Environmental Performance of Nitrogen Recovery from Reject Water of Sewage Sludge Treatment Based on Life Cycle Assessment
Abstract
:1. Introduction
2. Results
2.1. Contribution Analysis
2.2. Sensitivity Analysis
3. Materials and Methods
3.1. Goal and Scope Definition
- Scenario S1 (CWWTP) incorporates conventional treatment of reject water and condensate in a municipal WWTP; accordingly, nitrogen is not recovered but mostly removed and released into the atmosphere as N2 through nitrification/denitrification.
- Scenario S2 (S&S) utilizes air stripping in combination with gas scrubbing to recover nitrogen. The two streams with recoverable nitrogen (reject water of mechanical dewatering and condensate from thermal drying) enter a stripper, and air is added in the stripper to convert ammonium to ammonia gas; subsequently, ammonia gas is absorbed in sulfuric acid in a scrubber to produce ammonium sulfate fertilizer.
- Instead of air stripping, Scenario S3 (AdBC) considers nitrogen recovery from reject water and condensate through ammonia adsorption on biochar derived from sewage sludge and wood pyrolysis. The biochar doped with ammonia is applied to land for soil enhancement and carbon sequestration, substituting fossil-based nitrogen fertilizers.
3.2. Life Cycle Inventory
3.2.1. Reject Water and Condensate
3.2.2. Wastewater Treatment Plant (WWTP)
3.2.3. Stripping and Scrubbing
3.2.4. Adsorption on Biochar
3.3. Life Cycle Impact Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paulu, A.; Bartáček, J.; Šerešová, M.; Kočí, V. Combining Process Modelling and Lca to Assess the Environmental Impacts of Wastewater Treatment Innovations. Water 2021, 13, 1246. [Google Scholar] [CrossRef]
- Mo, W.; Zhang, Q. Energy–Nutrients–Water Nexus: Integrated Resource Recovery in Municipal Wastewater Treatment Plants. J. Environ. Manag. 2013, 127, 255–267. [Google Scholar] [CrossRef]
- Rigby, H.; Clarke, B.O.; Pritchard, D.L.; Meehan, B.; Beshah, F.; Smith, S.R.; Porter, N.A. A Critical Review of Nitrogen Mineralization in Biosolids-Amended Soil, the Associated Fertilizer Value for Crop Production and Potential for Emissions to the Environment. Sci. Total Environ. 2016, 541, 1310–1338. [Google Scholar] [CrossRef]
- Beckinghausen, A.; Reynders, J.; Merckel, R.; Wu, Y.W.; Marais, H.; Schwede, S. Post-Pyrolysis Treatments of Biochars from Sewage Sludge and A. Mearnsii for Ammonia (NH4-n) Recovery. Appl. Energy 2020, 271, 115212. [Google Scholar] [CrossRef]
- EU. 1991 The Urban Waste Water Treatment Directive. Inst. Water Off. J. 1992, 28, 14–15. [Google Scholar]
- Koskue, V.; Rinta-Kanto, J.M.; Freguia, S.; Ledezma, P.; Kokko, M. Optimising Nitrogen Recovery from Reject Water in a 3-Chamber Bioelectroconcentration Cell. Sep. Purif. Technol. 2021, 264, 118428. [Google Scholar] [CrossRef]
- Bień, B.; Bień, J.D. Analysis of Reject Water Formed in the Mechanical Dewatering Process of Digested Sludge Conditioned by Physical and Chemical Methods. Energies 2022, 15, 1678. [Google Scholar] [CrossRef]
- Nancharaiah, Y.V.; Venkata Mohan, S.; Lens, P.N.L. Recent Advances in Nutrient Removal and Recovery in Biological and Bioelectrochemical Systems. Bioresour. Technol. 2016, 215, 173–185. [Google Scholar] [CrossRef]
- Chojnacka, K.; Skrzypczak, D.; Szopa, D.; Izydorczyk, G.; Moustakas, K.; Witek-Krowiak, A. Management of Biological Sewage Sludge: Fertilizer Nitrogen Recovery as the Solution to Fertilizer Crisis. J. Environ. Manag. 2023, 326, 116602. [Google Scholar] [CrossRef]
- Saud, A.; Havukainen, J.; Peltola, P.; Horttanainen, M. Integrating Pyrolysis or Combustion with Scrubbing to Maximize the Nutrient and Energy Recovery from Municipal Sewage Sludge. Recycling 2021, 6, 52. [Google Scholar] [CrossRef]
- Zhuang, Z.; Mohamed, B.A.; Li, L.Y.; Swei, O. An Economic and Global Warming Impact Assessment of Common Sewage Sludge Treatment Processes in North America. J. Clean. Prod. 2022, 370, 133539. [Google Scholar] [CrossRef]
- Hušek, M.; Moško, J.; Pohořelý, M. Sewage Sludge Treatment Methods and P-Recovery Possibilities: Current State-of-the-Art. J. Environ. Manag. 2022, 315, 115090. [Google Scholar] [CrossRef]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical Processing of Sewage Sludge to Energy and Fuel: Fundamentals, Challenges and Considerations. Renew. Sustain. Energy Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, P.; Wu, Y. Enhanced Technology for Sewage Sludge Advanced Dewatering from an Engineering Practice Perspective: A Review. J. Environ. Manag. 2022, 321, 115938. [Google Scholar] [CrossRef]
- Gao, N.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical Conversion of Sewage Sludge: A Critical Review. Prog. Energy Combust. Sci. 2020, 79, 100843. [Google Scholar] [CrossRef]
- Peltola, P.; Ruottu, L.; Larkimo, M.; Laasonen, A.; Myöhänen, K. A Novel Dual Circulating Fluidized Bed Technology for Thermal Treatment of Municipal Sewage Sludge with Recovery of Nutrients and Energy. Waste Manag. 2023, 155, 329–337. [Google Scholar] [CrossRef]
- Mulchandani, A.; Westerhoff, P. Recovery Opportunities for Metals and Energy from Sewage Sludges. Bioresour. Technol. 2016, 215, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Djandja, O.S.; Wang, Z.C.; Wang, F.; Xu, Y.P.; Duan, P.G. Pyrolysis of Municipal Sewage Sludge for Biofuel Production: A Review. Ind. Eng. Chem. Res. 2020, 59, 16939–16956. [Google Scholar] [CrossRef]
- Haghighat, M.; Majidian, N.; Hallajisani, A.; Samipourgiri, M. Production of Bio-Oil from Sewage Sludge: A Review on the Thermal and Catalytic Conversion by Pyrolysis. Sustain. Energy Technol. Assess. 2020, 42, 100870. [Google Scholar] [CrossRef]
- Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent Advances in Utilization of Biochar. Renew. Sustain. Energy Rev. 2015, 42, 1055–1064. [Google Scholar] [CrossRef]
- Havukainen, J.; Saud, A.; Astrup, T.F.; Peltola, P.; Horttanainen, M. Environmental Performance of Dewatered Sewage Sludge Digestate Utilization Based on Life Cycle Assessment. Waste Manag. 2022, 137, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Ding, A.; Zhang, R.; Ngo, H.H.; He, X.; Ma, J.; Nan, J.; Li, G. Life Cycle Assessment of Sewage Sludge Treatment and Disposal Based on Nutrient and Energy Recovery: A Review. Sci. Total Environ. 2021, 769, 144451. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.L.; Zlatanović, L.; van der Hoek, J.P. Life cycle assessment of nutrient recycling from wastewater: A critical review. Water Res. 2020, 173, 115519. [Google Scholar] [CrossRef]
- Kar, S.; Singh, R.; Gurian, P.L.; Hendricks, A.; Kohl, P.; McKelvey, S.; Spatari, S. Life cycle assessment and techno-economic analysis of nitrogen recovery by ammonia air-stripping from wastewater treatment. Sci. Total Environ. 2023, 857, 159499. [Google Scholar] [CrossRef] [PubMed]
- van Zelm, R.; de Paiva Seroa da Motta, R.; Lam, W.Y.; Menkveld, W.; Broeders, E. Life cycle assessment of side stream removal and recovery of nitrogen from wastewater treatment plants. J. Ind. Ecol. 2020, 24, 913–922. [Google Scholar] [CrossRef]
- SFS-EN ISO 14040; Environmental Management-Life Cycle Assessment-Principles and Framework (ISO 14040:2006). International Organization for Standardization: Geneva, Switzerland, 2006.
- SFS-EN ISO 14044; Environmental Management–Life Cycle Assessment–Requirements and Guidelines (ISO 14044:2006). International Organization for Standardization: Geneva, Switzerland, 2006.
- Matuštík, J.; Hnátková, T.; Kočí, V. Life Cycle Assessment of Biochar-to-Soil Systems: A Review. J. Clean. Prod. 2020, 259, 120998. [Google Scholar] [CrossRef]
- Hischier, R.; Weidema, B.; Althaus, H.-J.; Bauer, C.; Doka, G.; Dones, R.; Frischknecht, R.; Hellweg, S.; Humbert, S.; Jungbluth, N.; et al. Swiss Centre for Life Cycle Inventories Implementation of Life Cycle Impact Assessment Methods. 2010. Available online: https://ecoinvent.org/wp-content/uploads/2020/08/201007_hischier_weidema_implementation_of_lcia_methods.pdf (accessed on 19 December 2022).
- Horttanainen, M.; Deviatkin, I.; Havukainen, J. Nitrogen Release from Mechanically Dewatered Sewage Sludge during Thermal Drying and Potential for Recovery. J. Clean. Prod. 2017, 142, 1819–1826. [Google Scholar] [CrossRef]
- HSY Helsinki Region Environmental Services Authority’s (HSY) Energy and Material Balances and Greenhouse Gas Emissions—Helsinki Region Environmental Services Authority’s (HSY) Energy Balance and Greenhouse Gas Emissions—Helsinki Region Infoshare. Available online: https://hri.fi/data/en_GB/dataset/helsingin-seudun-ymparistopalvelujen-hsy-energia-ja-materiaalitaseet-seka-kasvihuonekaasupaastot/resource/538fc945-7b9e-44a7-b899-a22967270ed5 (accessed on 16 December 2022).
- Deviatkin, I.; Havukainen, J.; Horttanainen, M. Possibilities for Enhanced Nitrogen Recovery from Digestate through Thermal Drying. J. Mater. Cycles Waste Manag. 2018, 20, 1016–1025. [Google Scholar] [CrossRef]
- Rossi, L.; Reuna, S.; Fred, T.; Heinonen, M. RAVITA Technology—New Innovation for Combined Phosphorus and Nitrogen Recovery. Water Sci. Technol. 2018, 78, 2511–2517. [Google Scholar] [CrossRef] [PubMed]
- Zhaurova, M.; Ruokonen, J.; Horttanainen, M.; Child, M.; Soukka, R. Assessing the Operational Environment of a P2X Plant from a Climate Point of View. J. Clean. Prod. 2023, 382, 135304. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Lebuf, V.; Michels, E.; Belia, E.; Vanrolleghem, P.A.; Tack, F.M.G.; Meers, E. Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification. Waste Biomass Valorization 2017, 8, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Ervasti, S.; Winquist, E.; Rasi, S. Typen Talteenotto Lantaperäisestä Nesteestä—Tekninen Toteutettavuus Ja Prosessin Kannattavuusarvio. 2018. Available online: https://jukuri.luke.fi/handle/10024/541453 (accessed on 16 December 2022).
- Batstone, D.J.; Hülsen, T.; Mehta, C.M.; Keller, J. Platforms for Energy and Nutrient Recovery from Domestic Wastewater: A Review. Chemosphere 2015, 140, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Hadlocon, L.J.S.; Manuzon, R.B.; Zhao, L. Development and Evaluation of a Full-Scale Spray Scrubber for Ammonia Recovery and Production of Nitrogen Fertilizer at Poultry Facilities. Environ. Technol. 2015, 36, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Melse, R.W.; Ogink, N.W.M. Air scrubbing techniques for ammonia and odor reduction at livestock operations: Review of on-farm research in the Netherlands. Trans. ASAE 2005, 48, 2303–2313. [Google Scholar] [CrossRef]
- Mölsä, K. Life Cycle Assessment of a Wastewater Treatment and a Sludge Handling Process—Current State and Future Scenarios. 2020. Available online: https://aaltodoc.aalto.fi:443/handle/123456789/42720 (accessed on 16 December 2022).
- Leppäkoski, L.; Marttila, M.P.; Uusitalo, V.; Levänen, J.; Halonen, V.; Mikkilä, M.H. Assessing the Carbon Footprint of Biochar from Willow Grown on Marginal Lands in Finland. Sustainability 2021, 13, 10097. [Google Scholar] [CrossRef]
- Zhang, M.; Song, G.; Gelardi, D.L.; Huang, L.; Khan, E.; Mašek, O.; Parikh, S.J.; Ok, Y.S. Evaluating Biochar and Its Modifications for the Removal of Ammonium, Nitrate, and Phosphate in Water. Water Res. 2020, 186, 116303. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Liu, M.; Ren, H. Biochar Produced from the Co-Pyrolysis of Sewage Sludge and Walnut Shell for Ammonium and Phosphate Adsorption from Water. J. Environ. Manag. 2019, 249, 109410. [Google Scholar] [CrossRef]
- Tang, Y.; Alam, M.S.; Konhauser, K.O.; Alessi, D.S.; Xu, S.; Tian, W.J.; Liu, Y. Influence of Pyrolysis Temperature on Production of Digested Sludge Biochar and Its Application for Ammonium Removal from Municipal Wastewater. J. Clean. Prod. 2019, 209, 927–936. [Google Scholar] [CrossRef]
- Puga, A.P.; Grutzmacher, P.; Cerri, C.E.P.; Ribeirinho, V.S.; Andrade, C.A. de Biochar-Based Nitrogen Fertilizers: Greenhouse Gas Emissions, Use Efficiency, and Maize Yield in Tropical Soils. Sci. Total Environ. 2020, 704, 135375. [Google Scholar] [CrossRef]
- Paramashivam, D.; Clough, T.J.; Dickinson, N.M.; Horswell, J.; Lense, O.; Clucas, L.; Robinson, B.H. Effect of Pine Waste and Pine Biochar on Nitrogen Mobility in Biosolids. J. Environ. Qual. 2016, 45, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. High Temperature-Produced Biochar Can Be Efficient in Nitrate Loss Prevention and Carbon Sequestration. Geoderma 2019, 338, 48–55. [Google Scholar] [CrossRef]
- Yang, H.I.; Lou, K.; Rajapaksha, A.U.; Ok, Y.S.; Anyia, A.O.; Chang, S.X. Adsorption of Ammonium in Aqueous Solutions by Pine Sawdust and Wheat Straw Biochars. Environ. Sci. Pollut. Res. 2018, 25, 25638–25647. [Google Scholar] [CrossRef] [PubMed]
- Havukainen, J.; Nguyen, M.T.; Väisänen, S.; Horttanainen, M. Life Cycle Assessment of Small-Scale Combined Heat and Power Plant: Environmental Impacts of Different Forest Biofuels and Replacing District Heat Produced from Natural Gas. J. Clean. Prod. 2018, 172, 837–846. [Google Scholar] [CrossRef]
- Abo-State, M.A.; Ragab, A.M.E.; EL-Gendy, N.S.; Farahat, L.A.; Madian, H.R. Bioethanol Production from Rice Straw Enzymatically Saccharified by Fungal Isolates, Trichoderma Viride F94 and Aspergillus Terreus F98. Soft 2014, 3, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, F.; Huijbregts, M.; Kindermann, G.; Van Zelm, R.; Van Der Velde, M.; Stadler, K.; Strømman, A.H. Global Spatially Explicit CO2 Emission Metrics for Forest Bioenergy. Sci. Rep. 2016, 6, 20186. [Google Scholar] [CrossRef] [Green Version]
- Liikanen, M.; Havukainen, J.; Hupponen, M.; Horttanainen, M. Influence of Different Factors in the Life Cycle Assessment of Mixed Municipal Solid Waste Management Systems—A Comparison of Case Studies in Finland and China. J. Clean. Prod. 2017, 154, 389–400. [Google Scholar] [CrossRef]
- Clavreul, J.; Guyonnet, D.; Christensen, T.H. Quantifying Uncertainty in LCA-Modelling of Waste Management Systems. Waste Manag. 2012, 32, 2482–2495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heijungs, R.; Kleijn, R. Numerical Approaches towards Life Cycle Interpretation Five Examples. Int. J. Life Cycle Assess. 2001, 6, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Bisinella, V.; Conradsen, K.; Christensen, T.H.; Astrup, T.F. A Global Approach for Sparse Representation of Uncertainty in Life Cycle Assessments of Waste Management Systems. Int. J. Life Cycle Assess. 2016, 21, 378–394. [Google Scholar] [CrossRef] [Green Version]
- Jeswani, H.K.; Saharudin, D.M.; Azapagic, A. Environmental Sustainability of Negative Emissions Technologies: A Review. Sustain. Prod. Consum. 2022, 33, 608–635. [Google Scholar] [CrossRef]
- Cao, Y.; Pawłowski, A. Life Cycle Assessment of Two Emerging Sewage Sludge-to-Energy Systems: Evaluating Energy and Greenhouse Gas Emissions Implications. Bioresour. Technol. 2013, 127, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Azzi, E.S.; Karltun, E.; Sundberg, C. Prospective Life Cycle Assessment of Large-Scale Biochar Production and Use for Negative Emissions in Stockholm. Environ. Sci. Technol. 2019, 53, 8466–8476. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, S.; Osman, A.I.; Yang, H.; Doran, J.; Rooney, D.W. Industrial Biochar Systems for Atmospheric Carbon Removal: A Review. Environ. Chem. Lett. 2021, 19, 3023–3055. [Google Scholar] [CrossRef]
- Matuštík, J.; Pohořelý, M.; Kočí, V. Is Application of Biochar to Soil Really Carbon Negative? The Effect of Methodological Decisions in Life Cycle Assessment. Sci. Total Environ. 2022, 807, 151058. [Google Scholar] [CrossRef]
- Saud, A.; Havukainen, J.; Mänttäri, M.; Horttanainen, M. Evaluation and Techno-Economic Analysis of Packed Bed Scrubber for Ammonia Recovery from Drying Fumes Produced during the Thermal Drying of Sewage Sludge. E3S Web Conf. 2020, 191, 03001. [Google Scholar] [CrossRef]
- Speight, J.G. Industrial Inorganic Chemistry. In Environmental Inorganic Chemistry for Engineers; Butterworth-Heinemann: Oxford, UK, 2017; pp. 111–169. [Google Scholar] [CrossRef]
- Jamaludin, Z.; Rollings-Scattergood, S.; Lutes, K.; Vaneeckhaute, C. Evaluation of Sustainable Scrubbing Agents for Ammonia Recovery from Anaerobic Digestate. Bioresour. Technol. 2018, 270, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Asof, M.; Rachman, S.A.; Nurmawi, W.A.; Ramayanti, C. Recovery of H2SO4 from Spent Acid Waste Using Bentonite Adsorbent. MATEC Web Conf. 2017, 101, 02007. [Google Scholar] [CrossRef] [Green Version]
- Merkel, A.; Čopák, L.; Dvořák, L.; Golubenko, D.; Šeda, L. Recovery of Spent Sulphuric Acid by Diffusion Dialysis Using a Spiral Wound Module. Int. J. Mol. Sci. 2021, 22, 11819. [Google Scholar] [CrossRef]
- Zuo, Z.; Liu, T.; Zheng, M.; Xing, Y.; Ren, D.; Li, H.; Yang, S.; Liu, Y.; Yuan, Z.; Huang, X. Recovery of Ammonium Nitrate Solution from Urine Wastewater via Novel Free Nitrous Acid (FNA)-Mediated Two-Stage Processes. Chem. Eng. J. 2022, 440, 135826. [Google Scholar] [CrossRef]
- Alakangas, E.; Hurskainen, M.; Laatikainen-Luntama, J.; Korhonen, J. Suomessa Käytettävien Polttoaineiden Ominaisuuksia; VTT Technical Research Centre of Finland: Espoo, Finland, 2016. [Google Scholar]
- HSY. Viikinmäki Waste Water Treatment Plant. Available online: https://niini.fi/wp-content/uploads/2021/01/HSY0014_Viikinmaki_wastewater_treatment_plant.pdf (accessed on 16 December 2022).
Scenario | Recovered Nitrogen (t/a) |
---|---|
S1 (CWWTP) | 0 |
S2 (S&S) | 520 |
S3 (AdBC) | 540 |
S1 (CWWTP) | CC incl. Biogenic | CC excl. Biogenic | FWE | ME | TA |
---|---|---|---|---|---|
Parameter | |||||
Electricity | 0.58 | 0.58 | 0.65 | 0.00 | 0.66 |
Heat | 0.28 | 0.28 | 0.35 | 0.00 | 0.34 |
Lime | 0.15 | 0.15 | 0.00 | 0.00 | 0.00 |
N removal efficiency | 0.00 | 0.00 | 0.00 | −8.49 | 0.00 |
Electricity biogas | 0.02 | 0.02 | 0.09 | 0.00 | 0.06 |
Heat biogas | −0.23 | −0.22 | 0.35 | 0.00 | 0.30 |
S2 (S&S) | CC incl. biogenic | CC excl. biogenic | FWE | ME | TA |
Parameter | |||||
Electricity use | 0.71 | 0.76 | 0.05 | 0.00 | 0.12 |
Heat use | 0.29 | 0.21 | 0.04 | 0.00 | 0.54 |
H2SO4 use | −0.26 | −0.31 | 0.02 | 0.00 | 0.21 |
NaOH | 0.32 | 0.32 | 0.08 | 0.00 | 0.03 |
Water use | 0.00 | −0.01 | 0.00 | 0.00 | 0.00 |
Stripper–Scrubber efficiency | −0.16 | −0.27 | −0.01 | −1.44 | −0.01 |
Distance of fertilizer spreading | 0.00 | −0.01 | 0.00 | 0.00 | 0.00 |
S3 (AdBC) | CC incl. biogenic | CC excl. biogenic | FWE | ME | TA |
Parameter | |||||
Nitrogen adsorption capacity, SS biochar | 0.12 | −0.11 | 0.03 | 0.0001 | −0.07 |
Electricity demand, SS biochar production | 0.02 | 0.07 | 0.03 | 0.0001 | 0.01 |
Heat demand, SS biochar production | 0.00 | 0.00 | 0.00 | 0.0000 | 0.00 |
Electricity demand, wood biochar production | 0.00 | 0.00 | 0.00 | 0.0000 | 0.00 |
Heat demand, wood drying | 0.00 | 0.00 | 0.00 | 0.0000 | 0.00 |
SO2 removal | 0.00 | 0.00 | 0.00 | 0.0000 | 0.29 |
Carbon share in biochar | −0.31 | 0.00 | 0.00 | 0.0000 | 0.00 |
Biochar nitrogen usability | 0.00 | 0.00 | 0.00 | 0.0000 | 0.00 |
Nitrogen adsorption capacity, wood biochar | 0.52 | −0.50 | 0.13 | 0.0002 | −0.31 |
Electricity demand wood biochar production | 0.04 | 0.12 | 0.06 | 0.0002 | 0.00 |
Heat demand biochar | 0.05 | 0.10 | 0.13 | 0.0002 | 0.04 |
Wood processing emissions | 0.28 | 0.84 | 0.00 | 0.0000 | 0.00 |
Yield of wood biochar | −6.83 | −0.43 | 0.26 | 0.0004 | 0.09 |
Excess heat production | −0.19 | −0.40 | −0.51 | −0.0009 | 0.15 |
Substituted district heat emissions | 0.00 | 0.00 | 0.00 | 0.0000 | 0.01 |
C share remaining in soil | −11.37 | 0.00 | 0.00 | 0.0000 | 0.00 |
Carbon content of wood biochar | 9.57 | 0.00 | 0.00 | 0.0000 | 0.00 |
CF (Carbon footprint) | 5.77 | −0.09 | 0.02 | 0.0000 | −0.06 |
Steam from biomass and natural gas | 4.06 | 12.62 | −0.01 | −0.0002 | −0.04 |
Reject Water | |||
---|---|---|---|
Parameter | Value | Units | References |
Ntot | 1 | kg/t | [31] |
NH4 | 0.8 | kg/t | |
NH4-N | 0.62 | kg/t | |
Condensate | |||
Parameter | Value | Units | References |
Ntot | 0.09 | kg/t | [32] |
NH4-N | 0.09 | kg/t |
Parameter | Value | Unit | Reference |
---|---|---|---|
Electricity | 1.52 | MJ/t of water | [31] |
Heat | 1.33 | MJ/t of water | |
Lime | 0.030 | kg/t of water | |
N removal efficiency | 85 | % |
Parameter | Value | Unit | Reference |
---|---|---|---|
Electricity use | 0.028 | MJ/kg | [35] |
Heat use | 0.188 | MJ/kg | [35,36] |
H2SO4 use | 3.5 | kg H2SO4/kg NH4-N | [37] |
NaOH | 3.3 | kg NaOH/kg NH4-N | [21] |
Water use | 2.1 | kg water/kg NH4-N | Calculated |
Stripper–Scrubber efficiency | 95 | % | [38,39] |
Transport | |||
Biochar | 43 | km | [40] |
Fertilizer | 43 | km | [21] |
H2SO4 | 201 | km | [21] |
Parameter | Value | Unit | Reference |
---|---|---|---|
Sewage sludge biochar | |||
Mass of SS biochar | 12,000 | t | [10] |
Mass of sewage sludge | 65,000 | t | [10] |
Nitrogen adsorption capacity | 0.004 | kg N-NH4+/kg biochar | [42,43,44] |
Electricity demand, SS biochar production | 0.827 | MJ/kg biochar | [21] |
Heat demand, SS biochar production | 0.003 | MJ/kg biochar | [21] |
Electricity demand, wood biochar production | 0.750 | MJ/kg biochar | [21] |
Heat demand, wood drying | 0.003 | MJ/kg biochar | [21] |
SO2 removal | 0.021 | kg CO2, eq./kg biochar | [21] |
Carbon share in biochar | 34% | [41] | |
Biochar nitrogen usability | 64% | [45] | |
Carbon footprint biogenic | 0.45 | kg CO2, eq./kg CO2 | [41] |
Wood biochar | |||
Mass of wood biochar | 97,000 | t | Calculated |
Mass of wood | 280,000 | t | Calculated |
Nitrogen adsorption capacity | 0.005 | kg N-NH4+/kg biochar | [46,47,48] |
Electricity demand wood biochar production | 0.252 | MJ/kg removed water | [41] |
Heat demand biochar | 4.504 | MJ/kg removed water | [41] |
Moisture (wet wood) | 28% | [41] | |
Moisture (dry wood) | 10% | [41] | |
Wood processing emissions | 0.018 | kg CO2/kg wood | [49] |
Yield of wood biochar | 0.34 | kg biochar/kg dry wood | [50] |
Excess heat production | 4.9 | MJ/kg wood | [41] |
Carbon content of wood biochar | 34% | [41] | |
C share remaining in soil | 68% | [41] | |
CF (carbon footprint) biochar land application | 0.45 | kg CO2,eq./kg CO2 | [51] |
CF wood pyrolysis gas combustion | 0.45 | kg CO2,eq./kg CO2 | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saud, A.; Havukainen, J.; Peltola, P.; Horttanainen, M. Environmental Performance of Nitrogen Recovery from Reject Water of Sewage Sludge Treatment Based on Life Cycle Assessment. Recycling 2023, 8, 43. https://doi.org/10.3390/recycling8020043
Saud A, Havukainen J, Peltola P, Horttanainen M. Environmental Performance of Nitrogen Recovery from Reject Water of Sewage Sludge Treatment Based on Life Cycle Assessment. Recycling. 2023; 8(2):43. https://doi.org/10.3390/recycling8020043
Chicago/Turabian StyleSaud, Ali, Jouni Havukainen, Petteri Peltola, and Mika Horttanainen. 2023. "Environmental Performance of Nitrogen Recovery from Reject Water of Sewage Sludge Treatment Based on Life Cycle Assessment" Recycling 8, no. 2: 43. https://doi.org/10.3390/recycling8020043
APA StyleSaud, A., Havukainen, J., Peltola, P., & Horttanainen, M. (2023). Environmental Performance of Nitrogen Recovery from Reject Water of Sewage Sludge Treatment Based on Life Cycle Assessment. Recycling, 8(2), 43. https://doi.org/10.3390/recycling8020043