Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Mostafa Seifan ORCID = 0000-0002-9333-0572

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2340 KiB  
Article
Fermentation of Menaquinone-7: The Influence of Environmental Factors and Storage Conditions on the Isomer Profile
by Neha Lal, Mostafa Seifan and Aydin Berenjian
Processes 2023, 11(6), 1816; https://doi.org/10.3390/pr11061816 - 15 Jun 2023
Cited by 5 | Viewed by 4680
Abstract
Menaquinone-7 (MK-7) provides significant health gains due to its excellent pharmacokinetic properties. However, MK-7 occurs at low concentrations in mainstream foods, heightening the demand for nutritional supplements. MK-7 exists as geometric isomers, and only all-trans MK-7 is bioactive. Exposure to certain environments [...] Read more.
Menaquinone-7 (MK-7) provides significant health gains due to its excellent pharmacokinetic properties. However, MK-7 occurs at low concentrations in mainstream foods, heightening the demand for nutritional supplements. MK-7 exists as geometric isomers, and only all-trans MK-7 is bioactive. Exposure to certain environments impacts the isomer profile. Knowledge of these factors and their influence on the isomer composition is important, as the efficacy of fermented MK-7 end products is solely determined by the all-trans isomer. This investigation aimed to evaluate the short- and long-term effect of atmospheric oxygen, common temperatures, and light on the isomer profile. From the short-term study, it was ascertained that MK-7 is moderately heat-stable but extremely light-sensitive. The stability of all-trans MK-7 was then examined during 8 weeks of storage at a low temperature with minimal oxygen exposure in the absence of light. Negligible change in the all-trans MK-7 concentration occurred, suggesting it is reasonably stable during prolonged storage in this environment. These findings will aid the development of optimal storage conditions to preserve bioactive MK-7 in fermented nutritional supplements, the large-scale availability and consumption of which will help compensate for the dietary deficit of this essential vitamin and provide consumers with better health outcomes. Full article
(This article belongs to the Special Issue Fermentation and Bioprocess Engineering Processes)
Show Figures

Figure 1

17 pages, 8899 KiB  
Article
The Effect of Iron Oxide Nanoparticles on the Menaquinone-7 Isomer Composition and Synthesis of the Biologically Significant All-Trans Isomer
by Neha Lal, Mostafa Seifan, Alireza Ebrahiminezhad and Aydin Berenjian
Nanomaterials 2023, 13(12), 1825; https://doi.org/10.3390/nano13121825 - 8 Jun 2023
Cited by 5 | Viewed by 1947
Abstract
Menaquinone-7 (MK-7) is the most therapeutically valuable K vitamin owing to its excellent bioavailability. MK-7 occurs as geometric isomers, and only all-trans MK-7 is bioactive. The fermentation-based synthesis of MK-7 entails various challenges, primarily the low fermentation yield and numerous downstream processing [...] Read more.
Menaquinone-7 (MK-7) is the most therapeutically valuable K vitamin owing to its excellent bioavailability. MK-7 occurs as geometric isomers, and only all-trans MK-7 is bioactive. The fermentation-based synthesis of MK-7 entails various challenges, primarily the low fermentation yield and numerous downstream processing steps. This raises the cost of production and translates to an expensive final product that is not widely accessible. Iron oxide nanoparticles (IONPs) can potentially overcome these obstacles due to their ability to enhance fermentation productivity and enable process intensification. Nevertheless, utilisation of IONPs in this regard is only beneficial if the biologically active isomer is achieved in the greatest proportion, the investigation of which constituted the objective of this study. IONPs (Fe3O4) with an average size of 11 nm were synthesised and characterised using different analytical techniques, and their effect on isomer production and bacterial growth was assessed. The optimum IONP concentration (300 μg/mL) improved the process output and resulted in a 1.6-fold increase in the all-trans isomer yield compared to the control. This investigation was the first to evaluate the role of IONPs in the synthesis of MK-7 isomers, and its outcomes will assist the development of an efficient fermentation system that favours the production of bioactive MK-7. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

25 pages, 2612 KiB  
Review
Circular Economy of Construction and Demolition Waste: A Literature Review on Lessons, Challenges, and Benefits
by Callun Keith Purchase, Dhafer Manna Al Zulayq, Bio Talakatoa O’Brien, Matthew Joseph Kowalewski, Aydin Berenjian, Amir Hossein Tarighaleslami and Mostafa Seifan
Materials 2022, 15(1), 76; https://doi.org/10.3390/ma15010076 - 23 Dec 2021
Cited by 196 | Viewed by 28690
Abstract
Conventionally, in a linear economy, C&D (Construction and Demolition) waste was considered as zero value materials, and, as a result of that, most C&D waste materials ended up in landfills. In recent years, with the increase in the awareness around sustainability and resource [...] Read more.
Conventionally, in a linear economy, C&D (Construction and Demolition) waste was considered as zero value materials, and, as a result of that, most C&D waste materials ended up in landfills. In recent years, with the increase in the awareness around sustainability and resource management, various countries have started to explore new models to minimize the use of limited resources which are currently overused, mismanaged, or quickly depleting. In this regard, the implementation of CE (Circular Economy) has emerged as a potential model to minimize the negative impact of C&D wastes on the environment. However, there are some challenges hindering a full transition to CE in the construction and demolition sectors. Therefore, this review paper aims to critically scrutinize different aspects of C&D waste and how CE can be integrated into construction projects. Reviewing of the literature revealed that the barriers in the implementation of CE in C&D waste sectors fall in five main domains, namely legal, technical, social, behavioral, and economic aspects. In this context, it was found that policy and governance, permits and specifications, technological limitation, quality and performance, knowledge and information, and, finally, the costs associated with the implementation of CE model at the early stage are the main barriers. In addition to these, from the contractors’ perspective, C&D waste dismantling, segregation, and on-site sorting, transportation, and local recovery processes are the main challenges at the start point for small-scale companies. To address the abovementioned challenges, and also to minimize the ambiguity of resulting outcomes by implementing CE in C&D waste sectors, there is an urgent need to introduce a global framework and a practicable pathway to allow companies to implement such models, regardless of their scale and location. Additionally, in this paper, recommendations on the direction for areas of future studies for a reduction in the environmental impacts have been provided. To structure an effective model approach, the future direction should be more focused on dismantling practices, hazardous material handling, quality control on waste acceptance, and material recovery processes, as well as a incentivization mechanism to promote ecological, economic, and social benefits of the CE for C&D sectors. Full article
Show Figures

Figure 1

13 pages, 242 KiB  
Review
Adopting International Learnings to Improve the Performance of New Zealand’s Infrastructure Supply Chain
by Jarrod Richards and Mostafa Seifan
Infrastructures 2021, 6(9), 133; https://doi.org/10.3390/infrastructures6090133 - 15 Sep 2021
Viewed by 2427
Abstract
Growing interest in the productivity of the infrastructure sector has increased due to cost and time overruns in major projects. In this regard, many developed countries have failed to implement a framework to ensure that project success is met through newly available technologies [...] Read more.
Growing interest in the productivity of the infrastructure sector has increased due to cost and time overruns in major projects. In this regard, many developed countries have failed to implement a framework to ensure that project success is met through newly available technologies and business initiatives to ensure the user is the most important beneficiary. This review paper provides a review of international research relating to the life cycle, firm-level operations, and collaborative business models of infrastructure projects. The review initially identified the importance that understanding key phases and procurement models has on the efficiency of a project’s life cycle. A key indicator of the likelihood of good performance across a supply chain lies with the ability to understand the efficiencies of the firm-level operations. The literature has noted that successful projects are able to perform well across an organizations end-to-end involvement and be able to share risks among mature organizations. This paper provides a review of how a collaborative business model can benefit a project lifecycle and firm-level operations. The global research currently has identified the need for a collaborative approach that reduces the risk within all organizations through common goals, effective end-to-end project systems and consideration of the entire project lifecycle. The paper provides a detailed review of international practices in an infrastructure supply chain that have the potential to address New Zealand’s infrastructure project failures. Full article
(This article belongs to the Special Issue Smart, Sustainable and Resilient Infrastructures)
17 pages, 5576 KiB  
Article
A Comparative Study on the Influence of Nano and Micro Particles on the Workability and Mechanical Properties of Mortar Supplemented with Fly Ash
by Mostafa Seifan, Shaira Mendoza and Aydin Berenjian
Buildings 2021, 11(2), 60; https://doi.org/10.3390/buildings11020060 - 10 Feb 2021
Cited by 16 | Viewed by 3351
Abstract
In this study, the effects of micro-Al2O3 (MA) and nano-Al2O3 (NA) on the mechanical properties and durability performance of a mortar containing fly ash (FA) were investigated. In the first step, MA and NA were added to [...] Read more.
In this study, the effects of micro-Al2O3 (MA) and nano-Al2O3 (NA) on the mechanical properties and durability performance of a mortar containing fly ash (FA) were investigated. In the first step, MA and NA were added to the mortar (as a cement replacement) at dosages of 0%, 5%, 10% and 15% by weight. The flowability of the mixture containing NA and MA showed a dosage-dependent behavior, and the addition of MA resulted in a higher flow spread compared with NA. The flow spread increased at 5% (for both NA and MA), and a further increase in the particle content to 10% and 15% decreased the flow spread value. Although the presence of MA and NA contributed to increasing the compressive strength as the particle content increased, the addition of NA resulted in a greater increase in compressive strength (40% increase when adding 15% of NA). The highest splitting tensile strength was obtained when 10% NA was used, and a further increase in the particle content decreased the splitting tensile strength. In the optimization step, the effect of a binder replacement with FA (10, 20 and 30%) in the presence of 10% NA as the optimum level of additive was investigated. Generally, the addition of FA decreased the compressive strength. The highest drop in compressive strength was noticed at early ages, and there was no significant difference in strength development from 14 days to 28 days. A decreasing trend in the splitting tensile strength was observed with the addition of FA content. Full article
(This article belongs to the Special Issue Sustainable Concrete Construction: Methods and Practices)
Show Figures

Figure 1

12 pages, 2427 KiB  
Article
Green and Economic Fabrication of Zinc Oxide (ZnO) Nanorods as a Broadband UV Blocker and Antimicrobial Agent
by Seyedeh-Masoumeh Taghizadeh, Neha Lal, Alireza Ebrahiminezhad, Fatemeh Moeini, Mostafa Seifan, Younes Ghasemi and Aydin Berenjian
Nanomaterials 2020, 10(3), 530; https://doi.org/10.3390/nano10030530 - 15 Mar 2020
Cited by 80 | Viewed by 5593
Abstract
Zinc oxide (ZnO) nanoparticles have gained widespread interest due to their unique properties, making them suitable for a range of applications. Several methods for their production are available, and of these, controlled synthesis techniques are particularly favourable. Large-scale culturing of Chlorella vulgaris produces [...] Read more.
Zinc oxide (ZnO) nanoparticles have gained widespread interest due to their unique properties, making them suitable for a range of applications. Several methods for their production are available, and of these, controlled synthesis techniques are particularly favourable. Large-scale culturing of Chlorella vulgaris produces secretory carbohydrates as a waste product, which have been shown to play an important role in directing the particle size and morphology of nanoparticles. In this investigation, ZnO nanorods were produced through a controlled synthesis approach using secretory carbohydrates from C. vulgaris, which presents a cost-effective and sustainable alternative to the existing techniques. Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD) analysis, transmission electron microscopy (TEM), and UV-Vis spectroscopy were used to characterise the nanorods. The prepared nanorods exhibited a broad range of UV absorption, which suggests that the particles are a promising broadband sun blocker and are likely to be effective for the fabrication of sunscreens with protection against both UVB (290–320 nm) and UVA (320–400 nm) radiations. The antimicrobial activity of the prepared nanorods against Gram-positive and Gram-negative bacteria was also assessed. The nanostructures had a crystalline structure and rod-like appearance, with an average length and width of 150 nm and 21 nm, respectively. The nanorods also demonstrated notable antibacterial activity, and 250 μg/mL was determined to be the most effective concentration. The antibacterial properties of the ZnO nanorods suggest its suitability for a range of antimicrobial uses, such as in the food industry and for various biomedical applications. Full article
Show Figures

Figure 1

14 pages, 2695 KiB  
Article
The Effect of Real and Virtual Construction Field Trips on Students’ Perception and Career Aspiration
by Mostafa Seifan, Oluwaseun Deborah Dada and Aydin Berenjian
Sustainability 2020, 12(3), 1200; https://doi.org/10.3390/su12031200 - 7 Feb 2020
Cited by 37 | Viewed by 6783
Abstract
To adequately prepare students for engineering practices, it is imperative that institutions adopt innovative methods of teaching, learning, and assessment. One such approach is the use of real field trips (RFT) to construction sites, which can enhance students’ perceptions of related careers. Although [...] Read more.
To adequately prepare students for engineering practices, it is imperative that institutions adopt innovative methods of teaching, learning, and assessment. One such approach is the use of real field trips (RFT) to construction sites, which can enhance students’ perceptions of related careers. Although virtual field trips (VFTs) have emerged as a viable alternative—or supplement—to traditional field trips, little is known about their potential to provide the same or similar career exploration advantages. Using responses from a self-reported questionnaire administered to university students who participated in an RFT, this study sought to examine the usefulness of site visits in developing essential skills required for civil engineers. It also examines student perceptions on the use of VFTs as part of their university experience and the extent to which it could replace RFTs. The results indicate that students consider VFT as an enjoyable way to learn, given the possibilities facilitated by the new technology. However, notwithstanding its success, the students commonly opined that VFT was not a substitute for a RFT. From a holistic perspective, the issue is not whether VFTs can replace traditional field trips or not; it is rather the focus on identifying an integrated approach that combines lectures, and virtual and real field trips in a manner that supports a social constructivism mode of learning. Ultimately, this combination will enable students to effectively construct multiple links between lectures given in a hall and the real world outside. Full article
Show Figures

Figure 1

10 pages, 3064 KiB  
Article
Development of an Innovative Urease-Aided Self-Healing Dental Composite
by Mostafa Seifan, Zahra Sarabadani and Aydin Berenjian
Catalysts 2020, 10(1), 84; https://doi.org/10.3390/catal10010084 - 7 Jan 2020
Cited by 10 | Viewed by 4333
Abstract
Dental restorative materials suffer from major drawbacks, namely fracture and shrinkage, which result in failure and require restoration and replacement. There are different methods to address these issues, such as increasing the filler load or changing the resin matrix of the composite. In [...] Read more.
Dental restorative materials suffer from major drawbacks, namely fracture and shrinkage, which result in failure and require restoration and replacement. There are different methods to address these issues, such as increasing the filler load or changing the resin matrix of the composite. In the present work, we introduce a new viable process to heal the generated cracks with the aid of urease enzyme. In this system, urease breaks down the salivary urea which later binds with calcium to form calcium carbonate (CaCO3). The formation of insoluble CaCO3 fills any resultant fracture or shrinkage from the dental composure hardening step. The healing process and the formation of CaCO3 within dental composites were successfully confirmed by optical microscope, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDS) methods. This research demonstrates a new protocol to increase the service life of dental restoration composites in the near future. Full article
(This article belongs to the Special Issue Role of Enzymes in Designing Self-Healing Biological Based Materials)
Show Figures

Figure 1

27 pages, 1445 KiB  
Review
Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications
by Dorna Davani-Davari, Manica Negahdaripour, Iman Karimzadeh, Mostafa Seifan, Milad Mohkam, Seyed Jalil Masoumi, Aydin Berenjian and Younes Ghasemi
Foods 2019, 8(3), 92; https://doi.org/10.3390/foods8030092 - 9 Mar 2019
Cited by 1213 | Viewed by 81602
Abstract
Prebiotics are a group of nutrients that are degraded by gut microbiota. Their relationship with human overall health has been an area of increasing interest in recent years. They can feed the intestinal microbiota, and their degradation products are short-chain fatty acids that [...] Read more.
Prebiotics are a group of nutrients that are degraded by gut microbiota. Their relationship with human overall health has been an area of increasing interest in recent years. They can feed the intestinal microbiota, and their degradation products are short-chain fatty acids that are released into blood circulation, consequently, affecting not only the gastrointestinal tracts but also other distant organs. Fructo-oligosaccharides and galacto-oligosaccharides are the two important groups of prebiotics with beneficial effects on human health. Since low quantities of fructo-oligosaccharides and galacto-oligosaccharides naturally exist in foods, scientists are attempting to produce prebiotics on an industrial scale. Considering the health benefits of prebiotics and their safety, as well as their production and storage advantages compared to probiotics, they seem to be fascinating candidates for promoting human health condition as a replacement or in association with probiotics. This review discusses different aspects of prebiotics, including their crucial role in human well-being. Full article
(This article belongs to the Special Issue Probiotics and Functional Foods)
Show Figures

Graphical abstract

10 pages, 1642 KiB  
Article
Xanthan Gum Capped ZnO Microstars as a Promising Dietary Zinc Supplementation
by Alireza Ebrahiminezhad, Fatemeh Moeeni, Seyedeh-Masoumeh Taghizadeh, Mostafa Seifan, Christine Bautista, Donya Novin, Younes Ghasemi and Aydin Berenjian
Foods 2019, 8(3), 88; https://doi.org/10.3390/foods8030088 - 2 Mar 2019
Cited by 24 | Viewed by 5109
Abstract
Zinc is one of the essential trace elements, and plays an important role in human health. Severe zinc deficiency can negatively affect organs such as the epidermal, immune, central nervous, gastrointestinal, skeletal, and reproductive systems. In this study, we offered a novel biocompatible [...] Read more.
Zinc is one of the essential trace elements, and plays an important role in human health. Severe zinc deficiency can negatively affect organs such as the epidermal, immune, central nervous, gastrointestinal, skeletal, and reproductive systems. In this study, we offered a novel biocompatible xanthan gum capped zinc oxide (ZnO) microstar as a potential dietary zinc supplementation for food fortification. Xanthan gum (XG) is a commercially important extracellular polysaccharide that is widely used in diverse fields such as the food, cosmetic, and pharmaceutical industries, due to its nontoxic and biocompatible properties. In this work, for the first time, we reported a green procedure for the synthesis of ZnO microstars using XG, as the stabilizing agent, without using any synthetic or toxic reagent. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were used to study the structure, morphology, and size of the synthesized ZnO structures. The results showed that the synthesized structures were both hexagonal phase and starlike, with an average particle size of 358 nm. The effect of different dosages of XG-capped ZnO nanoparticles (1–9 mM) against Gram-negative (Escherichia coli) and Gram-positive (Bacillus licheniformis, Bacillus subtilis, and Bacillus sphaericus) bacteria were also investigated. Based on the results, the fabricated XG-capped ZnO microstars showed a high level of biocompatibility with no antimicrobial effect against the tested microorganisms. The data suggested the potential of newly produced ZnO microstructures for a range of applications in dietary supplementation and food fortification. Full article
(This article belongs to the Special Issue Applications of Nanotechnology in Developing Functional Foods)
Show Figures

Figure 1

10 pages, 11608 KiB  
Article
The Effect of Cell Immobilization by Calcium Alginate on Bacterially Induced Calcium Carbonate Precipitation
by Mostafa Seifan, Ali Khajeh Samani, Shaun Hewitt and Aydin Berenjian
Fermentation 2017, 3(4), 57; https://doi.org/10.3390/fermentation3040057 - 30 Oct 2017
Cited by 46 | Viewed by 11058
Abstract
Microbially induced mineral precipitation is recognized as a widespread phenomenon in nature. A diverse range of minerals including carbonate, sulphides, silicates, and phosphates can be produced through biomineralization. Calcium carbonate (CaCO3) is one of the most common substances used in various [...] Read more.
Microbially induced mineral precipitation is recognized as a widespread phenomenon in nature. A diverse range of minerals including carbonate, sulphides, silicates, and phosphates can be produced through biomineralization. Calcium carbonate (CaCO3) is one of the most common substances used in various industries and is mostly extracted by mining. In recent years, production of CaCO3 by bacteria has drawn much attention because it is an environmentally- and health-friendly pathway. Although CaCO3 can be produced by some genera of bacteria through autotrophic and heterotrophic pathways, the possibility of producing CaCO3 in different environmental conditions has remained a challenge to determine. In this study, calcium alginate was proposed as a protective carrier to increase the bacterial tolerance to extreme environmental conditions. The model showed that the highest concentration of CaCO3 is achieved when the bacterial cells are immobilized in the calcium alginate beads fabricated using 1.38% w/v Na-alginate and 0.13 M CaCl2. Full article
Show Figures

Graphical abstract

Back to TopTop