Femoral Occlusion during Neonatal Cardiopulmonary Resuscitation Improves Outcomes in an Ovine Model of Perinatal Cardiac Arrest
Abstract
:1. Introduction
2. Methods
2.1. Animal Preparation
2.2. Experimental Protocol
2.3. ROSC
3. Data Analysis
4. Results
4.1. Return of Spontaneous Circulation
4.2. Epinephrine Doses
5. Hemodynamic Parameters
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrington, D.J.; Redmon, C.W.; Moulden, M.; Greenwood, C.E. The long-term outcome in surviving infants with Apgar zero at 10 minutes: A systematic review of the literature and hospital-based cohort. Am. J. Obstet. Gynecol. 2007, 196, 463.e1–463.e5. [Google Scholar] [CrossRef] [PubMed]
- Wyckoff, M.H.; Salhab, W.A.; Heyne, R.J.; Kendrick, D.E.; Stoll, B.J.; Laptook, A.R.; National Institute of Child Health and Human Development Neonatal Research Network. Outcome of extremely low birth weight infants who received delivery room cardiopulmonary resuscitation. J. Pediatr. 2012, 160, 239–244.e2. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K.; Tasaki, O.; Hamasaki, T.; Sakai, T.; Shiozaki, T.; Nakagawa, Y.; Ogura, H.; Kuwagata, Y.; Kajino, K.; Iwami, T.; et al. Prognostic indicators and outcome prediction model for patients with return of spontaneous circulation from cardiopulmonary arrest: The Utstein Osaka Project. Resuscitation 2011, 82, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Vali, P.; Chandrasekharan, P.; Rawat, M.; Gugino, S.; Koenigsknecht, C.; Helman, J.; Mathew, B.; Berkelhamer, S.; Nair, J.; Wyckoff, M.; et al. Hemodynamics and gas exchange during chest compressions in neonatal resuscitation. PLoS ONE 2017, 12, e0176478. [Google Scholar] [CrossRef]
- Carveth, S. Standards for cardiopulmonary resuscitation and emergency cardiac care. JAMA 1974, 227, 796–797. [Google Scholar] [CrossRef]
- Proceedings of the 1985 National Conference on Standards and Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiac Care. July 11–13, Dallas, Texas. Circulation 1986, 74 Pt 2, IV1-153. [PubMed]
- Préau, S.; Saulnier, F.; Dewavrin, F.; Durocher, A.; Chagnon, J.L. Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis. Crit. Care Med. 2010, 38, 819–825. [Google Scholar] [CrossRef]
- Hofer, C.K.; Zalunardo, M.P.; Klaghofer, R.; Spahr, T.; Pasch, T.; Zollinger, A. Changes in intrathoracic blood volume associated with pneumoperitoneum and positioning. Acta Anaesthesiol. Scand. 2002, 46, 303–308. [Google Scholar] [CrossRef]
- Kapadia, V.S.; Wyckoff, M.H. Epinephrine Use during Newborn Resuscitation. Front. Pediatr. 2017, 5, 97. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. BMC Vet. Res. 2020, 16, 242. [Google Scholar] [CrossRef]
- Vali, P.; Gugino, S.; Koenigsknecht, C.; Helman, J.; Chandrasekharan, P.; Rawat, M.; Lakshminrusimha, S.; Nair, J. The Perinatal Asphyxiated Lamb Model: A Model for Newborn Resuscitation. J. Vis. Exp. 2018, 138, e57553. [Google Scholar]
- Rawat, M.; Gugino, S.; Koenigsknecht, C.; Helman, J.; Nielsen, L.; Sankaran, D.; Nair, J.; Chandrasekharan, P.; Lakshminrusimha, S. Masked Randomized Trial of Epinephrine versus Vasopressin in an Ovine Model of Perinatal Cardiac Arrest. Children 2023, 10, 349. [Google Scholar] [CrossRef] [PubMed]
- Rawat, M.; Chandrasekharan, P.; Gugino, S.F.; Koenigsknecht, C.; Nielsen, L.; Wedgwood, S.; Mathew, B.; Nair, J.; Steinhorn, R.; Lakshminrusimha, S. Optimal Oxygen Targets in Term Lambs with Meconium Aspiration Syndrome and Pulmonary Hypertension. Am. J. Respir. Cell Mol. Biol. 2020, 63, 510–518. [Google Scholar] [CrossRef]
- Aziz, K.; Lee, H.C.; Escobedo, M.B.; Hoover, A.V.; Kamath-Rayne, B.D.; Kapadia, V.S.; Magid, D.J.; Niermeyer, S.; Schmölzer, G.M.; Szyld, E.; et al. Part 5: Neonatal Resuscitation: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142 (Suppl. S2), S524–S550. [Google Scholar] [CrossRef] [PubMed]
- Wyckoff, M.H.; Wyllie, J.; Aziz, K.; de Almeida, M.F.; Fabres, J.; Fawke, J.; Guinsburg, R.; Hosono, S.; Isayama, T.; Kapadia, V.S.; et al. Neonatal Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation 2020, 142 (Suppl. S1), S185–S221. [Google Scholar] [CrossRef]
- McKinsey, S.; Perlman, J.M. Resuscitative interventions during simulated asystole deviate from the recommended timeline. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, F244–F247. [Google Scholar] [CrossRef]
- Giustarini, D.; Dalle-Donne, I.; Milzani, A.; Fanti, P.; Rossi, R. Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nat. Protoc. 2013, 8, 1660–1669. [Google Scholar] [CrossRef]
- Sankaran, D.; Vali, P.; Chen, P.; Lesneski, A.L.; Hardie, M.E.; Alhassen, Z.; Wedgwood, S.; Wyckoff, M.H.; Lakshminrusimha, S. Randomized trial of oxygen weaning strategies following chest compressions during neonatal resuscitation. Pediatr. Res. 2021, 90, 540–548. [Google Scholar] [CrossRef]
- Kern, K.B.; Lancaster, L.; Goldman, S.; Ewy, G.A. The effect of coronary artery lesions on the relationship between coronary perfusion pressure and myocardial blood flow during cardiopulmonary resuscitation in pigs. Am. Heart J. 1990, 120, 324–333. [Google Scholar] [CrossRef]
- Kern, K.B.; Hilwig, R.W.; Berg, R.A.; Sanders, A.B.; Ewy, G.A. Importance of continuous chest compressions during cardiopulmonary resuscitation: Improved outcome during a simulated single lay-rescuer scenario. Circulation 2002, 105, 645–649. [Google Scholar] [CrossRef]
- Deakin, C.D.; Nolan, J.P.; Soar, J.; Sunde, K.; Koster, R.W.; Smith, G.B.; Perkins, G.D. European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support. Resuscitation 2010, 81, 1305–1352. [Google Scholar] [CrossRef]
- Paradis, N.A.; Martin, G.B.; Rivers, E.P.; Goetting, M.G.; Appleton, T.J.; Feingold, M.; Nowak, R.M. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 1990, 263, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Nowadly, C.D.; Johnson, M.A.; Hoareau, G.L.; Manning, J.E.; Daley, J.I. The use of resuscitative endovascular balloon occlusion of the aorta (REBOA) for non-traumatic cardiac arrest: A review. J. Am. Coll. Emerg. Physicians Open 2020, 1, 737–743. [Google Scholar] [CrossRef]
- Spence, P.A.; Lust, R.M.; Chitwood, W.R., Jr.; Iida, H.; Sun, Y.S.; Austin, E.H., III. Transfemoral balloon aortic occlusion during open cardiopulmonary resuscitation improves myocardial and cerebral blood flow. J. Surg. Res. 1990, 49, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Dragoumanos, V.; Iacovidou, N.; Chalkias, A.; Lelovas, P.; Koutsovasilis, A.; Papalois, A.; Xanthos, T. Passive leg raising during cardiopulmonary resuscitation results in improved neurological outcome in a swine model of prolonged ventricular fibrillation. Am. J. Emerg. Med. 2012, 30, 1935–1942. [Google Scholar] [CrossRef]
- Millán, I.; Piñero-Ramos, J.D.; Lara, I.; Parra-Llorca, A.; Torres-Cuevas, I.; Vento, M. Oxidative Stress in the Newborn Period: Useful Biomarkers in the Clinical Setting. Antioxidants 2018, 7, 193. [Google Scholar] [CrossRef]
- Kattwinkel, J.; Perlman, J.M.; Aziz, K.; Colby, C.; Fairchild, K.; Gallagher, J.; Hazinski, M.F.; Halamek, L.P.; Kumar, P.; Little, G.; et al. Neonatal resuscitation: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Pediatrics 2010, 126, e1400–e1413. [Google Scholar] [CrossRef]
- Sankaran, D.; Chandrasekharan, P.K.; Gugino, S.F.; Koenigsknecht, C.; Helman, J.; Nair, J.; Mathew, B.; Rawat, M.; Vali, P.; Nielsen, L.; et al. Randomised trial of epinephrine dose and flush volume in term newborn lambs. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 578–583. [Google Scholar] [CrossRef]
- Roberts, C.T.; Klink, S.; Schmölzer, G.M.; Blank, D.A.; Badurdeen, S.; Crossley, K.J.; Rodgers, K.; Zahra, V.; Moxham, A.; Roehr, C.C.; et al. Comparison of intraosseous and intravenous epinephrine administration during resuscitation of asphyxiated newborn lambs. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 311–316. [Google Scholar] [CrossRef]
- Morin, C.M.D.; Cheung, P.Y.; Lee, T.-F.; O’Reilly, M.; Schmölzer, G.M. Chest compressions superimposed with sustained inflations during cardiopulmonary resuscitation in asphyxiated pediatric piglets. Pediatr. Res. 2023, 1–8. [Google Scholar] [CrossRef]
- Vali, P.; Chandrasekharan, P.; Rawat, M.; Gugino, S.; Koenigsknecht, C.; Helman, J.; Mathew, B.; Berkelhamer, S.; Nair, J.; Lakshminrusimha, S. Continuous Chest Compressions During Sustained Inflations in a Perinatal Asphyxial Cardiac Arrest Lamb Model. Pediatr. Crit. Care Med. 2017, 18, e370–e377. [Google Scholar] [CrossRef] [PubMed]
- Nair, J.; Vali, P.; Gugino, S.F.; Koenigsknecht, C.; Helman, J.; Nielsen, L.C.; Chandrasekharan, P.; Rawat, M.; Berkelhamer, S.; Mathew, B.; et al. Bioavailability of endotracheal epinephrine in an ovine model of neonatal resuscitation. Early Hum. Dev. 2019, 130, 27–32. [Google Scholar] [CrossRef]
- Berkelhamer, S.K.; Vali, P.; Nair, J.; Gugino, S.; Helman, J.; Koenigsknecht, C.; Nielsen, L.; Lakshminrusimha, S. Inadequate Bioavailability of Intramuscular Epinephrine in a Neonatal Asphyxia Model. Front. Pediatr. 2022, 10, 828130. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, M.; Lee, T.F.; Cheung, P.Y.; Schmölzer, G.M. Comparison of hemodynamic effects of chest compression delivered via machine or human in asphyxiated piglets. Pediatr. Res. 2023, 1–4. [Google Scholar] [CrossRef]
- Wyckoff, M.; Garcia, D.; Margraf, L.; Perlman, J.; Laptook, A. Randomized trial of volume infusion during resuscitation of asphyxiated neonatal piglets. Pediatr. Res. 2007, 61, 415–420. [Google Scholar] [CrossRef]
- Bruckner, M.; Neset, M.; O’Reilly, M.; Lee, T.F.; Cheung, P.Y.; Schmölzer, G.M. Haemodynamic changes with varying chest compression rates in asphyxiated piglets. Arch. Dis. Child. Fetal Neonatal Ed. 2023, 108, 200–203. [Google Scholar] [CrossRef]
- Tomek, S. Newborn resuscitation: The golden minute. EMS World 2011, 40, 45–50. [Google Scholar]
- Kamath-Rayne, B.D.; Berkelhamer, S.K.; Kc, A.; Ersdal, H.L.; Niermeyer, S. Neonatal resuscitation in global health settings: An examination of the past to prepare for the future. Pediatr. Res. 2017, 82, 194–200. [Google Scholar] [CrossRef]
Characteristics | Controls | Femoral Occlusion | p-Value |
---|---|---|---|
(n = 9) | (n = 10) | ||
Gestational age (days) | 141 ± 1 | 141 ± 0.8 | 0.3 |
Weight (kg) | 4.4 ± 1.4 | 4.5 ± 0.8 | 0.8 |
Sex (Female %) | 67 | 70 | 0.9 |
Multiplicity (%) | 83 | 67 | 0.1 |
Carotid artery flow (mL/kg/min) | 45 ± 20 | 50 ± 16 | 0.6 |
Coronary artery flow (mL/kg/min) | 12 ± 11 | 11 ± 3 | 0.8 |
Diastolic blood pressure (mm Hg) | 30 ± 11 | 31 ± 18 | 0.9 |
Time to asystole (min) | 11.8 ± 10 | 10.2 ± 5 | 0.6 |
pH at asystole | 6.8 ± 0.1 | 6.9 ± 0.1 | 0.1 |
PaO2 (mm Hg) at asystole | 10 ± 2 | 11 ± 3 | 0.1 |
Lactate at asystole (mmol/L) | 12 ± 3 | 11 ± 3 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawat, M.; Mani, S.; Gugino, S.F.; Koenigsknecht, C.; Helman, J.; Nielsen, L.; Nair, J.; Munshi, U.; Chandrasekharan, P.; Lakshminrusimha, S. Femoral Occlusion during Neonatal Cardiopulmonary Resuscitation Improves Outcomes in an Ovine Model of Perinatal Cardiac Arrest. Children 2023, 10, 1804. https://doi.org/10.3390/children10111804
Rawat M, Mani S, Gugino SF, Koenigsknecht C, Helman J, Nielsen L, Nair J, Munshi U, Chandrasekharan P, Lakshminrusimha S. Femoral Occlusion during Neonatal Cardiopulmonary Resuscitation Improves Outcomes in an Ovine Model of Perinatal Cardiac Arrest. Children. 2023; 10(11):1804. https://doi.org/10.3390/children10111804
Chicago/Turabian StyleRawat, Munmun, Srinivasan Mani, Sylvia F. Gugino, Carmon Koenigsknecht, Justin Helman, Lori Nielsen, Jayasree Nair, Upender Munshi, Praveen Chandrasekharan, and Satyan Lakshminrusimha. 2023. "Femoral Occlusion during Neonatal Cardiopulmonary Resuscitation Improves Outcomes in an Ovine Model of Perinatal Cardiac Arrest" Children 10, no. 11: 1804. https://doi.org/10.3390/children10111804
APA StyleRawat, M., Mani, S., Gugino, S. F., Koenigsknecht, C., Helman, J., Nielsen, L., Nair, J., Munshi, U., Chandrasekharan, P., & Lakshminrusimha, S. (2023). Femoral Occlusion during Neonatal Cardiopulmonary Resuscitation Improves Outcomes in an Ovine Model of Perinatal Cardiac Arrest. Children, 10(11), 1804. https://doi.org/10.3390/children10111804