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Abstract: The process of wound healing is complex and involves the interaction of multiple cells, each
with a distinct role in the inflammatory, proliferative, and remodeling phases. Chronic, nonhealing
wounds may result from reduced fibroblast proliferation, angiogenesis, and cellular immunity, often
associated with diabetes, hypertension, vascular deficits, immunological inadequacies, and chronic
renal disease. Various strategies and methodologies have been explored to develop nanomaterials for
wound-healing treatment. Several nanoparticles such as gold, silver, cerium oxide and zinc possess
antibacterial properties, stability, and a high surface area that promotes efficient wound healing. In
this review article, we investigate the effectiveness of cerium oxide nanoparticles (CeO2NPs) in wound
healing—particularly the effects of reducing inflammation, enhancing hemostasis and proliferation,
and scavenging reactive oxygen species. The mechanism enables CeO2NPs to reduce inflammation,
modulate the immunological system, and promote angiogenesis and tissue regeneration. In addition,
we investigate the efficacy of cerium oxide-based scaffolds in various wound-healing applications for
creating a favorable wound-healing environment. Cerium oxide nanoparticles (CeO2NPs) exhibit
antioxidant, anti-inflammatory, and regenerative characteristics, enabling them to be ideal wound
healing material. Investigations have shown that CeO2NPs can stimulate wound closure, tissue
regeneration, and scar reduction. CeO2NPs may also reduce bacterial infections and boost wound-site
immunity. However, additional study is needed to determine the safety and efficacy of CeO2NPs
in wound healing and their long-term impacts on human health and the environment. The review
reveals that CeO2NPs have promising wound-healing properties, but further study is needed to
understand their mechanisms of action and ensure their safety and efficacy.

Keywords: wound healing; cerium oxide; skin; scaffolds

1. Introduction
1.1. An Overview of Wound Healing

Skin is the largest organ in the human body, serving as a barrier to protect the internal
organs of the body from external factors [1,2]. It is the most susceptible organ that can easily
get damaged due to burns, wounds, cuts, and scrapes. Despite superficial wounds, it has a
remarkable ability to self-repair. However, deeper wounds and larger defects require more
complex treatments to heal completely. If these wounds are not treated properly, they may
lead to persistent acute and chronic health issues including infections, tissue damage, and
scarring, and can sometimes be fatal. Therefore, treating wounds promptly and effectively
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is vital to minimize the issues and promote full healing [1,3]. Since wound healing is
a complex and dynamic process involving multiple stages and cellular mechanisms to
restore the tissue’s functionality and prevent infections, delayed wound healing becomes
a major issue by increasing prolonged hospitalization, chronic diseases such as diabetes
and cardiovascular disease, and patient quality of life [4,5]. Thus, new wound healing
methods are necessary. One promising strategy uses nanotechnology because of various
properties such as enhanced drug delivery, improved wound closure, reduced scarring,
biocompatibility, reduced inflammation, and antibacterial properties.

Nanomaterials have recently been developed for a variety of wound-healing appli-
cations. This is due to their higher surface-to-volume ratio, which is responsible for their
distinct properties. These nanomaterials exhibit outstanding bactericidal, biocompatibility,
and hemostatic capabilities [6]. Due to their small size, nanomaterials’ permeability and
retention effects are improved, enabling the delivery of targeted drugs and the detection
of malignancies. Several nanomaterials that can enhance wound healing without any
adverse effects on the body have been evaluated. Some examples include zinc oxide,
silica, gold, polycaprolactone, and silver nanoparticles. They have exhibited constructive
results comprehending good biocompatibility, re-epithelialization, bactericidal activity,
and reduced scar formation [7]. In particular, cerium oxide (CeO2NPs) stands out among
the numerous nanomaterials utilized for wound healing applications as one of the most
promising materials due to its outstanding antioxidant, anti-inflammatory, antibacterial,
and angiogenic capabilities [8].

Consequently, there is a growing interest in using CeO2NPs for wound healing. This
review will recapitulate the current research on the use of CeO2NPs for wound healing
and emphasize their potential advantages and disadvantages. We have focused on the
characteristics and mechanisms of action of CeO2NP-based scaffolds and wound-healing
scaffolds/materials that aid in wound healing because they offer additional antibacterial,
biocompatible, and hemostatic qualities that aid in the restoration of skin integrity [9].
Despite the availability of numerous therapies for wound healing, there is a need for more
effective and efficient treatments. Recent research has demonstrated that CeO2NPs have
the potential to enhance wound healing by promoting angiogenesis and collagen synthesis
while minimizing inflammation and oxidative stress.

1.2. Phases of Wound Healing

An optimal wound healing process consists of four phases: hemostasis, inflammation,
proliferation, and remodeling. Each of these stages and their physiological endeavors
are performed in a cycle for an appropriate period [6]. The first phase of wound healing
pertains to eliciting hemostasis by vasoconstriction, facilitating clot formation initiated by
platelet aggregation at the wound site to minimize blood loss and provide a fibrin matrix
formation which aids in cell migration essential for eventual phases of wound healing.
Platelets are essential in the formation of clots and also promote multiple growth factors
including transforming growth factor (TGF)-β, platelet-derived growth factor (PDGF),
fibroblast growth factor (FGF), and epidermal growth factor (EGF) and cytokines which
are used to regulate healing cascade. This phase lasts minutes to hours and moves into the
inflammatory phase [10–13].

The inflammatory phase is a protective response stage which removes invading mi-
croorganisms and cellular debris from the wound site. This is accomplished by infiltrating
neutrophils, lymphocytes, and macrophages into the affected tissue. Neutrophils migrate
to the injury site and destroy invading pathogens. In addition, it generates reactive oxygen
species and other chemical substances that contribute to killing pathogens and recruiting
other immune cells at the inflammation site. T lymphocytes are essential components of
cell-mediated immunity, which is the process by which the immune system detects and
destroys aberrant or infected cells in the body. The function of macrophages in the healing
process is multifaceted. They play a significant role in facilitating the removal of debris,
bacteria, and injured cells at the wound site. They promote angiogenesis by secreting
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growth factors and releasing cytokines that stimulate cell proliferation and differentiation,
leading to damaged tissue healing. In addition, macrophages stimulate apoptosis and the
subsequent clearance of apoptotic cells, ultimately facilitating inflammation eradication.
Following the inflammatory phase, the tissue aims at achieving angiogenesis, wound
closure, and re-epithelialization by the action of fibroblasts, keratinocytes, macrophages,
and other cells where collagen and extracellular matrix synthesis occurs, enabling wound
repair [10–12,14,15].

After the inflammatory response, the wound becomes debris-free, and the proliferation
phase begins. During this phase, the injured tissues are reconstructed using a variety of
cellular and molecular mechanism pathways. Fibroblasts, endothelial cells, and myofi-
broblasts migrate to the wound site and rebuild new tissue. Fibroblasts are responsible for
producing collagen, which is an essential protein for the structural integrity of the tissue to
be maintained. Endothelial cells generate new blood vessels for tissue oxygenation and
nourishment. Myofibroblast cells are specialized cells that help compress the wound and
bring the edges closer after injury. As the incision heals, tissue strengthens and becomes
stable, which lowers the likelihood of infection. The final and longest phase of wound
healing is the remodeling phase, which intends to reorganize the extracellular matrix struc-
tures to maximize the tensile strength of the newly developed tissue and is marked by
the formation of scar tissue having a more parallel collagen arrangement compared to
normal tissue. The main traits of this phase are the deposition of collagen, the rearranging
of fibers, and the contraction of scar tissue. In addition, the rate of wound healing and its
effectiveness can be determined by various factors, including the patient’s age, the type
and severity of the injury, and existing health conditions (Figure 1) [11,12,16].
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1.3. CeO2NPs and Their Properties Suitable for Wound Healing

CeO2NPs, also referred to as nanoceria, have gained attention in wound healing
due to their unique properties such as antioxidant, anti-inflammatory, anti-bacterial, and
pro-angiogenic properties and biocompatibility. CeO2NPs decrease oxidative stress, inflam-
mation, and wound size, and promote healing. In addition, they can enhance the catalase
and superoxide dismutase (SOD) enzyme activity which protects cells from damage and
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supports curing [17]. The antioxidant property protects cells from oxidative stress, allow-
ing Ce3+ and Ce4+ oxidation states to act as antioxidants and pro-oxidants [18,19]. It has
extensive industrial applications in medical, optical and catalysis technology. In addition,
they promote new angiogenesis, stimulate endothelial for cell proliferation, and enhance
oxygenation nutrient supply to the wound site.

They have been extensively used in various applications, including corrosion protec-
tion, fuel oxidation catalysis, catalysis, electrochemistry, photochemistry, fuel cells, nitric
oxide radicals, chemical mechanical polishing, and biomedical applications compared
to other nanoparticles [20,21]. In addition, due to their thermal stability, great mechani-
cal properties, good oxygen storage ability, and high retention on binding enzymes [22],
CeO2NPs can be injected into tissues to protect against a broad range of oxygen-based reac-
tive species, enhance the redox state of the blood, and improve wound healing effectiveness
both in vitro and in vivo [23].

2. Role of CeO2NPs in Wound Healing Mechanism

For effective wound healing, rapid hemostasis, proliferation, and migration of cells
to the wound site, as well as rapid re-epithelialization, are necessary [6]. CeO2NPs are of
particular interest in radical-mediated reactions. Certain applications include diabetes mel-
litus, a condition marked by elevated blood glucose levels and afflicted insulin-producing
β cells of the pancreas. Antioxidant CeO2NPs drastically reduce intracellular ROS levels,
preventing β-cell apoptosis; another application includes the targeted destruction of cancer
cells [24].

2.1. Properties of Reactive Oxygen Species (ROS) Scavenging and Antioxidants

A persistent wound eventuates when it fails to progress through the different phases
of wound healing and this, in turn, induces more inflammation and greater levels of
reactive oxygen species (ROS), which further prolongs the healing process due to increased
oxidative stress. The effect of increased oxidative stress on cells is shown in Figure 2. The
formation of antioxidant systems can lower ROS levels and hence minimize oxidative stress,
one of the most important aspects of wound healing [9].
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Figure 2. Adverse reaction of increased oxidative stress on the cells [7].

CeO2NPs allow ROS accumulation, exacerbating oxidative stress and ultimately lead-
ing to cancer cell apoptosis [25]. This is because they can act as either an oxidant or an
antioxidant depending on the pH of the surrounding environment, which is depicted
in Figure 3. The pH of cancer cells is acidic relative to the normal cells, prompting the
pro-oxidative effect of CeO2NPs [25,26]. They also have a therapeutic effect on cerebral
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ischemia, a condition developed due to insufficient blood flow to the brain, resulting in
oxygen deprivation in the cells and cell death. To restore normal blood flow, oxygen
consumption is reduced in the mitochondria of neural cells, and this quick shift in oxygen
levels results in the conversion of excessive oxygen into ROS and RNS (reactive nitrogen
species). CeO2NPs are employed to reduce oxidative stress because of their antioxidative
properties, and they also stimulate neurogenesis [24,27].
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CeO2NPs were found to improve vascularization through their angiogenic properties,
where CeO2NPs promoted the formation of new vessel networks by regulating intracellular
oxygen and stabilizing vascular endothelial growth factor (VEGF) and Hypoxia-inducible
factor-1 (HIF-1), which are pertinent in angiogenesis, cell proliferation, and other pro-
cesses [29,30]. CeO2NPs can self-renew because they have valences of +3 or +4 allowing
flexibility to switch between anti- and pro-oxidant states [19]. Due to this transition, they
can switch between antioxidant and pro-oxidant capabilities, with pro-oxidant properties
predominating at lower pH values [31]. CeO2NPs pro-oxidant nature allows them to cause
oxidative stress, which could be beneficial in cancer treatment. Cancer cells, unlike normal
cells, have a redox imbalance and produce abundant reactive oxygen species (ROS). The
pro-oxidant activity of CeO2NPs is particularly important in this setting because the pH of
tumor cells is typically decreased, allowing the pro-oxidant system to increase oxidative
stress and eventually cause cell apoptosis [32], which would otherwise be hazardous in the
biological environment [21].

CeO2NPs anti-oxidant characteristics, on the other hand, enable ROS scavenging by
catalyzing the breakdown of ROS. Figure 4 demonstrates the pro-oxidant and antioxidant
responses of CeO2NPs. Bone regeneration applications are one of the instances where
CeO2NPs antioxidant potential is employed. In the case of a fracture or surgical wound,
oxidative stress on the bone increases, resulting in the formation of free radicals, which
might eventually lead to bone apoptosis. CeO2NPs can aid in eradicating these free
radicals, enhancing biomineralization and overall mechanical characteristics [33]. The
smaller Ce3+ particles boost this catalytic activity of ROS scavenging [34], maintaining the
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balance between ROS formation and destruction [35]. Therefore, the therapeutic strategy
should direct CeO2NPs synthesis to minimize adverse body reactions [21]. Furthermore,
higher Ce4+ ion concentration increases catalase mimetic activity, but higher Ce3+ ion
concentration increases superoxidase dismutase (SOD) mimetic activity [36]. Catalase
and SOD are antioxidant enzymes, which may be one of the fundamental mechanisms of
CeO2NPs ROS scavenging abilities [37]. These characteristics make it a promising material
for use in wound healing applications.
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Another important aspect of the CeO2NPs is the therapeutic effects observed in
the CeO2 NPs–microRNA (miR146a) conjugate. MicroRNAs are small noncoding RNA
molecules that are significant to wound healing mechanisms. MicroRNAs, specifically
miR146a, play a significant role in the regulation of inflammatory immune responses of the
body by modulating the key inflammatory signals critical for wound healing [34,38–42]. In
persistent chronic wounds, miR146a dysregulation may occur, hindering the wound heal-
ing procedure and requiring its supplementation to enhance the process [38,42]. However,
miR146a cannot be administered directly due to its high degradability and the negative
surface charge that causes electrostatic repulsion with the cell membrane, lowering cellu-
lar uptake and therapeutic efficacy. Therefore, they are generally conjugated with other
inorganic nanoparticles such as silica, cerium oxide, and gold nanoparticles to stabilize
and neutralize the negative charge and enhance the target delivery to the cells [34,38,43,44].
CeO2NPs are one of the most considered materials for conjugation with miR146a, as
reports have suggested better cell targeting and reduced oxidative stress on the gene, en-
suring improved delivery of miR146a to the targeted site and contributing to rapid wound
healing [38,43,45]. The study conducted by Dawberry et al. found that administering a
combination of CeO2NP (divalent metal oxides that scavenge free radicals) and miR146a
(which controls the proinflammatory NF-B pathway) promotes diabetic wound healing.
The study involved conducting immunohistochemistry and gene expression studies to
determine how CeO2NP-miR146a promotes diabetic wound healing. The findings suggest
that intradermal injection of CeO2NP-miR146a accelerates the healing of diabetic wounds
by increasing wound collagen, promoting angiogenesis, reducing inflammation, and less-
ening the effects of oxidative stress. This is achieved by targeting the NF-B pathway and
reducing oxidative stress, creating a wound environment favorable to angiogenesis and
collagen production [46].
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2.2. Effects on Reducing Inflammation and Modulating the Immunological System

The anti-inflammatory and immunomodulatory actions of a material pertain to its
capability to alter the immune system’s response and diminish inflammation. Prolonged
inflammation can lead to tissue damage and facilitates the emergence of diverse ailments,
such as autoimmune disorders, cancer, and cardiovascular diseases. Inflammation is a
normal immune system reaction to an injury or infection. Proinflammatory cytokines
and chemokines, which stimulate immune cells to relocate to the site of inflammation, are
inhibited when anti-inflammatory medications are used [47]. On the other hand, depending
on the condition, immunomodulatory agents can either boost the immune system’s reaction
or suppress it. Because of their valence and oxygen defect properties, CeO2NPs (nanoceria)
may be autoregenerating free radical scavengers. The enzyme inducible nitric oxide
synthase (iNOS) overproduces the free radical nitric oxide (NO), a major mediator of
inflammation. A study by Suzanne et al. reported CeO2NPs scavenge ROS or free radicals
and inhibit inflammatory mediator production in macrophages. They performed an in vivo
study showing CeO2NPs deposition in mouse tissue without pathogenicity. A novel
therapy for chronic inflammation could also be derived from nanoceria since it can reduce
ROS production in states of inflammation [48].

Another study aiming to investigate the anti-inflammatory effect of CeO2NPs was
reported. The primary objective was to investigate macrophage phenotype, cytokine ex-
pression, and proliferation under chronic and acute inflammatory conditions, and osteoin-
duction and differentiation of human mesenchymal stem cells (hBMSCs). They observed
both acute and chronic conditions, iNOS activity decreased, and there was a significant
increase in the anti-inflammatory cytokines gene in chronic inflammatory conditions. hBM-
SCs cultured without osteogenic media showed no increase in alkaline phosphatase (ALP)
activity or mineral deposits, but a significant increase in calcium deposits, ALP activity,
and osteogenic-related genes was expressed when CeO2NPs and osteogenic media were
both supplemented [49].

Most NPs are captured by the spleen and liver irrespective of their dose difference,
surface state, morphology, and aggregation. NPs clearance rate and cellular/tissue dis-
tribution in the body depend on NPs characteristics [50]. There is a need to develop new
tools and concepts to understand the full potential and avoid the risk associated with NPs,
as their pharmacokinetics significantly differ from traditional small molecules. A study
demonstrated the long-term effect of CeO2NPs inside the body. They administrated 3 nm
nanoceria at a concentration of 5.7 mg/kg body weight through an intravenous route in
healthy mice. The biodistribution of CeO2NPs at different time points was measured in
different organs such as the liver, brain, spleen, kidney, lungs, and brain, and in fecal and
urinary excretion. They reported CeO2NPs accumulation in the spleen and liver, and their
decay was exponential, with 50% of NPs excreted in 100 days. CeO2NPs does not damage
any target organs; no weight loss or apathy was observed in experimental rats [50].

2.3. Facilitation of Angiogenesis and Tissue Regeneration

Angiogenesis is the process through which new blood vessels develop, assisting in
the repair and restoration of damaged tissue, making it one of the most critical wound-
healing elements [51]. There are several mechanisms to promote angiogenesis, one of which
includes the use of growth factors, such as vascular endothelial growth factor (VEGF), that
act as stimulants for blood vessel formation [52]. It also a play key role in delivering oxygen
and nutrients to injury sites. Many studies have also shown that nanoparticles can stimulate
angiogenesis by triggering certain signaling pathways involved in the development of
vascular networks; among them are gold and mesoporous silica nanoparticles. Another
approach is to employ stem cell therapy, which entails the differentiation of stem cells
into various cell types that aid in the development of blood vessels [53]. Therefore, these
are some of the techniques that may be incorporated to facilitate angiogenesis, thereby
promoting tissue repair and regeneration and expediting the process of wound healing.
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3. Potential Applications of CeO2NPs in Wound Healing

In biomedical engineering, polymers are frequently used to extend the application
scope and enhance material characteristics. Polycarbonate and acrylic polymers are utilized
in dentistry. PCL fibers are ideal for wound dressings and medication delivery [39]. Poly-
meric coatings are typically used for medical implants to increase hemocompatibility and
prevent corrosion [42]. Due to their biomimetic properties, polymeric materials are also
utilized as tissue regeneration scaffolds. Polymers can serve as matrices for encapsulating
several nanoparticles, medications, and other substances, and as simple support struc-
tures [40,54]. Therefore, integrating CeO2NPs with other polymeric materials or nanofibers
can broaden its application to wound healing by allowing for longer drug release at the
wound site and accelerating the wound healing process, improving overall efficiency.
Hereby, we have discussed a few recent and most relevant CeO2NP-conjugated polymeric
scaffolds that have shown potential in wound healing applications.

3.1. CeO2NP-Incorporated PHBV Membranes

PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) is a biodegradable, nontoxic, and
biocompatible polyhydroxyalkanoate-type polymer (Figure 5) [41]. PHBV cell membrane-
encapsulated CeO2NPs have shown potential for treating diabetes-related wound healing
complications. Such membranes were shown to have the ability to repair wounds in
an experiment conducted on living animals using diabetic rats. PHBV membrane-based
wound dressing matrices have been reported to enhance cell proliferation, migration, and
angiogenesis. The electrospinning approach was utilized to fabricate nanofibers based
on PHBV–cerium oxide nanoparticles. This method requires the preparation of PHBV
solutions that include various amounts of CeO2NPs in a 9:1 ratio of chloroform to dimethyl
formamide (DMF). Continuous nanoscale fibrous membranes were formed when a high
voltage direct current (DC) power source was supplied, and these membranes were sub-
sequently deposited on the collector [34]. The electrospinning approach produced highly
porous nanofiber matrices that allowed oxygen and nutrients to diffuse freely, enabling
quick and successful wound healing [43,55,56]. However, one significant disadvantage of
this approach is the detrimental repercussions of DMF, a polar aprotic solvent, on vital or-
gans, particularly the liver [57–59]. This can be mitigated by using a membrane distillation
process, in which the vapor molecules are only permitted to travel over a hydrophobic
membrane, eliminating any potential contaminants [60].
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3.2. Cerium Oxide Nanoparticle-Containing Genipin Crosslinked Gelatin Hydrogel Composite
(G-CeO2NPs)

Gelatin matrices are porous, allowing cells to move freely and providing mechanical
and structural support for new tissue formation [38]. Their high biodegradability and
biocompatibility have made them popular in wound healing applications. However, they
cannot be used alone in biomedical applications due to their poor mechanical and antimi-
crobial properties and tendency to dissolve below 29 ◦C. Crosslinking with other polymers
could improve these mechanical, bactericidal, and thermal properties [44,45,61,62]. Genipin
was chosen as the crosslinking agent because of its high biocompatibility and ability to
produce a stable crosslinked polymer [45,63]. It was found that the G-CeO2NPs composite
cured wounds better than gelatin alone. In an in vivo investigation on rats, the G-ONPs
composite exhibited rapid leukocyte movement and high collagen deposition rates, speed-
ing up the wound healing process compared to other gelatin groups. For synthesizing
CeO2NPs, the thermal decomposition method was utilized to decompose metal precursors
in the presence of oleylamine, which acts as stabilizing agent to control the shape, size,
and dispersion of resulting nanoparticles. Oleyalmine serves both as a reducing agent
and a stabilizer, facilitating the thermal decomposition and formation of nanoparticles.
To synthesize composite material, gelatin stock solution was mixed with CeO2NPs and
then magnetically agitated. After that, genipin was added to the mixture to help generate
crosslinks between gelatin and CeO2NPs [63] (Figure 6).
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3.3. PVA/Chitosan-Incorporated Green-Synthesized Wound Healing Hydrogel

Polyvinyl alcohol (PVA) hydrogels are one of the most widely used polymeric materials
for wound-healing applications due to their nonadherent nature and ease of removal
from the wound [64]. Due to the high water content of hydrogels, they have sufficient
flexibility and elasticity to fit the contour of the wound, making them an ideal material
for wound dressings. However, because PVA alone has limited mechanical strength,
composite hydrogel membranes are being fabricated to improve their usage in wound
healing applications [65]. An article by Kalantari et al. reported synthesizing and evaluating
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a polyvinyl alcohol/chitosan (PVA/chitosan) hydrogel for wound healing applications. The
hydrogel was incorporated with green-synthesized cerium oxide nanoparticles (CeO2NPs)
using an extract from Zingiber officinale as the reducing, capping, and stabilizing agent. The
PVA/chitosan/CeO2NPs hydrogel was developed using the freeze–thaw method with 0 to
1% (wt) 5 nm CeO2NPs as the active ingredient. Compared to the control group, the results
showed that the hydrogels that included 0.5% CeO2NPs showed superior antibacterial
activity after just 12 h. Hence, these chitosan/PVA hydrogels combined with CeO2NPs
might be a promising contender as a strong wound dressing agent that may significantly
diminish wound infections without resorting to antibiotics. This would be a significant
advancement in treating chronic wounds [66].

3.4. PLA/PVA/PLA Trilayer Nanofibers with CeO2NPs

Polylactic acid (PLA) is a synthetic polymer obtained from natural sources widely em-
ployed in biomedical applications. It is one of the most prominent materials in the wound
healing industry because of its exceptional mechanical and biocompatibility features [67,68].
PVA can absorb exudates and keep the wound moist. However, it cannot be used alone as a
wound dressing due to its lack of bioactivity [69]. To aid in the healing of chronic wounds,
Polylactic acid (PLA) and Polyvinyl alcohol (PVA) nanofibers (NFs) are sandwiched to
produce a trilayer with CeO2NPs integrated into the nanofibers. Because PVA has a greater
degradation rate, which could lead to ineffective and quick CeO2NPs release, it is coated
with PLA, which has a lower degradation rate and assures a more regulated release of
CeO2NPs from the inner PVA layer. This sustained release helps maintain the precise
concentration of CeO2NPs in the wound, ensuring consistent and uninterrupted drug
release for patients who require long-term treatment. The material’s overall mechanical
and biocompatibility qualities are also improved, making it more effective than monolayer
polymer membranes loaded with CeO2NPs [70]. The CeO2NP-loaded PLA/PVA/PLA
trilayer NFs were prepared using the electrospinning method (Figure 7). Electrospun fibers
exhibited high porosity, wettability, and resemblance to the natural extracellular matrix,
promoting cell proliferation and migration and enhancing wound healing [71].
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The outer layer of PLA was deposited on the collector following the electrospinning
process. The same process was utilized to produce the middle layer, the CeO2NP-loaded
PVA for a substantially longer length due to the greater thickness. The PLA solution
was electrospun for the same length as the first layer to produce the third layer. The
fibrous membranes deposited on the collector were carefully removed and stored at room
temperature in a desiccator [72].
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3.5. Polycaprolactone–Gelatin Nanofiber with CeO2NPs Functionalization (PGNPNF)

PCL is a synthetic polymer material exploited for wound-healing applications due to
its exemplary biological and mechanical properties [73]. However, it could not be used
aloneso due to its poor adhesivity. As a result, gelatin, a highly biodegradable and bio-
compatible polymer with exceptional nanofiber-forming capabilities, was employed in
conjunction with PCL to aid in wound repair [60,69,71]. Nanofibers fabricated exhibited
similar-to-optimal scaffolds as they offered greater surface area, porosity, and permeability,
encouraging cell adhesion and proliferation [71]. Various investigations revealed that
the PCL–gelatin nanofiber combination outperformed pure PCL regarding cell prolifera-
tion [60]. This composite was a support structure for the CeO2NPs, which had effective
ROS scavenging properties [57]. PCL–gelatin nanofiber loaded with CeO2NPs was fab-
ricated using the electrospinning process; 10% w/v of PCL and 20% w/v gelatin were
combined in the hexafluoroisopropanol (HFIP) solvent for about 10 h, followed by 25%
v/v of the 20 mM CeO2NPs suspension. This polymeric solution was made to discharge
in the form of nanofibers over an aluminum foil [58]. The considerable decrease in PCL
crystallinity that occurred as a result of gelatin blending showed a significant effect on
the degradation behavior of the scaffold. SOD mimetic tests showed that the dissolution
of uncrosslinked gelatin permitted the quick release of nanoparticles, whereas the use of
PCL guaranteed that the structural integrity of nanofibers was maintained. In addition, the
SOD mimetic activity demonstrates that PGNPNF has an antioxidant impact in a variety
of buffer systems. In addition, the ability of PGNPNF to protect cells from the oxidative
damage caused by Hydrogen peroxide is more evidence that the compound possesses
antioxidant and cell protection properties. As a result, PGNPNF meshes, which have the
potential to act as antioxidants, might be investigated for use as a wound dressing material
(Figure 8).
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3.6. Curcumin and CeO2NP-Integrated Dextran-Based Amphiphilic Nanohybrid Hydrogel System

Curcumin promotes rapid wound healing due to its excellent anti-inflammatory,
antimicrobial, and antioxidant nature. Additionally, it had a greater ability to enhance
tissue formation and remodeling [59]. However, it had limited applications due to its
poor bioavailability and aqueous insolubility. Therefore, curcumin was integrated with



Micromachines 2023, 14, 865 12 of 19

1-bromohexadecane-dextran, which acted as a carrier system for the curcumin formulations.
Additionally, it was said to overcome the drawbacks of curcumin when administered as a
primary wound-healing agent. In addition to curcumin, CeO2NPs were also incorporated,
and delivered at the wound site to reduce inflammation and oxidative stress, thus pro-
moting cell proliferation for rapid wound healing. The curcumin and CeO2NP-integrated
O-hexadecyl-dextran were prepared using the freeze-drying method. The O-hexadecyl-
dextran (HD) was prepared by dissolving dextran, NaOH, and 1-bromohexadecane-dextran
in tetrahydrofuran (THF). The solution was then dialyzed and freeze-dried. The HD parti-
cles obtained were optimized by dissolving in Milli-Q-water followed by freeze-drying.
The curcumin–acetone solution was then dropped into the previously produced solution,
and the resulting mixture was lyophilized. The obtained curcumin-encapsulated nanopar-
ticles and CeO2NPs were added to the gelatin solution to form the nanoparticle–hydrogel
integrated system [64]. The hydrogel showed regulated and extended drug release and
increased cell migration, and provided antioxidant and in vivo anti-inflammatory action.
The study emphasizes the need to combine hydrogel and nanosystems to improve wound
healing, drug transport, bioavailability, cytotoxicity, and therapeutic effects. Based on
the promising results, more in vivo research is needed to translate its potential for quick
wound healing into practical applications (Figure 9). Decellularized extracellular matrix
(ECM) has been widely used for wound healing. However, ECM failed to integrate tissue
and restore the tissue function properly when elevated levels of free radicals and biofilm
formation occur at the wound site. To address this issue, a nanoemulgel system (DG-
SIS/Ce/NC) was developed by combining nanoceria, curcumin nanoemulsion, and goat
small intestine submucosa ECM gel. These nanoemulgel systems comprise decellularized
ECM of caprine small intestine submucosa (DG-SIS), curcumin encapsulated eucalyptus
oil-based nanoemulsion (Ce), and nanoceria (NC). The resulting formulation exhibited
antibacterial, antioxidant, hemocompatible, biocompatible, and enhanced wound-healing
properties. The DG-SIS/Ce/NC formulation showed the highest free radical scavenging
capacity, sustained curcumin release, good skin permeability, increased cell proliferation,
full-thickness wound contraction, and collagen synthesis. The enhanced wound healing
is expected due to the synergistic effect of Ce, NC and DG-SIS. The reports have shown
that DG-SIS/Ce/NC formulation holds potential for use as a nanoemulgel system in
full-thickness wound healing applications [74].
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3.7. Gelatin Methacryloyl Hydrogel Patch with CeO2NPs

Gelatin methacryloyl (GelMA) hydrogels are used in wound healing due to their
hydrogel-like nature, allowing them to retain moisture and biocompatibility with the
surrounding tissues [65]. Nevertheless, their usage is limited due to nonadhesiveness and
poor mechanical strength [75]. However, they could be used conjointly with CeO2NPs, as
this allowed for a combined benefit of free radical scavenging activity of CeO2NPs and
controlled delivery of the drug at the injured site which otherwise would result in a rapid,
excessive release of CeO2NPs which might turn out to be toxic. The CeO2NP-incorporated
GelMA hydrogel patch was synthesized using ultrasonication wherein CeO2NPs were
mixed with GelMA solution and crosslinked under UV irradiation. The resulting patches
were lyophilized for roughly two days after being rinsed with demineralized water [75].
The findings of the study on wound healing demonstrated that diabetic rats treated with
patches loaded with CeO2NPs exhibited significantly improved wound healing. The
findings as a whole suggest that CeO2 NP-loaded GelMA hydrogels are among the most
promising materials for the development of therapeutically applicable patches for the
treatment of diabetic wounds.

3.8. CeO2NP Nanocomposite Hydrogels

Direct contact with several biomaterials, such as bioglass, can cause the biomaterial
to adhere to the wound bed, which can lead to laceration and other negative wound
responses [76]. Hydrogel is a type of hydrophilic polymer that naturally has a three-
dimensional structure and has the potential to release therapeutic compounds as an appeal-
ing option to many other kinds of system techniques [77]. Hydrogels filled with cerium
oxide nanoparticles, bioglass, or other components can prevent unfavorable responses.
Both natural and synthetic biomaterials, such as alginate, collagen, and chitosan, can be
utilized to produce hydrogels. In a study conducted by Chen et al., the researchers decided
to employ photocrosslinkable and biodegradable gelatin methacryloyl (GelMA) as the
backbone of the hydrogel. The study developed a multifunctional injectable composite
hydrogel by combining cerium-containing bioactive glass with Gelatin methacryloyl hydro-
gel. The resulting hydrogel was cytocompatible, promoted endothelial cell migration and
tube formation, and exhibited excellent antibacterial properties. In vivo studies on diabetic
rats demonstrated that the hydrogel significantly improved wound healing by accelerating
granulation tissue formation, collagen deposition, and angiogenesis. The study suggests
that developing multifunctional materials with antibacterial and angiogenic properties can
promote the repair of diabetic wound healing [78]. Recently, Gong et al. developed an in-
jectable self-healing ceria-based nanocomposite hydrogel with ROS-scavenging activity to
speed up wound healing. The dynamic Schiff base reaction crosslinked polyethyleneimine-
coated cerium oxide nanorods with benzaldehyde-terminated F127 (F127-CHO) to create
nanocomposite hydrogels (FVEC hydrogel). The FVEC hydrogel was thermosensitive,
injectable, self-healing, and ROS-scavenging. It was biocompatible and biodegradable and
improved wound healing and epithelial regeneration in full-thickness skin wound tests in
mice. The study proposes a multifunctional CeO2NP-based nanocomposite hydrogel for
wound healing and regeneration, which removes ROS and accelerates wound closure and
tissue regeneration (Figure 10) [79].

Ma et al. conducted a study where they designed a multifunctional wound dressing
possessing antibacterial properties, with the aim of expediting the process of wound healing.
They prepared novel monodispersed sodium alginate–carboxymethyl chitosan (SA-CMCS)
spheres at different ratios via crosslinking agent Ce3+. The antibacterial potential of the
system is made more appealing to Staphylococcus aureus (S. aureus) and Escherichia coli
by the progressive release of Ce3+ from the spheres (E. coli). In addition, the combination
of SA and CMCS bestows the spheres with high biocompatibility, strong stability, and
the capacity to speed up the healing process of wounds. The Electrospray method was
utilized to generate Ce3+-crosslinked SA-CMCS spheres. These spheres can enhance wound
healing and inhibit bacterial growth. The electrostatic spray approach was successfully
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used to generate Ce3+-crosslinked SA-CMCS spheres of millimeter size, displaying good
antibacterial characteristics and effectively promoting wound healing. During the spinning
process, various ratios of SA to CMCS were optimized. Among all, the SA-CMCS-1 spheres,
out of all the SA-CMCS spheres, are the most stable, and their antibacterial power is the
greatest due to the optimum Ce3+ release rate. This helps to prevent wound infection while
the wound is healing. In addition, based on the high biocompatibility and wound-healing-
encouraging effect of SA and CMCS, the SA-CMCS spheres, particularly the SA-CMCS-1
spheres, also demonstrate the capacity to enhance wound healing [80].
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4. Discussion

Various scaffolds are being developed to assist in wound healing and tissue regenera-
tion. Scaffolds of various biomaterials, such as polymers and metals, create wound-healing
environments. Porosity, flexibility, biocompatibility, appropriate mechanical strength, and
others are the qualities of scaffolds that promote quick wound healing [55,81]. Cerium oxide
nanoparticles have been demonstrated as a potential material for addressing various issues
and serving as antibacterial agents, redox elements, bioscaffolds, free radical scavengers,
cancer treatment agents, biofilm inhibitors, and in many more biomedical applications. In
addition, the fabrication of these nanoparticles via either physical, chemical, or biologi-
cal methods may also assist in various fields, including solar cells, chemical mechanical
polarization, and catalysis for fuel oxidation [82]. A few comparisons of various cerium
oxide-based wound healing scaffolds are listed in Table 1. Dhall et al. discussed a novel
method for fabricating cerium oxide nanoparticles, including a green synthesis method
that provides safe routes to prepare CeO2NPs, that possess advantages, such as low cost,
biocompatibility, enzyme mimetic activities, ROS scavenging activities, and others [21].

CeO2NPs are mainly used in biomedical applications because of their unique catalytic
capabilities, low toxicity, bactericidal properties, excellent biocompatibility, and other fac-
tors. In this review, we discussed various CeO2NP-based scaffolds for wound healing
applications, where CeO2NPs were combined with polymeric materials and hydrogels
to improve their properties. Overall, the findings imply that CeO2NP-based composite
scaffolds outperform hydrogels or other polymers used independently. As a result, the con-
struction of such scaffolds would represent a significant advancement in treating chronic
wounds. Chronic wounds are characterized by poor wound healing, which the develop-
ment of a biofilm can trigger. The formation of a biofilm takes place when bacteria stick
to the wound surface and begin to reproduce. This film secretes a glue-like matrix that
protects the microorganisms within it from antimicrobial agents and the patient’s immuno-
logical response. As a result, avoiding biofilm formation is crucial [83]. In addition, biofilm
may result from underlying diseases, such as diabetes, vascular disease, neuropathies,
immunological inadequacy, and other similar conditions [84]. Understanding the patho-
physiology of different types of wounds can lead to more accurate treatment techniques
and, eventually, faster healing rates, leading to more successful wound treatments. Chronic
wounds can be prevented from becoming infectious by practicing good wound care.
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Table 1. Comparison of various characteristics of cerium oxide-based scaffolds for wound healing.

Cerium
Oxide-Based

Scaffolds

Fabrication
Techniques Advantages Limitations Applications References

Polycaprolactone
(PCL)–gelatin
nanofiber with

CeO2NPs
functionalization

(PGNPNF)

Electrospinning

Cell viability and
proliferation were

improved.
It reduced oxidative

stress by lowering the
number of reactive

oxygen species (ROS).

Sustained delivery
was not achieved

because PCL
breakdown was faster

resulting in a rapid
release of

nanoparticles.

Wound dressings [57]

Curcumin and
CeO2NP-

integrated
Dextran-based

amphiphilic
nanohybrid

hydrogel system

Freeze drying

Medication release was
controlled and delayed.

Cell migration and
proliferation were

enhanced which aided
in the forming a new

vascular network.

It was challenging to
entrap hydrophobic

curcumin inside
hydrophilic

nanoparticles.
Despite a greater rate

of disintegration at
first, the hydrogel did
not disintegrate and

was retained.

Drug delivery [64]

Gelatin
methacryloyl

hydrogel patch
with CeO2NPs

Ultrasonication

The porous structure
promoted cell mobility

and proliferation.
Excellent tensile

mechanical
characteristics and fluid

retention capacity
Exudate from the

wound surface was
absorbed effectively.

During wound
healing, a fibrotic scar
developed, disrupting

normal tissue
arrangement.

Its long-term health
consequences on

humans are unclear.

Wound-healing
patch for swift
diabetic wound

healing and
chronic ulcer

treatment.

[75]

PHBV
membranes

incorporating
CeO2NPs

Electrospinning

It enhanced blood vessel
development by
promoting cell

proliferation and
adhesion.

Reduced thickness of
the formed epidermal

layer.
Wound dressings [34]

Gelatin and
cerium oxide

nanocomposite
Magnetic stirring

Ultra-small holes enable
cell migration,

nourishment, and
oxygen exchange,

accelerating wound
healing.

To generate a
membranous structure,
an extra crosslinking

agent was needed [26].

Wound dressings [45]

Polyvinyl alcohol
nanogels with

CeO2NPs
Freeze- thawing

Its high elasticity
enabled it to wound

easily.
Improved fluid retention
capacity, which allowed

for speedier wound
healing.

Maximum strength
was reduced. Wound dressings [66]

PLA/PVA/PLA
tri-layer

nanofibers (NFs)
loaded with

CeO2NPs

Electrospinning

Cell adhesion, growth,
and proliferation were

all improved.
Improved

biocompatibility and
mechanical

characteristics.
This allowed for a more
steady and long-lasting

release of the drug.

A high amount of
CeO2NPs was needed

to generate a more
stable trilayer.

Drug delivery [72]
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5. Conclusions

Wound healing is a complex process comprising hemostasis, inflammation, prolifer-
ation, and remodeling, and involving the coordination of various cellular and molecular
mechanisms. Many factors can influence the healing process, including bacteria, infection,
oxygenation, stress, foreign materials, and inflammation. Cerium oxide-based scaffolds
have been shown to effectively combat these factors, leading to improved wound healing
outcomes. These scaffolds have desirable properties, including anti-inflammatory and
antibacterial effects against a wide range of pathogenic bacteria, including methicillin-
resistant Staphylococcus aureus (MRSA), and the ability to promote tissue regeneration
effects. This is achieved through the activation of various cellular and molecular pathways,
including the promotion of angiogenesis, the activation of fibroblasts, and the stimulation of
collagen synthesis. Despite the CeO2NPs possessing promising results, there are some chal-
lenges associated with their utilization, i.e., poorly established synthesis techniques, which
makes it difficult to determine the size, shape, and dosage of CeO2NPs for wound healing.
Although the antioxidant, anti-inflammatory, and antibacterial properties of CeO2NPs
are well established, the exact mechanisms of action information are very limited. High-
concentration dosage and long-term exposure may lead to toxicity. Regulatory approval
is essential for product safety, and the manufacturer should adhere to predefined rules.
Therefore, more research is needed to fully understand the mechanisms behind cerium
oxide’s effects on wound healing. Cerium oxide-based scaffolds have become attractive for
promoting wound healing in infected wounds. Further, these scaffolds can be utilized in
clinical applications after optimizing and determining their effectiveness in different types
of wounds and patient populations.
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