Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Authors = Munmun Rawat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5185 KiB  
Article
Femoral Occlusion during Neonatal Cardiopulmonary Resuscitation Improves Outcomes in an Ovine Model of Perinatal Cardiac Arrest
by Munmun Rawat, Srinivasan Mani, Sylvia F. Gugino, Carmon Koenigsknecht, Justin Helman, Lori Nielsen, Jayasree Nair, Upender Munshi, Praveen Chandrasekharan and Satyan Lakshminrusimha
Children 2023, 10(11), 1804; https://doi.org/10.3390/children10111804 - 13 Nov 2023
Viewed by 2547
Abstract
Background: The goal of chest compressions during neonatal resuscitation is to increase cerebral and coronary blood flow leading to the return of spontaneous circulation (ROSC). During chest compressions, bilateral femoral occlusion may increase afterload and promote carotid and coronary flow, an effect similar [...] Read more.
Background: The goal of chest compressions during neonatal resuscitation is to increase cerebral and coronary blood flow leading to the return of spontaneous circulation (ROSC). During chest compressions, bilateral femoral occlusion may increase afterload and promote carotid and coronary flow, an effect similar to epinephrine. Our objectives were to determine the impact of bilateral femoral occlusion during chest compressions on the incidence and timing of ROSC and hemodynamics. Methodology: In this randomized study, 19 term fetal lambs in cardiac arrest were resuscitated based on the Neonatal Resuscitation Program guidelines and randomized into two groups: femoral occlusion or controls. Bilateral femoral arteries were occluded by applying pressure using two fingers during chest compressions. Results: Seventy percent (7/10) of the lambs in the femoral occlusion group achieved ROSC in 5 ± 2 min and three lambs (30%) did not receive epinephrine. ROSC was achieved in 44% (4/9) of the controls in 13 ± 6 min and all lambs received epinephrine. The femoral occlusion group had higher diastolic blood pressures, carotid and coronary blood flow. Conclusion: Femoral occlusion resulted in faster and higher incidence of ROSC, most likely due to attaining increased diastolic pressures, coronary and carotid flow. This is a low-tech intervention that can be easily adapted in resource limited settings, with the potential to improve survival and neurodevelopmental outcomes. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Graphical abstract

11 pages, 2128 KiB  
Article
Masked Randomized Trial of Epinephrine versus Vasopressin in an Ovine Model of Perinatal Cardiac Arrest
by Munmun Rawat, Sylvia Gugino, Carmon Koenigsknecht, Justin Helman, Lori Nielsen, Deepika Sankaran, Jayasree Nair, Praveen Chandrasekharan and Satyan Lakshminrusimha
Children 2023, 10(2), 349; https://doi.org/10.3390/children10020349 - 10 Feb 2023
Cited by 8 | Viewed by 3235
Abstract
Background: Current neonatal resuscitation guidelines recommend the use of epinephrine for bradycardia/arrest not responding to ventilation and chest compressions. Vasopressin is a systemic vasoconstrictor and is more effective than epinephrine in postnatal piglets with cardiac arrest. There are no studies comparing vasopressin with [...] Read more.
Background: Current neonatal resuscitation guidelines recommend the use of epinephrine for bradycardia/arrest not responding to ventilation and chest compressions. Vasopressin is a systemic vasoconstrictor and is more effective than epinephrine in postnatal piglets with cardiac arrest. There are no studies comparing vasopressin with epinephrine in newly born animal models with cardiac arrest induced by umbilical cord occlusion. Objective: To compare the effect of epinephrine and vasopressin on the incidence and time to return of spontaneous circulation (ROSC), hemodynamics, plasma drug levels, and vasoreactivity in perinatal cardiac arrest. Design/Methods: Twenty-seven term fetal lambs in cardiac arrest induced by cord occlusion were instrumented and resuscitated following randomization to epinephrine or vasopressin through a low umbilical venous catheter. Results: Eight lambs achieved ROSC prior to medication. Epinephrine achieved ROSC in 7/10 lambs by 8 ± 2 min. Vasopressin achieved ROSC in 3/9 lambs by 13 ± 6 min. Plasma vasopressin levels in nonresponders were much lower than responders after the first dose. Vasopressin caused in vivo increased pulmonary blood flow and in vitro coronary vasoconstriction. Conclusions: Vasopressin resulted in lower incidence and longer time to ROSC compared to epinephrine in a perinatal model of cardiac arrest supporting the current recommendations for exclusive use of epinephrine in neonatal resuscitation. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

10 pages, 1714 KiB  
Article
Initial Use of 100% but Not 60% or 30% Oxygen Achieved a Target Heart Rate of 100 bpm and Preductal Saturations of 80% Faster in a Bradycardic Preterm Model
by Mausma Bawa, Sylvia Gugino, Justin Helman, Lori Nielsen, Nicole Bradley, Srinivasan Mani, Arun Prasath, Clariss Blanco, Andreina Mari, Jayasree Nair, Munmun Rawat, Satyan Lakshminrusimha and Praveen Chandrasekharan
Children 2022, 9(11), 1750; https://doi.org/10.3390/children9111750 - 15 Nov 2022
Viewed by 2092
Abstract
Background: Currently, 21–30% supplemental oxygen is recommended during resuscitation of preterm neonates. Recent studies have shown that 58% of infants < 32 week gestation age are born with a heart rate (HR) < 100 bpm. Prolonged bradycardia with the inability to achieve a [...] Read more.
Background: Currently, 21–30% supplemental oxygen is recommended during resuscitation of preterm neonates. Recent studies have shown that 58% of infants < 32 week gestation age are born with a heart rate (HR) < 100 bpm. Prolonged bradycardia with the inability to achieve a preductal saturation (SpO2) of 80% by 5 min is associated with mortality and morbidity in preterm infants. The optimal oxygen concentration that enables the achievement of a HR ≥ 100 bpm and SpO2 of ≥80% by 5 min in preterm lambs is not known. Methods: Preterm ovine model (125–127 d, gestation equivalent to human neonates < 28 weeks) was instrumented, and asphyxia was induced by umbilical cord occlusion until bradycardia. Ventilation was initiated with 30% (OX30), 60% (OX60), and 100% (OX100) for the first 2 min and titrated proportionately to the difference from the recommended preductal SpO2. Our primary outcome was the incidence of the composite of HR ≥ 100 bpm and SpO2 ≥ 80%, by 5 min. Secondary outcomes were to evaluate the time taken to achieve the primary outcome, gas exchange, pulmonary/systemic hemodynamics, and the oxidative injury. Results: Eighteen lambs (OX30-6, OX60-5. OX100-7) had an average HR < 91 bpm with a pH of <6.92 before resuscitation. Sixty seven percent achieved the primary outcome in OX100, 40% in OX60, and none in OX30. The time taken to achieve the primary outcome was significantly shorter with OX100 (6 ± 2 min) than with OX30 (10 ± 3 min) (* p = 0.04). The preductal SpO2 was highest with OX100, while the peak pulmonary blood flow was lowest with OX30, with no difference in O2 delivery to the brain or oxidative injury by 10 min. Conclusions: The use of 30%, 60%, and 100% supplemental O2 in a bradycardic preterm ovine model did not demonstrate a significant difference in the composite primary outcome. The current recommendation to use 30% oxygen did not achieve a preductal SpO2 of 80% by 5 min in any preterm lambs. Clinical studies to optimize supplemental O2 in depressed preterm neonates not requiring chest compressions are warranted. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Graphical abstract

17 pages, 1416 KiB  
Review
Laryngeal Masks in Neonatal Resuscitation—A Narrative Review of Updates 2022
by Srinivasan Mani, Joaquim M. B. Pinheiro and Munmun Rawat
Children 2022, 9(5), 733; https://doi.org/10.3390/children9050733 - 17 May 2022
Cited by 9 | Viewed by 11984
Abstract
Positive pressure ventilation (PPV) is crucial to neonatal cardiopulmonary resuscitation because respiratory failure precedes cardiac failure in newborns affected by perinatal asphyxia. Prolonged ineffective PPV could lead to a need for advanced resuscitation such as intubation, chest compression, and epinephrine. Every 30 s [...] Read more.
Positive pressure ventilation (PPV) is crucial to neonatal cardiopulmonary resuscitation because respiratory failure precedes cardiac failure in newborns affected by perinatal asphyxia. Prolonged ineffective PPV could lead to a need for advanced resuscitation such as intubation, chest compression, and epinephrine. Every 30 s delay in initiation of PPV increased the risk of death or morbidity by 16%. The most effective interface for providing PPV in the early phases of resuscitation is still unclear. Laryngeal masks (LMs) are supraglottic airway devices that provide less invasive and relatively stable airway access without the need for laryngoscopy which have been studied as an alternative to face masks and endotracheal tubes in the initial stages of neonatal resuscitation. A meta-analysis found that LM is a safe and more effective alternative to face mask ventilation in neonatal resuscitation. LM is recommended as an alternative secondary airway device for the resuscitation of infants > 34 weeks by the International Liaison Committee on Resuscitation. It is adopted by various national neonatal resuscitation guidelines across the globe. Recent good-quality randomized trials have enhanced our understanding of the utility of laryngeal masks in low-resource settings. Nevertheless, LM is underutilized due to its variable availability in delivery rooms, providers’ limited experience, insufficient training, preference for endotracheal tube, and lack of awareness. Full article
(This article belongs to the Special Issue Advances in Neonatal Resuscitation)
Show Figures

Figure 1

9 pages, 1243 KiB  
Article
Effect of a Larger Flush Volume on Bioavailability and Efficacy of Umbilical Venous Epinephrine during Neonatal Resuscitation in Ovine Asphyxial Arrest
by Deepika Sankaran, Payam Vali, Praveen Chandrasekharan, Peggy Chen, Sylvia F. Gugino, Carmon Koenigsknecht, Justin Helman, Jayasree Nair, Bobby Mathew, Munmun Rawat, Lori Nielsen, Amy L. Lesneski, Morgan E. Hardie, Ziad Alhassen, Houssam M. Joudi, Evan M. Giusto, Lida Zeinali, Heather K. Knych, Gary M. Weiner and Satyan Lakshminrusimha
Children 2021, 8(6), 464; https://doi.org/10.3390/children8060464 - 1 Jun 2021
Cited by 13 | Viewed by 7030
Abstract
The 7th edition of the Textbook of Neonatal Resuscitation recommends administration of epinephrine via an umbilical venous catheter (UVC) inserted 2–4 cm below the skin, followed by a 0.5-mL to 1-mL flush for severe bradycardia despite effective ventilation and chest compressions (CC). This [...] Read more.
The 7th edition of the Textbook of Neonatal Resuscitation recommends administration of epinephrine via an umbilical venous catheter (UVC) inserted 2–4 cm below the skin, followed by a 0.5-mL to 1-mL flush for severe bradycardia despite effective ventilation and chest compressions (CC). This volume of flush may not be adequate to push epinephrine to the right atrium in the absence of intrinsic cardiac activity during CC. The objective of our study was to evaluate the effect of 1-mL and 2.5-mL flush volumes after UVC epinephrine administration on the incidence and time to achieve return of spontaneous circulation (ROSC) in a near-term ovine model of perinatal asphyxia induced cardiac arrest. After 5 min of asystole, lambs were resuscitated per Neonatal Resuscitation Program (NRP) guidelines. During resuscitation, lambs received epinephrine through a UVC followed by 1-mL or 2.5-mL normal saline flush. Hemodynamics and plasma epinephrine concentrations were monitored. Three out of seven (43%) and 12/15 (80%) lambs achieved ROSC after the first dose of epinephrine with 1-mL and 2.5-mL flush respectively (p = 0.08). Median time to ROSC and cumulative epinephrine dose required were not different. Plasma epinephrine concentrations at 1 min after epinephrine administration were not different. From our pilot study, higher flush volume after first dose of epinephrine may be of benefit during neonatal resuscitation. More translational and clinical trials are needed. Full article
(This article belongs to the Special Issue Stabilization and Resuscitation of Newborns)
Show Figures

Figure 1

11 pages, 1238 KiB  
Article
Sustained Inflation Reduces Pulmonary Blood Flow during Resuscitation with an Intact Cord
by Jayasree Nair, Lauren Davidson, Sylvia Gugino, Carmon Koenigsknecht, Justin Helman, Lori Nielsen, Deepika Sankaran, Vikash Agrawal, Praveen Chandrasekharan, Munmun Rawat, Sara K. Berkelhamer and Satyan Lakshminrusimha
Children 2021, 8(5), 353; https://doi.org/10.3390/children8050353 - 29 Apr 2021
Cited by 5 | Viewed by 2522
Abstract
The optimal timing of cord clamping in asphyxia is not known. Our aims were to determine the effect of ventilation (sustained inflation–SI vs. positive pressure ventilation–V) with early (ECC) or delayed cord clamping (DCC) in asphyxiated near-term lambs. We hypothesized that SI with [...] Read more.
The optimal timing of cord clamping in asphyxia is not known. Our aims were to determine the effect of ventilation (sustained inflation–SI vs. positive pressure ventilation–V) with early (ECC) or delayed cord clamping (DCC) in asphyxiated near-term lambs. We hypothesized that SI with DCC improves gas exchange and hemodynamics in near-term lambs with asphyxial bradycardia. A total of 28 lambs were asphyxiated to a mean blood pressure of 22 mmHg. Lambs were randomized based on the timing of cord clamping (ECC—immediate, DCC—60 s) and mode of initial ventilation into five groups: ECC + V, ECC + SI, DCC, DCC + V and DCC + SI. The magnitude of placental transfusion was assessed using biotinylated RBC. Though an asphyxial bradycardia model, 2–3 lambs in each group were arrested. There was no difference in primary outcomes, the time to reach baseline carotid blood flow (CBF), HR ≥ 100 bpm or MBP ≥ 40 mmHg. SI reduced pulmonary (PBF) and umbilical venous (UV) blood flow without affecting CBF or umbilical arterial blood flow. A significant reduction in PBF with SI persisted for a few minutes after birth. In our model of perinatal asphyxia, an initial SI breath increased airway pressure, and reduced PBF and UV return with an intact cord. Further clinical studies evaluating the timing of cord clamping and ventilation strategy in asphyxiated infants are warranted. Full article
(This article belongs to the Special Issue Neonatal Resuscitation with Placental Circulation Intact)
Show Figures

Figure 1

11 pages, 1932 KiB  
Article
Resuscitation with an Intact Cord Enhances Pulmonary Vasodilation and Ventilation with Reduction in Systemic Oxygen Exposure and Oxygen Load in an Asphyxiated Preterm Ovine Model
by Praveen Chandrasekharan, Sylvia Gugino, Justin Helman, Carmon Koenigsknecht, Lori Nielsen, Nicole Bradley, Jayasree Nair, Vikash Agrawal, Mausma Bawa, Andreina Mari, Munmun Rawat and Satyan Lakshminrusimha
Children 2021, 8(4), 307; https://doi.org/10.3390/children8040307 - 17 Apr 2021
Cited by 11 | Viewed by 4451
Abstract
(1) Background: Optimal initial oxygen (O2) concentration in preterm neonates is controversial. Our objectives were to compare the effect of delayed cord clamping with ventilation (DCCV) to early cord clamping followed by ventilation (ECCV) on O2 exposure, gas exchange, and [...] Read more.
(1) Background: Optimal initial oxygen (O2) concentration in preterm neonates is controversial. Our objectives were to compare the effect of delayed cord clamping with ventilation (DCCV) to early cord clamping followed by ventilation (ECCV) on O2 exposure, gas exchange, and hemodynamics in an asphyxiated preterm ovine model. (2) Methods: Asphyxiated preterm lambs (127–128 d) with heart rate <90 bpm were randomly assigned to DCCV or ECCV. In DCCV, positive pressure ventilation (PPV) was initiated with 30–60% O2 and titrated based on preductal saturations (SpO2) with an intact cord for 5 min, followed by clamping. In ECCV, the cord was clamped, and PPV was initiated. (3) Results: Fifteen asphyxiated preterm lambs were randomized to DCCV (N = 7) or ECCV (N = 8). The inspired O2 (40 ± 20% vs. 60 ± 20%, p < 0.05) and oxygen load (520 (IQR 414–530) vs. 775 (IQR 623–868), p-0.03) in the DCCV group were significantly lower than ECCV. Arterial oxygenation and carbon dioxide (PaCO2) levels were significantly lower and peak pulmonary blood flow was higher with DCCV. (4) Conclusion: In asphyxiated preterm lambs, resuscitation with an intact cord decreased O2 exposure load improved ventilation with an increase in peak pulmonary blood flow in the first 5 min. Full article
(This article belongs to the Special Issue Neonatal Resuscitation with Placental Circulation Intact)
Show Figures

Graphical abstract

11 pages, 2728 KiB  
Review
How Do We Monitor Oxygenation during the Management of PPHN? Alveolar, Arterial, Mixed Venous Oxygen Tension or Peripheral Saturation?
by Praveen Chandrasekharan, Munmun Rawat and Satyan Lakshminrusimha
Children 2020, 7(10), 180; https://doi.org/10.3390/children7100180 - 13 Oct 2020
Cited by 15 | Viewed by 13128
Abstract
Oxygen is a pulmonary vasodilator and plays an important role in mediating circulatory transition from fetal to postnatal period. Oxygen tension (PO2) in the alveolus (PAO2) and pulmonary artery (PaO2) are the main factors that influence hypoxic [...] Read more.
Oxygen is a pulmonary vasodilator and plays an important role in mediating circulatory transition from fetal to postnatal period. Oxygen tension (PO2) in the alveolus (PAO2) and pulmonary artery (PaO2) are the main factors that influence hypoxic pulmonary vasoconstriction (HPV). Inability to achieve adequate pulmonary vasodilation at birth leads to persistent pulmonary hypertension of the newborn (PPHN). Supplemental oxygen therapy is the mainstay of PPHN management. However, optimal monitoring and targeting of oxygenation to achieve low pulmonary vascular resistance (PVR) and optimizing oxygen delivery to vital organs remains unknown. Noninvasive pulse oximetry measures peripheral saturations (SpO2) and a target range of 91–95% are recommended during acute PPHN management. However, for a given SpO2, there is wide variability in arterial PaO2, especially with variations in hemoglobin type (HbF or HbA due to transfusions), pH and body temperature. This review evaluates the role of alveolar, preductal, postductal, mixed venous PO2, and SpO2 in the management of PPHN. Translational and clinical studies suggest maintaining a PaO2 of 50–80 mmHg decreases PVR and augments pulmonary vasodilator management. Nevertheless, there are no randomized clinical trials evaluating outcomes in PPHN targeting SpO2 or PO2. Also, most critically ill patients have umbilical arterial catheters and postductal PaO2 may not be an accurate assessment of oxygen delivery to vital organs or factors influencing HPV. The mixed venous oxygen tension from umbilical venous catheter blood gas may assess pulmonary arterial PO2 and potentially predict HPV. It is crucial to conduct randomized controlled studies with different PO2/SpO2 target ranges for the management of PPHN and compare outcomes. Full article
(This article belongs to the Special Issue Pulmonary Hypertension in Neonates and Infants)
Show Figures

Figure 1

13 pages, 2694 KiB  
Article
Oxygenation and Hemodynamics during Chest Compressions in a Lamb Model of Perinatal Asphyxia Induced Cardiac Arrest
by Munmun Rawat, Praveen Chandrasekharan, Sylvia Gugino, Carmon Koenigsknecht, Justin Helman, Mahdi Alsaleem, Bobby Mathew, Jayasree Nair, Sara Berkelhamer, Payam Vali and Satyan Lakshminrusimha
Children 2019, 6(4), 52; https://doi.org/10.3390/children6040052 - 3 Apr 2019
Cited by 23 | Viewed by 5739
Abstract
The current guidelines recommend the use of 100% O2 during resuscitation of a neonate requiring chest compressions (CC). Studies comparing 21% and 100% O2 during CC were conducted in postnatal models and have not shown a difference in incidence or timing [...] Read more.
The current guidelines recommend the use of 100% O2 during resuscitation of a neonate requiring chest compressions (CC). Studies comparing 21% and 100% O2 during CC were conducted in postnatal models and have not shown a difference in incidence or timing of return of spontaneous circulation (ROSC). The objective of this study is to evaluate systemic oxygenation and oxygen delivery to the brain during CC in an ovine model of perinatal asphyxial arrest induced by umbilical cord occlusion. Pulseless cardiac arrest was induced by umbilical cord occlusion in 22 lambs. After 5 min of asystole, lambs were resuscitated with 21% O2 as per Neonatal Resuscitation Program (NRP) guidelines. At the onset of CC, inspired O2 was either increased to 100% O2 (n = 25) or continued at 21% (n = 9). Lambs were ventilated for 30 min post ROSC and FiO2 was gradually titrated to achieve preductal SpO2 of 85–95%. All lambs achieved ROSC. During CC, PaO2 was 21.6 ± 1.6 mm Hg with 21% and 23.9 ± 6.8 mm Hg with 100% O2 (p = 0.16). Carotid flow was significantly lower during CC (1.2 ± 1.6 mL/kg/min in 21% and 3.2 ± 3.4 mL/kg/min in 100% oxygen) compared to baseline fetal levels (27 ± 9 mL/kg/min). Oxygen delivery to the brain was 0.05 ± 0.06 mL/kg/min in the 21% group and 0.11 ± 0.09 mL/kg/min in the 100% group and was significantly lower than fetal levels (2.1 ± 0.3 mL/kg/min). Immediately after ROSC, lambs ventilated with 100% O2 had higher PaO2 and pulmonary flow. It was concluded that carotid blood flow, systemic PaO2, and oxygen delivery to the brain are very low during chest compressions for cardiac arrest irrespective of 21% or 100% inspired oxygen use during resuscitation. Full article
(This article belongs to the Special Issue Emerging Concepts in Neonatal Resuscitation)
Show Figures

Figure 1

15 pages, 2487 KiB  
Review
Epinephrine in Neonatal Resuscitation
by Payam Vali, Deepika Sankaran, Munmun Rawat, Sara Berkelhamer and Satyan Lakshminrusimha
Children 2019, 6(4), 51; https://doi.org/10.3390/children6040051 - 2 Apr 2019
Cited by 24 | Viewed by 18501
Abstract
Epinephrine is the only medication recommended by the International Liaison Committee on Resuscitation for use in newborn resuscitation. Strong evidence from large clinical trials is lacking owing to the infrequent use of epinephrine during neonatal resuscitation. Current recommendations are weak as they are [...] Read more.
Epinephrine is the only medication recommended by the International Liaison Committee on Resuscitation for use in newborn resuscitation. Strong evidence from large clinical trials is lacking owing to the infrequent use of epinephrine during neonatal resuscitation. Current recommendations are weak as they are extrapolated from animal models or pediatric and adult studies that do not adequately depict the transitioning circulation and fluid-filled lungs of the newborn in the delivery room. Many gaps in knowledge including the optimal dosing, best route and timing of epinephrine administration warrant further studies. Experiments on a well-established ovine model of perinatal asphyxial cardiac arrest closely mimicking the newborn infant provide important information that can guide future clinical trials. Full article
(This article belongs to the Special Issue Emerging Concepts in Neonatal Resuscitation)
Show Figures

Figure 1

Back to TopTop