Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Margarita Zhuravleva

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5214 KiB  
Article
Unveiling the Role of Cholesterol in Subnanomolar Ouabain Rescue of Cortical Neurons from Calcium Overload Caused by Excitotoxic Insults
by Dmitry A. Sibarov, Zoia D. Zhuravleva, Margarita A. Ilina, Sergei I. Boikov, Yulia D. Stepanenko, Tatiana V. Karelina and Sergei M. Antonov
Cells 2023, 12(15), 2011; https://doi.org/10.3390/cells12152011 - 6 Aug 2023
Cited by 3 | Viewed by 1846
Abstract
Na/K-ATPase maintains transmembrane ionic gradients and acts as a signal transducer when bound to endogenous cardiotonic steroids. At subnanomolar concentrations, ouabain induces neuroprotection against calcium overload and apoptosis of neurons during excitotoxic stress. Here, the role of lipid rafts in interactions between Na/K-ATPase, [...] Read more.
Na/K-ATPase maintains transmembrane ionic gradients and acts as a signal transducer when bound to endogenous cardiotonic steroids. At subnanomolar concentrations, ouabain induces neuroprotection against calcium overload and apoptosis of neurons during excitotoxic stress. Here, the role of lipid rafts in interactions between Na/K-ATPase, sodium–calcium exchanger (NCX), and N-methy-D-aspartate receptors (NMDARs) was investigated. We analyzed 0.5–1-nanometer ouabain’s effects on calcium responses and miniature post-synaptic current (mEPSCs) frequencies of cortical neurons during the action of NMDA in rat primary culture and brain slices. In both objects, ouabain attenuated NMDA-evoked calcium responses and prevented an increase in mEPSC frequency, while the cholesterol extraction by methyl-β-cyclodextrin prevented the effects. The data support the conclusions that (i) ouabain-induced inhibition of NMDA-elicited calcium response involves both pre- and post-synapse, (ii) the presence of astrocytes in the tripartite synapse is not critical for the ouabain effects, which are found to be similar in cell cultures and brain slices, and (iii) ouabain action requires the integrity of cholesterol-rich membrane microdomains in which the colocalization and functional interaction of NMDAR-transferred calcium influx, calcium extrusion by NCX, and Na/K-ATPase modulation of the exchanger occur. This regulation of the molecules by cardiotonic steroids may influence synaptic transmission, prevent excitotoxic neuronal death, and interfere with the pharmacological actions of neurological medicines. Full article
Show Figures

Figure 1

16 pages, 3435 KiB  
Article
Severity- and Time-Dependent Activation of Microglia in Spinal Cord Injury
by Elvira Ruslanovna Akhmetzyanova, Margarita Nikolaevna Zhuravleva, Anna Viktorovna Timofeeva, Leisan Gazinurovna Tazetdinova, Ekaterina Evgenevna Garanina, Albert Anatolevich Rizvanov and Yana Olegovna Mukhamedshina
Int. J. Mol. Sci. 2023, 24(9), 8294; https://doi.org/10.3390/ijms24098294 - 5 May 2023
Cited by 11 | Viewed by 2923
Abstract
A spinal cord injury (SCI) initiates a number of cascades of biochemical reactions and intercellular interactions, the outcome of which determines the regenerative potential of the nervous tissue and opens up capacities for preserving its functions. The key elements of the above-mentioned processes [...] Read more.
A spinal cord injury (SCI) initiates a number of cascades of biochemical reactions and intercellular interactions, the outcome of which determines the regenerative potential of the nervous tissue and opens up capacities for preserving its functions. The key elements of the above-mentioned processes are microglia. Many assumptions have been put forward, and the first evidence has been obtained, suggesting that, depending on the severity of SCI and the post-traumatic period, microglia behave differently. In this regard, we conducted a study to assess the microglia behavior in the model of mild, moderate and severe SCI in vitro for various post-traumatic periods. We reported for the first time that microglia make a significant contribution to both anti- and pro-inflammatory patterns for a prolonged period after severe SCI (60 dpi), while reduced severities of SCI do not lead to prolonged activation of microglia. The study also revealed the following trend: the greater the severity of the SCI, the lower the proliferative and phagocytic activity of microglia, which is true for all post-traumatic periods of SCI. Full article
Show Figures

Figure 1

14 pages, 2141 KiB  
Article
Engineered GO-Silk Fibroin-Based Hydrogel for the Promotion of Collagen Synthesis in Full-Thickness Skin Defect
by Valeriia Syromiatnikova, Sharda Gupta, Margarita Zhuravleva, Galina Masgutova, Elena Zakirova, Alexander Aimaletdinov, Albert Rizvanov, Ilnur Salafutdinov, Ekaterina Naumenko and Arindam Bit
J. Compos. Sci. 2023, 7(5), 186; https://doi.org/10.3390/jcs7050186 - 5 May 2023
Cited by 2 | Viewed by 2191
Abstract
In order to improve the regeneration of full-layer skin defects, hydrogels were developed based on the combination of chitosan (Cs), Daba silk fibroin (DSF), and graphene oxide (GO): CS, DSF/Cs and DSF/Cs/GO. The biocompatibility of hydrogels with human dermis fibroblasts in vitro was [...] Read more.
In order to improve the regeneration of full-layer skin defects, hydrogels were developed based on the combination of chitosan (Cs), Daba silk fibroin (DSF), and graphene oxide (GO): CS, DSF/Cs and DSF/Cs/GO. The biocompatibility of hydrogels with human dermis fibroblasts in vitro was evaluated using the MTS assay. To assess the regenerative potential of hydrogels, a model of a full-layer skin defect was reconstructed on the back of rats and closed the wound surface with CS, DSF/Cs and DSF/Cs/GO hydrogels. The morphological and morphometric characteristics of regenerate tissues were obtained by staining with hematoxylin-eosin, Heidengain azocarmine, and immunohistochemistry on days 7 and 14 of the experiment. It has been shown that the use of DSF/Cs and DSF/Cs/GO promotes enhanced healing and epithelization of a full-layer skin wound. The addition of GO to the hydrogel increased the synthetic activity of fibroblasts and improved the characteristics of the produced collagen fibers. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

19 pages, 3706 KiB  
Article
Induction of Angiogenesis by Genetically Modified Human Umbilical Cord Blood Mononuclear Cells
by Dilara Z. Gatina, Ilnaz M. Gazizov, Margarita N. Zhuravleva, Svetlana S. Arkhipova, Maria A. Golubenko, Marina O. Gomzikova, Ekaterina E. Garanina, Rustem R. Islamov, Albert A. Rizvanov and Ilnur I. Salafutdinov
Int. J. Mol. Sci. 2023, 24(5), 4396; https://doi.org/10.3390/ijms24054396 - 23 Feb 2023
Cited by 8 | Viewed by 2623
Abstract
Stimulating the process of angiogenesis in treating ischemia-related diseases is an urgent task for modern medicine, which can be achieved through the use of different cell types. Umbilical cord blood (UCB) continues to be one of the attractive cell sources for transplantation. The [...] Read more.
Stimulating the process of angiogenesis in treating ischemia-related diseases is an urgent task for modern medicine, which can be achieved through the use of different cell types. Umbilical cord blood (UCB) continues to be one of the attractive cell sources for transplantation. The goal of this study was to investigate the role and therapeutic potential of gene-engineered umbilical cord blood mononuclear cells (UCB-MC) as a forward-looking strategy for the activation of angiogenesis. Adenovirus constructs Ad-VEGF, Ad-FGF2, Ad-SDF1α, and Ad-EGFP were synthesized and used for cell modification. UCB-MCs were isolated from UCB and transduced with adenoviral vectors. As part of our in vitro experiments, we evaluated the efficiency of transfection, the expression of recombinant genes, and the secretome profile. Later, we applied an in vivo Matrigel plug assay to assess engineered UCB-MC’s angiogenic potential. We conclude that hUCB-MCs can be efficiently modified simultaneously with several adenoviral vectors. Modified UCB-MCs overexpress recombinant genes and proteins. Genetic modification of cells with recombinant adenoviruses does not affect the profile of secreted pro- and anti-inflammatory cytokines, chemokines, and growth factors, except for an increase in the synthesis of recombinant proteins. hUCB-MCs genetically modified with therapeutic genes induced the formation of new vessels. An increase in the expression of endothelial cells marker (CD31) was revealed, which correlated with the data of visual examination and histological analysis. The present study demonstrates that gene-engineered UCB-MC can be used to stimulate angiogenesis and possibly treat cardiovascular disease and diabetic cardiomyopathy. Full article
(This article belongs to the Special Issue Arteriogenesis, Angiogenesis and Vascular Remodeling)
Show Figures

Figure 1

22 pages, 7294 KiB  
Article
Evaluation of CAR-T Cells’ Cytotoxicity against Modified Solid Tumor Cell Lines
by Aigul Kh. Valiullina, Ekaterina A. Zmievskaya, Irina A. Ganeeva, Margarita N. Zhuravleva, Ekaterina E. Garanina, Albert A. Rizvanov, Alexey V. Petukhov and Emil R. Bulatov
Biomedicines 2023, 11(2), 626; https://doi.org/10.3390/biomedicines11020626 - 19 Feb 2023
Cited by 29 | Viewed by 4026
Abstract
In recent years, adoptive cell therapy has gained a new perspective of application due to the development of technologies and the successful clinical use of CAR-T cells for the treatment of patients with malignant B-cell neoplasms. However, the efficacy of CAR-T therapy against [...] Read more.
In recent years, adoptive cell therapy has gained a new perspective of application due to the development of technologies and the successful clinical use of CAR-T cells for the treatment of patients with malignant B-cell neoplasms. However, the efficacy of CAR-T therapy against solid tumor remains a major scientific and clinical challenge. In this work, we evaluated the cytotoxicity of 2nd generation CAR-T cells against modified solid tumors cell lines—lung adenocarcinoma cell line H522, prostate carcinoma PC-3M, breast carcinoma MDA-MB-231, and epidermoid carcinoma A431 cell lines transduced with lentiviruses encoding red fluorescent protein Katushka2S and the CD19 antigen. A correlation was demonstrated between an increase in the secretion of proinflammatory cytokines and a decrease in the confluence of tumor cells’ monolayer. The proposed approach can potentially be applied to preliminarily assess CAR-T cell efficacy for the treatment of solid tumors and estimate the risks of developing cytokine release syndrome. Full article
(This article belongs to the Special Issue Roles of T Cells in Immunotherapy)
Show Figures

Figure 1

2 pages, 174 KiB  
Abstract
Co-Expression of VEGF and FGF2 Mediated by Multigenic Plasmid Constructs Promotes Blood Flow Restoration in a Rat Model of Hind Limb Ischemia
by Dilara Gatina, Ekaterina Garanina, Margarita Zhuravleva, Angelina Titova and Ilnur Salafutdinov
Biol. Life Sci. Forum 2022, 20(1), 4; https://doi.org/10.3390/IECBM2022-13517 - 11 Nov 2022
Viewed by 1919
Abstract
Peripheral arterial disease (PAD) is characterized by stenosis and occlusion of the arteries leading to poor blood supply to the limb. Patients with PAD suffer pain at rest, intermittent claudication, skin ulcers, and gangrene. The end-stage of the disease could lead to limb [...] Read more.
Peripheral arterial disease (PAD) is characterized by stenosis and occlusion of the arteries leading to poor blood supply to the limb. Patients with PAD suffer pain at rest, intermittent claudication, skin ulcers, and gangrene. The end-stage of the disease could lead to limb amputation despite optimal medical and surgical management. The delivery of angiogenic factors to restore tissue perfusion is an attractive strategy, both as a primary and adjunctive treatment for PAD. We synthesized multigenic plasmid constructs expressing combinations of VEGF, FGF2, and DsRed genes:pVax1-VEGF-FGF2-DsRed, pVax1-VEGF-DsRed, pVax1-FGF2-DsRed, and pVax1-DsRed. In the constructed vectors, gene sequences are linked through the furin-containing 2A-peptide sequence of picornaviruses. Plasmid vector pVax1 is approved by the FDA for use in clinical trials. Previously, we confirmed the functionality of the developed non-viral constructs and the synthesis of VEGF, FGF2, and DsRed proteins by transfected cells. At this stage, we injected plasmid constructs into rat muscles after hind limb ischemia. Quantitative analysis of serum cytokines and chemokines of experimental and control groups on 3, 14, and 21 days after plasmids injection showed no significant differences in the secretion of the 18 cytokines studied. We observed a gradual increase in volumetric blood flow in the experimental groups, despite decreased expression of VEGF and FGF2 on 14 and 21 days. On day 21, the maximum increase in volumetric blood flow was in the pVax1-VEGF-FGF2-DsRed group. In turn, the maximum number of capillaries at 21 days was in the pVax1-VEGF-DsRed group. Capillary density was increased in pVax1-VEGF-FGF2-DsRed and pVax1-FGF2-DsRed groups compared to control groups. We also observed low expression levels of caspase-3 and caspase-9 in the muscles of the experimental groups. Thus, co-expression of VEGF and FGF2 stimulates angiogenic and regenerative processes in a rat model of hind limb ischemia. In addition, the results of this study are consistent with our previous work and confirm the effectiveness of using systems based on 2A-peptide sequences for transgene co-expression. The study of the serum cytokine profile showed the absence of adverse immune effects, indicating the safety of the non-viral constructs used. These results suggest the possibility of using these non-viral constructs to enhance therapeutic angiogenesis in the treatment of ischemic diseases. This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030). Full article
22 pages, 4979 KiB  
Article
Characteristics and Resistance to Cisplatin of Human Neuroblastoma Cells Co-Cultivated with Immune and Stromal Cells
by Kristina V. Kitaeva, Daria S. Chulpanova, Margarita N. Zhuravleva, Ivan Yu. Filin, Ruslan M. Deviatiiarov, Alyssa C. Ballard-Reisch, Albert A. Rizvanov and Valeriya V. Solovyeva
Bioengineering 2022, 9(11), 655; https://doi.org/10.3390/bioengineering9110655 - 5 Nov 2022
Cited by 1 | Viewed by 3770
Abstract
We investigated the features of the morphology and cytokine profiles of neuroblastoma SH-SY5Y cells, bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs), and peripheral blood mononuclear cells (PBMCs) in double (BM-MSCs + SH-SY5Y cells) and triple (BM-MSCs + SH-SY5Y cells + PBMCs) co-cultures incubated on [...] Read more.
We investigated the features of the morphology and cytokine profiles of neuroblastoma SH-SY5Y cells, bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs), and peripheral blood mononuclear cells (PBMCs) in double (BM-MSCs + SH-SY5Y cells) and triple (BM-MSCs + SH-SY5Y cells + PBMCs) co-cultures incubated on plastic and Matrigel. Cells in the co-cultures communicated by vesicular transport and by exchanging membrane and cytoplasmic components. The cytokine profile of double and triple co-cultures incubated on Matrigel and plastic had differences and showed the highest concentration of a number of chemokines/cytokines, such as CXCL8/IL-8, I-TAC/CXCL11, IP10/CXCL10, MDC/CCL22, MIP-1α/CCL3, IL-1β, ENA-78/CXCL5, Gro-α/CXCL1, MCP-1/CCL2, TERC/CCL25, CXCL8/IL-8, and IL-6. High concentrations of inflammatory chemokines/cytokines in the conditioned medium of triple co-culture form a chronic inflammation, which brings the presented co-cultivation system closer to a natural tumor. Triple co-cultures were more resistant to cisplatin (CDDP) than the double- and monoculture of SH-SY5Y. The mRNA levels of BCL2, BCL2L1, RAC1, CAV1, CASP3, and BAX genes were changed in cells after co-culturing and CDDP treatment in double and triple co-cultures. The expression of the BCL2, BAX, CAV1, and CASP3 proteins in SH-SY5Y cells after the triple co-culture and CAV1 and BAX protein expression in SH-SY5Y cells after the double co-culture were determined. This study demonstrated the nature of the cellular interactions between components of tumor niche and the intercellular influence on chemoresistance observed in our tumor model, which should enable the development of novel test systems for anti-tumor agents. Full article
(This article belongs to the Special Issue Analytical Approaches in 3D in vitro Systems)
Show Figures

Graphical abstract

16 pages, 23223 KiB  
Article
Proangiogenic Effect of 2A-Peptide Based Multicistronic Recombinant Constructs Encoding VEGF and FGF2 Growth Factors
by Dilara Z. Gatina, Ekaterina E. Garanina, Margarita N. Zhuravleva, Gulnaz E. Synbulatova, Adelya F. Mullakhmetova, Valeriya V. Solovyeva, Andrey P. Kiyasov, Catrin S. Rutland, Albert A. Rizvanov and Ilnur I. Salafutdinov
Int. J. Mol. Sci. 2021, 22(11), 5922; https://doi.org/10.3390/ijms22115922 - 31 May 2021
Cited by 7 | Viewed by 4967
Abstract
Coronary artery disease remains one of the primary healthcare problems due to the high cost of treatment, increased number of patients, poor clinical outcomes, and lack of effective therapy. Though pharmacological and surgical treatments positively affect symptoms and arrest the disease progression, they [...] Read more.
Coronary artery disease remains one of the primary healthcare problems due to the high cost of treatment, increased number of patients, poor clinical outcomes, and lack of effective therapy. Though pharmacological and surgical treatments positively affect symptoms and arrest the disease progression, they generally exhibit a limited effect on the disease outcome. The development of alternative therapeutic approaches towards ischemic disease treatment, especially of decompensated forms, is therefore relevant. Therapeutic angiogenesis, stimulated by various cytokines, chemokines, and growth factors, provides the possibility of restoring functional blood flow in ischemic tissues, thereby ensuring the regeneration of the damaged area. In the current study, based on the clinically approved plasmid vector pVax1, multigenic constructs were developed encoding vascular endothelial growth factor (VEGF), fibroblast growth factors (FGF2), and the DsRed fluorescent protein, integrated via picornaviruses’ furin-2A peptide sequences. In vitro experiments demonstrated that genetically modified cells with engineered plasmid constructs expressed the target proteins. Overexpression of VEGF and FGF2 resulted in increased levels of the recombinant proteins. Concomitantly, these did not lead to a significant shift in the general secretory profile of modified HEK293T cells. Simultaneously, the secretome of genetically modified cells showed significant stimulating effects on the formation of capillary-like structures by HUVEC (endothelial cells) in vitro. Our results revealed that when the multicistronic multigene vectors encoding 2A peptide sequences are created, transient transgene co-expression is ensured. The results obtained indicated the mutual synergistic effects of the growth factors VEGF and FGF2 on the proliferation of endothelial cells in vitro. Thus, recombinant multicistronic multigenic constructs might serve as a promising approach for establishing safe and effective systems to treat ischemic diseases. Full article
(This article belongs to the Special Issue Arteriogenesis and Therapeutic Angiogenesis)
Show Figures

Figure 1

20 pages, 4629 KiB  
Article
Rab GTPase Mediating Regulation of NALP3 in Colorectal Cancer
by Gülçin Tezcan, Ekaterina E. Garanina, Margarita N. Zhuravleva, Shaimaa Hamza, Albert A. Rizvanov and Svetlana F. Khaiboullina
Molecules 2020, 25(20), 4834; https://doi.org/10.3390/molecules25204834 - 20 Oct 2020
Cited by 8 | Viewed by 4280
Abstract
The NALP3 inflammasome signaling contributes to inflammation within tumor tissues. This inflammation may be promoted by the vesicle trafficking of inflammasome components and cytokines. Rab5, Rab7 and Rab11 regulate vesicle trafficking. However, the role of these proteins in the regulation of inflammasomes remains [...] Read more.
The NALP3 inflammasome signaling contributes to inflammation within tumor tissues. This inflammation may be promoted by the vesicle trafficking of inflammasome components and cytokines. Rab5, Rab7 and Rab11 regulate vesicle trafficking. However, the role of these proteins in the regulation of inflammasomes remains largely unknown. To elucidate the role of these Rab proteins in inflammasome regulation, HCT-116, a colorectal cancer (CRC) cell line expressing pDsRed-Rab5 wild type (WT), pDsRed-Rab5 dominant-negative (DN), pDsRed-Rab7 WT, pDsRed-Rab7 DN, pDsRed-Rab11 WT and pDsRed-Rab11 DN were treated with lipopolysaccharide (LPS)/nigericin. Inflammasome activation was analyzed by measuring the mRNA expression of NLRP3, Pro-CASP1, RAB39A and Pro-IL-1β, conducting immunofluorescence imaging and western blotting of caspase-1 and analysing the secretion levels of IL-1β using enzyme-linked immunosorbent assay (ELISA). The effects of Rabs on cytokine release were evaluated using MILLIPLEX MAP Human Cytokine/Chemokine Magnetic Bead Panel-Premixed 41 Plex. The findings showed that LPS/nigericin-treated cells expressing Rab5-WT indicated increased NALP3 expression and secretion of the IL-1β as compared to Rab5-DN cells. Caspase-1 was localized in the nucleus and cytosol of Rab5-WT cells but was localized in the cytosol in Rab5-DN cells. There were no any effects of Rab7 and Rab11 expression on the regulation of inflammasomes. Our results suggest that Rab5 may be a potential target for the regulation of NALP3 in the treatment of the CRC inflammation. Full article
(This article belongs to the Special Issue Targeting of Signaling Pathways for Cancer Therapy)
Show Figures

Figure 1

16 pages, 4754 KiB  
Article
Angiogenic Activity of Cytochalasin B-Induced Membrane Vesicles of Human Mesenchymal Stem Cells
by Marina O. Gomzikova, Margarita N. Zhuravleva, Vyacheslav V. Vorobev, Ilnur I. Salafutdinov, Alexander V. Laikov, Sevindzh K. Kletukhina, Ekaterina V. Martynova, Leysan G. Tazetdinova, Atara I. Ntekim, Svetlana F. Khaiboullina and Albert A. Rizvanov
Cells 2020, 9(1), 95; https://doi.org/10.3390/cells9010095 - 30 Dec 2019
Cited by 29 | Viewed by 6139
Abstract
The cytochalasin B-induced membrane vesicles (CIMVs) are suggested to be used as a vehicle for the delivery of therapeutics. However, the angiogenic activity and therapeutic potential of human mesenchymal stem/stromal cells (MSCs) derived CIMVs (CIMVs-MSCs) remains unknown. Objectives: The objectives of this study [...] Read more.
The cytochalasin B-induced membrane vesicles (CIMVs) are suggested to be used as a vehicle for the delivery of therapeutics. However, the angiogenic activity and therapeutic potential of human mesenchymal stem/stromal cells (MSCs) derived CIMVs (CIMVs-MSCs) remains unknown. Objectives: The objectives of this study were to analyze the morphology, size distribution, molecular composition, and angiogenic properties of CIMVs-MSCs. Methods: The morphology of CIMVs-MSC was analyzed by scanning electron microscopy. The proteomic analysis, multiplex analysis, and immunostaining were used to characterize the molecular composition of the CIMVs-MSCs. The transfer of surface proteins from a donor to a recipient cell mediated by CIMVs-MSCs was demonstrated using immunostaining and confocal microscopy. The angiogenic potential of CIMVs-MSCs was evaluated using an in vivo approach of subcutaneous implantation of CIMVs-MSCs in mixture with Matrigel matrix. Results: Human CIMVs-MSCs retain parental MSCs content, such as growth factors, cytokines, and chemokines: EGF, FGF-2, Eotaxin, TGF-α, G-CSF, Flt-3L, GM-CSF, Fractalkine, IFNα2, IFN-γ, GRO, IL-10, MCP-3, IL-12p40, MDC, IL-12p70, IL-15, sCD40L, IL-17A, IL-1RA, IL-1a, IL-9, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IP-10, MCP-1, MIP_1a, MIP-1b, TNF-α, TNF-β, VEGF. CIMVs-MSCs also have the expression of surface receptors similar to those in parental human MSCs (CD90+, CD29+, CD44+, CD73+). Additionally, CIMVs-MSCs could transfer membrane receptors to the surfaces of target cells in vitro. Finally, CIMVs-MSCs can induce angiogenesis in vivo after subcutaneous injection into adult rats. Conclusions: Human CIMVs-MSCs have similar content, immunophenotype, and angiogenic activity to those of the parental MSCs. Therefore, we believe that human CIMVs-MSCs could be used for cell free therapy of degenerative diseases. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

20 pages, 2766 KiB  
Case Report
Cytokine Storm Combined with Humoral Immune Response Defect in Fatal Hemorrhagic Fever with Renal Syndrome Case, Tatarstan, Russia
by Ekaterina Garanina, Ekaterina Martynova, Yuriy Davidyuk, Emmanuel Kabwe, Konstantin Ivanov, Angelina Titova, Maria Markelova, Margarita Zhuravleva, Georgiy Cherepnev, Venera G. Shakirova, Ilseyar Khaertynova, Rachael Tarlinton, Albert Rizvanov, Svetlana Khaiboullina and Sergey Morzunov
Viruses 2019, 11(7), 601; https://doi.org/10.3390/v11070601 - 2 Jul 2019
Cited by 26 | Viewed by 5665
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is endemic in Tatarstan, where thousands of cases are registered annually. Puumala orthohantavirus is commonly detected in human case samples as well as in captured bank voles, the rodent hosts. The pathogenesis of HFRS is still not [...] Read more.
Hemorrhagic fever with renal syndrome (HFRS) is endemic in Tatarstan, where thousands of cases are registered annually. Puumala orthohantavirus is commonly detected in human case samples as well as in captured bank voles, the rodent hosts. The pathogenesis of HFRS is still not well described, although the cytokine storm hypothesis is largely accepted. In this study, we present a comprehensive analysis of a fatal HFRS case compared with twenty four non-fatal cases where activation of the humoral and cellular immune responses, pro-inflammatory cytokines and disturbed blood coagulation were detected using immunological, histological, genetic and clinical approaches. Multiple organ failure combined with disseminated intravascular coagulation syndrome and acute renal failure was the cause of death. Decreased Interleukin (IL)-7 and increased IL-18, chemokine (C-C motif) ligand (CCL)-5, stem cell growth factor (SCGF)-b and tumor necrosis factor-beta (TNF-β) serum levels were found, supporting the cytokine storm hypothesis of hantavirus pathogenesis. Full article
(This article belongs to the Special Issue Hantaviruses)
Show Figures

Figure 1

Back to TopTop