Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Mika Horttanainen ORCID = 0000-0003-3313-4497

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1448 KiB  
Article
Environmental Performance of Nitrogen Recovery from Reject Water of Sewage Sludge Treatment Based on Life Cycle Assessment
by Ali Saud, Jouni Havukainen, Petteri Peltola and Mika Horttanainen
Recycling 2023, 8(2), 43; https://doi.org/10.3390/recycling8020043 - 13 Apr 2023
Cited by 8 | Viewed by 4782
Abstract
Recovering and recycling nitrogen available in waste streams would reduce the demand for conventional fossil-based fertilizers and contribute toward food security. Based on life cycle assessment (LCA), this study aimed to evaluate the environmental performance of nitrogen recovery for fertilizer purposes from sewage [...] Read more.
Recovering and recycling nitrogen available in waste streams would reduce the demand for conventional fossil-based fertilizers and contribute toward food security. Based on life cycle assessment (LCA), this study aimed to evaluate the environmental performance of nitrogen recovery for fertilizer purposes from sewage sludge treatment in a municipal wastewater treatment plant (WWTP). Utilizing either air stripping or pyrolysis-derived biochar adsorbent, nitrogen was recovered from ammonium-rich reject streams generated during mechanical dewatering and thermal drying of anaerobically digested sewage sludge. A wide range of results was obtained between different scenarios and different impact categories. Biochar-based nitrogen recovery showed the lowest global warming potential with net negative GHG (greenhouse gas) emissions of −22.5 kt CO2,eq/FU (functional unit). Ammonia capture through air stripping caused a total GHG emission of 2 kt CO2,eq/FU; while in the base case scenario without nitrogen recovery, a slightly lower GHG emission of 0.2 kt CO2,eq/FU was obtained. This study contributes an analysis promoting the multifunctional nature of wastewater systems with integrated resource recovery for potential environmental and health benefits. Full article
Show Figures

Figure 1

18 pages, 2240 KiB  
Article
Identifying Optimal Precursors for Geopolymer Composite Mix Design for Different Regional Settings: A Multi-Objective Optimization Study
by Mariam Abdulkareem, Anastasija Komkova, Jouni Havukainen, Guillaume Habert and Mika Horttanainen
Recycling 2023, 8(2), 32; https://doi.org/10.3390/recycling8020032 - 2 Mar 2023
Cited by 6 | Viewed by 3875
Abstract
Global objectives to mitigate climate change in the construction industry have led to increasing geopolymer development as an alternative to carbon-intensive cement. Geopolymers can have similar mechanical properties and a lower carbon footprint. However, geopolymer production is not as homogeneous as cement because [...] Read more.
Global objectives to mitigate climate change in the construction industry have led to increasing geopolymer development as an alternative to carbon-intensive cement. Geopolymers can have similar mechanical properties and a lower carbon footprint. However, geopolymer production is not as homogeneous as cement because it is produced by synthesizing alkali solutions with different aluminosilicate precursors. This study assessed the feasibility of using conventional (fly ash, blast furnace slag, and metakaolin) and alternative precursors (steel slag, mine tailings, glass waste, sewage sludge ashes, and municipal solid waste incineration bottom ashes (MSWI BA)) in geopolymer mixes for different European regions (Belgium and Finland) from a sustainability perspective, using environmental, economic, and resource availability indicators as the criteria. A multi-objective optimization technique was applied to identify optimal precursors for geopolymer mixes using two scenarios: (1) considering both conventional and alternative precursors; (2) only considering alternative precursors. The results from the first scenario show that one of the most optimal precursor combinations for the geopolymer mix is 50% fly ash, 25% MSWI BA, and 25% sewage sludge ash for Belgium. For Finland, it is 19% fly ash, 27% mine tailings, and 45% MSWI BA. For the second scenario, one of the most optimal precursor combinations for Belgium is 87% MSWI BA and 13% steel slag. For Finland, it is 25% mine tailings and 75% MSWI BA. Subsequently, linear regression analysis was applied to predict the compressive strength of the identified optimal mixes, and the results for Belgium and Finland were between 31–55 MPa and 31–50 MPa for the first scenario and between 50–59 MPa and 50–55 Mpa for the second scenario, respectively. Full article
(This article belongs to the Special Issue Sustainable Materials from Waste and Renewable Sources)
Show Figures

Figure 1

15 pages, 564 KiB  
Article
Factors Influencing Household Waste Separation Behavior: Cases of Russia and Finland
by Anna Zaikova, Ivan Deviatkin, Jouni Havukainen, Mika Horttanainen, Thomas Fruergaard Astrup, Minna Saunila and Ari Happonen
Recycling 2022, 7(4), 52; https://doi.org/10.3390/recycling7040052 - 28 Jul 2022
Cited by 28 | Viewed by 6766
Abstract
This paper investigates the factors influencing the behavior of individuals in source-separation of municipal solid waste in an immature system for collection of recyclable waste (Saint Petersburg, Russia) and a more mature waste system (selected urban areas, Finland). Online questionnaires were applied to [...] Read more.
This paper investigates the factors influencing the behavior of individuals in source-separation of municipal solid waste in an immature system for collection of recyclable waste (Saint Petersburg, Russia) and a more mature waste system (selected urban areas, Finland). Online questionnaires were applied to collect data from citizens of Saint Petersburg and the Finnish urban population. The data were examined within an extended theory of planned behavior using structural equation modeling for the identification of factors affecting waste source-separation behavior. The findings indicate that the factors differed significantly in the two waste systems. In Russia, the inconvenience of waste collection limited waste source-separation behavior, while intentions of individuals and information availability had an almost equal positive effect. In Finland, waste source-separation behavior was mostly affected by people’s intentions. Based on the findings, recommendations for the development of recycling practices were made for practitioners in Russia and possibly other early-stage systems for the collection of recyclable waste. Limitations of the study pinpointed the possibilities for future research. Full article
(This article belongs to the Topic Solid Waste Management)
Show Figures

Figure 1

21 pages, 2074 KiB  
Article
Life Cycle Assessment of Existing and Alternative Options for Municipal Solid Waste Management in Saint Petersburg and the Leningrad Region, Russia
by Anna Zaikova, Natalia Vinitskaia, Ivan Deviatkin, Jouni Havukainen and Mika Horttanainen
Recycling 2022, 7(2), 19; https://doi.org/10.3390/recycling7020019 - 14 Mar 2022
Cited by 10 | Viewed by 7112
Abstract
A waste reform was recently introduced in Russia to divert waste from landfills. To help advance the reform, this paper presents a life cycle assessment of the municipal solid waste management system in Russia’s second largest city—Saint Petersburg—and its neighboring Leningrad region. Five [...] Read more.
A waste reform was recently introduced in Russia to divert waste from landfills. To help advance the reform, this paper presents a life cycle assessment of the municipal solid waste management system in Russia’s second largest city—Saint Petersburg—and its neighboring Leningrad region. Five scenarios were evaluated: the current state of the system (S0), its expected post-reform state in 2024 (S1), and its state improved by increased landfill gas collection (S2), by increased waste incineration (S3), and by separate collection of waste (S4). The environmental impact was assessed in terms of climate change, acidification, eutrophication, and abiotic resource depletion (fossil fuels). The results showed an overall reduction in the environmental impact of the waste management system across all impact categories and all scenarios studied. The largest reduction in all impact categories (except abiotic resource depletion) was achieved through source separation of municipal solid waste. Particularly, global warming potential was reduced from 0.328 kg CO2-eq./kg waste generated in S0 to 0.010 kg CO2-eq./kg waste in S4. Regarding abiotic resource depletion potential (fossil fuels), the incineration scenario is the most beneficial, since it reduces the impact by 573%. Full article
(This article belongs to the Topic Solid Waste Management)
Show Figures

Figure 1

11 pages, 1691 KiB  
Article
Implementation of Circular Economy Strategies within the Electronics Sector: Insights from Finnish Companies
by Ivan Deviatkin, Sanna Rousu, Malahat Ghoreishi, Mohammad Naji Nassajfar, Mika Horttanainen and Ville Leminen
Sustainability 2022, 14(6), 3268; https://doi.org/10.3390/su14063268 - 10 Mar 2022
Cited by 15 | Viewed by 5632
Abstract
There is an increasing call for products following circular economy principles. Despite growing pressure, understanding of the current situation and development vectors is largely missing. In this study, circular economy workshops were arranged for six industrial companies manufacturing electronics and operating in Finland [...] Read more.
There is an increasing call for products following circular economy principles. Despite growing pressure, understanding of the current situation and development vectors is largely missing. In this study, circular economy workshops were arranged for six industrial companies manufacturing electronics and operating in Finland to obtain an empirical understanding of the current state of circular economy implementation. During the workshops, each company assessed the state of the circular economy for a chosen product using a set of 51 circular economy strategies, i.e., the circularity deck. The results indicated that circular economy principles were implemented in only 25% of the cases. This is mostly related to the production of smaller, thinner, and lighter products. The results also indicate a large improvement potential of 36% for the participating companies. This is the share of cases that are planned for implementation. Those strategies mostly relate to the use of recycled inputs, the development of products made of a single material, and the design of products suitable for primary recycling. The least relevant or even irrelevant strategies were those related to the use of information technologies and artificial intelligence, despite electronic products being the enablers of such strategies for the other companies. Therefore, to further increase the circularity of electronic products and to meet the demands and interests of the manufacturing industry, research work on the technologies and services enabling the use of waste as raw materials should be emphasized to close the loops. Finally, the results imply the necessity for a more widespread assessment of circular economy strategies among companies, with consequent development of action plans for their implementation. Full article
(This article belongs to the Special Issue Circular Economy for Sustainable Manufacturing)
Show Figures

Figure 1

17 pages, 3876 KiB  
Article
Life Cycle Assessment of a Thermal Recycling Process as an Alternative to Existing CFRP and GFRP Composite Wastes Management Options
by Sankar Karuppannan Gopalraj, Ivan Deviatkin, Mika Horttanainen and Timo Kärki
Polymers 2021, 13(24), 4430; https://doi.org/10.3390/polym13244430 - 17 Dec 2021
Cited by 33 | Viewed by 6432
Abstract
There are forecasts for the exponential increase in the generation of carbon fibre-reinforced polymer (CFRP) and glass fibre-reinforced polymer (GFRP) composite wastes containing valuable carbon and glass fibres. The recent adoption of these composites in wind turbines and aeroplanes has increased the amount [...] Read more.
There are forecasts for the exponential increase in the generation of carbon fibre-reinforced polymer (CFRP) and glass fibre-reinforced polymer (GFRP) composite wastes containing valuable carbon and glass fibres. The recent adoption of these composites in wind turbines and aeroplanes has increased the amount of end-of-life waste from these applications. By adequately closing the life cycle loop, these enormous volumes of waste can partly satisfy the global demand for their virgin counterparts. Therefore, there is a need to properly dispose these composite wastes, with material recovery being the final target, thanks to the strict EU regulations for promoting recycling and reusing as the highest priorities in waste disposal options. In addition, the hefty taxation has almost brought about an end to landfills. These government regulations towards properly recycling these composite wastes have changed the industries’ attitudes toward sustainable disposal approaches, and life cycle assessment (LCA) plays a vital role in this transition phase. This LCA study uses climate change results and fossil fuel consumptions to study the environmental impacts of a thermal recycling route to recycle and remanufacture CFRP and GFRP wastes into recycled rCFRP and rGFRP composites. Additionally, a comprehensive analysis was performed comparing with the traditional waste management options such as landfill, incineration with energy recovery and feedstock for cement kiln. Overall, the LCA results were favourable for CFRP wastes to be recycled using the thermal recycling route with lower environmental impacts. However, this contradicts GFRP wastes in which using them as feedstock in cement kiln production displayed more reduced environmental impacts than those thermally recycled to substitute virgin composite production. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Composite)
Show Figures

Graphical abstract

13 pages, 2249 KiB  
Article
Alternative Materials for Printed Circuit Board Production: An Environmental Perspective
by Mohammad Naji Nassajfar, Ivan Deviatkin, Ville Leminen and Mika Horttanainen
Sustainability 2021, 13(21), 12126; https://doi.org/10.3390/su132112126 - 3 Nov 2021
Cited by 51 | Viewed by 11930
Abstract
This article investigates the potential environmental impacts of four-layer printed circuit board (PCB) production from cradle to grave. The study starts with a lifecycle assessment of conventional PCB production. Then, the alternative materials of polyethylene terephthalate (PET), polylactic acid (PLA)/glass fiber composite and [...] Read more.
This article investigates the potential environmental impacts of four-layer printed circuit board (PCB) production from cradle to grave. The study starts with a lifecycle assessment of conventional PCB production. Then, the alternative materials of polyethylene terephthalate (PET), polylactic acid (PLA)/glass fiber composite and paper are investigated for the substrate. A conventional PCB adopts copper as the conductive material and requires an etching process. The environmental impacts of changing the conductive deposition method to an additive method by printing silver nanoparticles is studied. In a conventional PCB, electricity generation contributes 41% of the global warming potential (GWP) and 38% of the abiotic resource depletion (ADP), in the fossil category. By applying an additive manufacturing method, the GWP of PCB manufacturing can be reduced to 14% of that of the conventional method. A sensitivity analysis of silver recycling illustrates that a 40% higher silver recycling rate would decrease the GWP of silver material by about 48–60%. Uncertainty in the energy consumption of PCB production would alter the environmental impacts; however, even with the most conservative energy consumption in a conventional PCB production method, the environmental impacts of the additive method are about five times lower than those of conventional PCB production. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

21 pages, 2869 KiB  
Article
Sustainable Circular Bioeconomy—Feasibility of Recycled Nutrients for Biomass Production within a Pulp and Paper Integration in Indonesia, Southeast Asia
by Mirja Mikkilä, Papitchaya Utanun, Jukka Luhas, Mika Horttanainen and Lassi Linnanen
Sustainability 2021, 13(18), 10169; https://doi.org/10.3390/su131810169 - 10 Sep 2021
Cited by 9 | Viewed by 2957
Abstract
Sustainable biomass production based on efficient carbon and nutrient recycling is crucial in materially efficient, sustainable biobased production. A circular bioeconomy model of the replacement of mineral fertilizers with recycled nutrients from pulp and paper mill sludge is tested here within a hypothetical [...] Read more.
Sustainable biomass production based on efficient carbon and nutrient recycling is crucial in materially efficient, sustainable biobased production. A circular bioeconomy model of the replacement of mineral fertilizers with recycled nutrients from pulp and paper mill sludge is tested here within a hypothetical case from Indonesia, Southeast Asia. First, the financial feasibility of the use of recycled nutrients originating from pulp and paper processes was analyzed in fast-growing pulpwood production. Secondly, the comprehensive social and environmental benefits of the practice were analyzed through qualitative sustainability analysis. The availability of the basic material of all required parameters referring to Indonesia limited the analysis period to be from 1996 to 2013. The establishment costs of a pulpwood plantation were adjusted according to a reference study, while the other data were compiled from various sources. The financial profitability of the circular model was analysed by using two indicators, net present value (NPV) and internal rate on return (IRR). The application of sludge-based recycled nutrients slightly increased the establishment costs in some circumstances but had no direct impact on the financial profitability, as the financial profitability was not sensitive to the establishment costs. The results showed that the financial profitability of biomass production is not sensitive to the plantation establishment and management costs. The profitability depends on the mean annual increment and product price. The qualitative analysis showed a holistic value of the practice that goes beyond the direct benefits. The use of sludge-based recycled nutrients in the production of pulpwood closed the economic loop, which is illustrative of the circular bioeconomy within the integrated pulp and paper sector including the raw material source, forest plantation. Full article
(This article belongs to the Special Issue Sustainable Transition towards Forest-Based Bioeconomy)
Show Figures

Figure 1

17 pages, 4425 KiB  
Article
Integrating Pyrolysis or Combustion with Scrubbing to Maximize the Nutrient and Energy Recovery from Municipal Sewage Sludge
by Ali Saud, Jouni Havukainen, Petteri Peltola and Mika Horttanainen
Recycling 2021, 6(3), 52; https://doi.org/10.3390/recycling6030052 - 4 Aug 2021
Cited by 6 | Viewed by 4631
Abstract
Based on mass and energy balance calculations, this work investigates the possibility of recovering heat and nutrients (nitrogen and phosphorus) from municipal sewage sludge using pyrolysis or combustion in combination with a gas scrubbing technology. Considering a wastewater treatment plant (WWTP) with 65,000 [...] Read more.
Based on mass and energy balance calculations, this work investigates the possibility of recovering heat and nutrients (nitrogen and phosphorus) from municipal sewage sludge using pyrolysis or combustion in combination with a gas scrubbing technology. Considering a wastewater treatment plant (WWTP) with 65,000 t/a of mechanically dewatered digestate (29% total solids), 550 t/a nitrogen and 500 t/a phosphorus were recovered from the 4900 t/a total nitrogen and 600 t/a total phosphorus that entered the WWTP. Overall, 3600 t/a (73%) of total nitrogen was lost to the air (as N2) and clean water, while 90 t/a (15%) of total phosphorus was lost to clean water released by the WWTP. Both in combustion and in pyrolysis, the nitrogen (3%) released within thermal drying fumes was recovered through condensate stripping and subsequent gas scrubbing, and together with the recovery of nitrogen from WWTP reject water, a total of 3500 t/a of ammonium sulfate fertilizer can be produced. Furthermore, 120 GWh/a of district heat and 9700 t/a of ash with 500 t/a phosphorus were obtained in the combustion scenario and 12,000 t/a of biochar with 500 t/a phosphorus was obtained in the pyrolysis scenario. The addition of a stripper and a scrubber for nitrogen recovery increases the total electricity consumption in both scenarios. According to an approximate cost estimation, combustion and pyrolysis require annual investment costs of 2–4 M EUR/a and 2–3 M EUR/a, respectively, while 3–5 M EUR/a and 3–3.5 M EUR/a will be generated as revenues from the products. Full article
(This article belongs to the Special Issue Reuse of Wastewater: Recovery of Water, Nutrients, and Energy)
Show Figures

Figure 1

19 pages, 2666 KiB  
Review
Platinum Group Elements in Geosphere and Anthroposphere: Interplay among the Global Reserves, Urban Ores, Markets and Circular Economy
by Juris Burlakovs, Zane Vincevica-Gaile, Maris Krievans, Yahya Jani, Mika Horttanainen, Kaur-Mikk Pehme, Elina Dace, Roy Hendroko Setyobudi, Jovita Pilecka, Gintaras Denafas, Inga Grinfelde, Amit Bhatnagar, Vasiliy Rud, Vita Rudovica, Ronald L. Mersky, Olga Anne, Mait Kriipsalu, Ruta Ozola-Davidane, Toomas Tamm and Maris Klavins
Minerals 2020, 10(6), 558; https://doi.org/10.3390/min10060558 - 21 Jun 2020
Cited by 26 | Viewed by 7399
Abstract
Industrial and strategic significance of platinum group elements (PGEs)—Os, Ir, Ru, Rh, Pd, Pt—makes them irreplaceable; furthermore, some PGEs are used by investors as “safe heaven” assets traded in the commodity markets. This review analyzes PGEs from various aspects: their place in the [...] Read more.
Industrial and strategic significance of platinum group elements (PGEs)—Os, Ir, Ru, Rh, Pd, Pt—makes them irreplaceable; furthermore, some PGEs are used by investors as “safe heaven” assets traded in the commodity markets. This review analyzes PGEs from various aspects: their place in the geosphere, destiny in the anthroposphere, and opportunity in the economy considering interactions among the exploration, recycling of urban ores, trade markets, speculative rhetoric, and changes required for successful technological progress towards the implementation of sustainability. The global market of PGEs is driven by several concerns: costs for extraction/recycling; logistics; the demand of industries; policies of waste management. Diversity of application and specific chemical properties, as well as improper waste management, make the recycling of PGEs complicated. The processing approach depends on composition and the amount of available waste material, and so therefore urban ores are a significant source of PGEs, especially when the supply of elements is limited by geopolitical or market tensions. Recycling potential of urban ores is particularly important in a long-term view disregarding short-term economic fluctuations, and it should influence investment flows in the advancement of innovation. Full article
(This article belongs to the Special Issue The Processing of Alternative and Urban Ores)
Show Figures

Figure 1

17 pages, 1575 KiB  
Review
Wooden and Plastic Pallets: A Review of Life Cycle Assessment (LCA) Studies
by Ivan Deviatkin, Musharof Khan, Elizabeth Ernst and Mika Horttanainen
Sustainability 2019, 11(20), 5750; https://doi.org/10.3390/su11205750 - 17 Oct 2019
Cited by 42 | Viewed by 22286
Abstract
Pallets are the tiny cogs in the machine that drive transportation in the global economy. The profusion of pallets in today’s supply chain warrants the investigation and discussion of their respective environmental impacts. This paper reviews the life cycle assessment studies analyzing the [...] Read more.
Pallets are the tiny cogs in the machine that drive transportation in the global economy. The profusion of pallets in today’s supply chain warrants the investigation and discussion of their respective environmental impacts. This paper reviews the life cycle assessment studies analyzing the environmental impacts of pallets with the intent of providing insights into the methodological choices made, as well as compiling the inventory data from the studies reviewed. The study is a meta-analysis of eleven scientific articles, two conference articles, two peer-reviewed reports, and one thesis. The review was implemented to identify the key methodological choices made in those studies, such as their goals, functional units, system boundaries, inventory data, life cycle impact assessment (LCIA) procedures, and results. The 16 studies reviewed cumulatively analyzed 43 pallets. Mostly pooled (n = 22/43), block-type (n = 13/43), and wooden (n = 32/43) pallets with dimensions of 1219 mm × 1016 mm or 48 in. × 40 in. (n = 15/43) were studied. Most of the studies represented pallet markets in the United States (n = 9/16). Load-based (e.g., 1000 kg of products delivered), trip-based (e.g., 1000 trips), and pallet-based (e.g., one pallet) functional units were declared. A trip-based functional unit seems the most appropriate for accounting of the function of the pallets, as its purpose is to carry goods and facilitate the transportation of cargo. A significant amount of primary inventory data on the production and repair of wooden and plastic pallets are available, yet there are significant variations in the data. Data on pallets made of wood–polymer composites was largely missing. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

Back to TopTop