal via probe DNA conjugations and in
situ manufacture of blue-emissive CNDs. Using miRNA-21 color analysis, stunning blue-
to-green and blue-to-red emission color changes of the PADs are obtained [163]. miRNA-21,
a predictor of numerous pathologies including cardiovascular illnesses, is detected sen-
sitively and specifically using an easy CNDs-based electron transfer chemiluminescence
biosensor [145]. Shandilya et al. designed and constructed a nanophotonic method em-
ploying oligonucleotide-conjugated graphene quantum dot–nanoconjugates, which is a
derivative of carbon dots for the quick and precise capture of lncRNAs. The technique
provides very selective and precise target lncRNA identification. The data also indicated
the method’s great practicality and simplicity in determining lncRNAs selectively [164].
Similarly, Chen et al. created a label-free, enzyme-free fluorescent scheme based on strands
displacement amplification (SDA) to detect miRNA with extreme sensitivity utilizing CNDs
functionalized with sulfydryl (CDs-SH) as the probe. Based on the catalytic oxidation of
-SH into -S-S- by hemin/G-quadruplex, CDs-SH demonstrated outstanding response to
G-quadruplex DNA against other DNAs [147]. In a study using on CNDs, a sensor for
miRNA 9-1 recognition was created. On excellent fluorescence QY, water dissolvable,
and low-toxicity CNDs, single-strand DNA with the FAM tag was immobilized. As a
physical attribute for sensing, the fluorescent quenching of CNDs caused by the transfer
of energy of fluorescence resonance among CNDs and FAM was utilized [155]. Jiang et al.
proposed a self-assembled tetrahedral DNA nanostructure coupled with gold nanoparticles
(AuNPs) and CNDs. The constructed nanostructure enables double fluorescence channels
for the parallel estimation of miRNA and telomerase function, which is also easily be
transported within live cells for in situ scanning by adding an iRGD peptide sequence
afterwards [160]. Using single-walled carbon nanotubes, a derivative of CNDs that have
been sensitized with DNA-CdS QDs, a flexible photoelectrochemical biosensors platform
has been created. A practical, accurate, and focused biosensor for the direct detection of
miRNAs was developed by integrating with cyclic enzymatic multiplication, offering a
unique method for miRNA detection [158]. In another study, they presented the selective
and sensitive detection of exosomal miRNAs using a ratiometric fluorescent bio-probe
based on DNA-labeled carbon dots (DNA-CNDs) and 5,7-dinitro-2-sulfo-acridone coupling
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with the target-catalyzing signal amplification, in which high FRET between CNDs and
DSA boosted the assay’s sensitivity of the bio probe [165]. Similarly, a new strategy was
developed for the construction of a dual-emission fluorescent sensor using a new ratio-
metric nanohybrid fluorescent probe for the detection of miRNA-21 with dual-colored
CNDs (blue CNDs and yellow CNDs) as they are provided with the same excitation wave-
length (360 nm), two distinct and steady emission signals (409 and 543 nm) were produced
as fluorophores and then their applications for ratiometric miRNA-21 sensing and the
bioimaging of cancer cells in a microfluidic device were confirmed [141]. The strong and
precise binding of DNA probe functionalized B-CNDs to the complementary miRNA-21
target caused probe structural perturbations and changed fluorescence intensity in both
wavelengths as miRNA-21 concentration increased. Thus, because of its rapid reaction,
high sensitivity, and technical simplicity, the proposed fluorescent nano-biosensor has
become a reliable analytical sensing tool [166]. The great sensitivity (because of CNDs’
high brightness), multiplex capability (due to CNDs’ color tunability), and homogeneous
assay formats are all key advantages of CND’s performance in fluorescence biosensors
for the detection of circulating nucleic acids [167]. Using CNDs as photosensitizers, TiO2
was grown on the edges of gold nanorods (AuNRs) to form dumbbell-shaped structures
(AuNRs@end-TiO2), which were then hydrophobically attached to fluorine tin oxide (TiO).
FTO was bonded to the electrode surface. As a result, a compact photoelectrochemical
miRNA-21 was created. Hairpin probes (HPs) were used to bind to the TiO2-modified
FTO electrode surface, while CNDs-modified homologous DNA (CNDs-cDNA) served
as the photosensitive label. When targets were present, the miRNA hybridized with the
HP, which caused a double-stranded specific nuclease to associate with the miRNA to
the homologous segment of the HP. This released the miRNA, potentially starting a new
cycle that would result in signal acquisition [168]. Gold nanoparticles conjugated with
CNDs have also demonstrated excellent sensing capability. In a study, gold nanoparticles
conjugated with CNDs have also shown excellent sensing capabilities. Photo-assisted
biofuel cell-based self-powered biosensors (PBFC-SPBs) are also used in biosensing to
identify miRNA. The coupling of PBFC-SPBs for miRNA monitoring with a Cu2+/carbon
nanotube (Cu2+/CNTs) cathode with laccase-mimicking activity made this possible. When
the target was identified, the matched miRNA with the same sequence eluted DNA2/CdS
from the electrode, resulting in a weak signal. The method does not require the use of an
external power source [169]. CNDs have been also widely used for the fluorescent analysis
of various targets, including small molecules such as ions, H2O2, and biomolecules, due to
their excellent PL properties. Aptamers were also recognized using CNDs. Aptamers are
artificial single-stranded DNA or RNA that have a high affinity for different analytes. Xu
et al. created an aptasensor for thrombin detection; it has several aptamer binding sites.
Two thrombin aptamers with amino groups were created. They were modified separately
on silica nanoparticles and CNDs, and both are capable of recognizing thrombin by forming
an intramolecular G-quadruplex [170].

7. Conclusions

Non-communicable diseases (NCDs), including cancers, have persisted as major
worldwide public health concerns, causing significant death and morbidity. Most molecular
processes, including cellular development, differentiation, death, and disarrayed tumorous
growth, are controlled by miRNAs, which are crucial in the pathogenesis of cancers. Be-
cause of their significant regulatory role, miRNAs as biomarkers are widely employed for
early diagnosis of malignant diseases and therapy monitoring. Zillions of miRNAs have
different expression patterns and can either be up-regulated or down-regulated in cancer.
Therefore, developing reliable and susceptible sensors for miRNA detection and quan-
tification is highly warranted. With their excellent compatibility, distinctive fluorescence
spectrum features, and inherent semiconductor properties, CNDs permit the detection of
miRNAs by adopting simplified miniature readings. We have primarily focused on three
aspects in this review paper. (1) CNDs and their properties—They have gained significant
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attraction in various domains due to their distinctive physicochemical, optical and elec-
trical properties. In particular, the rich optical and electronic properties of CNDs enable
efficient light harvesting, exceptional and tunable photoluminescence (PL), and excellent
photoinduced electron transfer. (2) Synthesis and Surface functionalization—CNDs can
be synthesized by top–down and bottom–up approaches, and a green synthesis of CNDs
is also possible that is novel, facile, and cost-effective. Furthermore, the prepared CNDs
will undergo surface functionalization, which conjugates biomolecules with CNDs. (3)
Leveraging CNDs for miRNA sensing—Fluorescent biosensors, electrochemiluminescence
biosensors, chemiluminescence biosensors, and ratiometric fluorescence are examples of
miRNA detection technologies. Liquid biopsy is still in its infancy, but it will provide us
with more detailed information on tumor heterogeneity and the development of biosensors
for its detection. It is intriguing to think about the future of CNDs-based nano-biosensors
for miRNA detection and where they will have the most clinical impact. As we advance in
this fourth industrial revolution, the fusion of the physical (hardware), digital (software
and artificial intelligence), and biological domains may lead to the creation of point-of-
care tests for early cancer diagnosis that are more dependable, sensitive, user-friendly,
and affordable.
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Abbreviations

AO Acridine Orange
AuNPs Gold Nanoparticles
ccfmiRNAs Circulating Cell-Free Micro Ribonucleic Acids
CdS Cadmium Sulfide
CdSe Cadmium Selenide
CNDs Carbon Nanodots
ECL Electrochemiluminescence
EDC 1-Ethyl-3-(3-Dimethylaminopropyl) carbodiimide
EYO Egg Yolk Oil
FRET Fluorescence Resonance Energy Transfer
GO Graphene Oxide
miRISC miRNA-Induced Silencing Complex C
miRNAs microRNAs
NO2 Nitrogen Dioxide
PEC Photoelectrochemical
PEG Polyethylene Glycol
PL Photoluminescence
PM Particulate Matter
QDs Quantum Dots
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qRT-PCR Quantitative Real-Time Polymerase Chain Reaction
QY Quantum Yield
RCG Raw Cashew Gum
RT Room Temperature
SPDP N succinimidyl-3-(2-pyridyldithio) propionate
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