Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Authors = M. H. M. Borhannuddin Bhuyan ORCID = 0000-0002-7602-3087

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2581 KiB  
Article
Comparative Physiology of Indica and Japonica Rice under Salinity and Drought Stress: An Intrinsic Study on Osmotic Adjustment, Oxidative Stress, Antioxidant Defense and Methylglyoxal Detoxification
by Md. Shahadat Hossen, Md. Fazlul Karim, Masayuki Fujita, M. H. M. Borhannuddin Bhuyan, Kamrun Nahar, Abdul Awal Chowdhury Masud, Jubayer Al Mahmud and Mirza Hasanuzzaman
Stresses 2022, 2(2), 156-178; https://doi.org/10.3390/stresses2020012 - 25 Mar 2022
Cited by 22 | Viewed by 4430
Abstract
Salinity and drought stress are significant environmental threats, alone or in combination. The current study was conducted to investigate the morpho-physiology, osmotic adjustment, oxidative stress, antioxidant defense and methylglyoxal detoxification of three rice genotypes from the indica (cv. BRRI dhan29 and BRRI dhan48) [...] Read more.
Salinity and drought stress are significant environmental threats, alone or in combination. The current study was conducted to investigate the morpho-physiology, osmotic adjustment, oxidative stress, antioxidant defense and methylglyoxal detoxification of three rice genotypes from the indica (cv. BRRI dhan29 and BRRI dhan48) and japonica (cv. Koshihikari) groups. Eighteen-day-old seedlings of these genotypes were exposed to either in alone salinity (150 mM NaCl) and drought (15% PEG 6000) or in the combination of salinity and drought (150 mM NaCl + 15% PEG 6000) stress in vitro for 72 h. Compared with the control, the water status, biomass and photosynthetic pigments were decreased, where a significant increase was seen in the mortality rate, hydrogen peroxide content, electrolyte leakage, lipoxygenase activity, level of malondialdehyde and methylglyoxal, indicating increased lipid peroxidation in rice genotypes in stress conditions. The non-enzymatic and enzymatic components of the ascorbate-glutathione (AsA-GSH) pool in rice genotypes were disrupted under all stress treatments, resulting imbalance in the redox equilibrium. In contrast, compared to other rice genotypes, BRRI dhan48 revealed a lower Na+/K+ ratio, greater proline (Pro) levels, higher activity of AsA, dehydroascorbate (DHA) and GSH, lower glutathione disulfide (GSSG) and a higher ratio of AsA/DHA and GSH/GSSG, whereas enzymatic components increased monodehydroascorbate reductase, dehydroascorbate reductase, glutathione peroxidase and glyoxalase enzymes. The results showed that a stronger tolerate ability for BRRI dhan48 against stress has been connected to a lower Na+/K+ ratio, an increase in Pro content and an improved performance of the glyoxalase system and antioxidant protection for scavenging of reactive oxygen species. These data can give insight into probable responses to single or combination salinity and drought stress in rice genotypes. Full article
(This article belongs to the Special Issue Stress Responses in Crops)
Show Figures

Figure 1

32 pages, 4295 KiB  
Review
Selenium Toxicity in Plants and Environment: Biogeochemistry and Remediation Possibilities
by Mirza Hasanuzzaman, M. H. M. Borhannuddin Bhuyan, Ali Raza, Barbara Hawrylak-Nowak, Renata Matraszek-Gawron, Kamrun Nahar and Masayuki Fujita
Plants 2020, 9(12), 1711; https://doi.org/10.3390/plants9121711 - 4 Dec 2020
Cited by 82 | Viewed by 11882
Abstract
Selenium (Se) is a widely distributed trace element with dual (beneficial or toxic) effects for humans, animals, and plants. The availability of Se in the soil is reliant on the structure of the parental material and the procedures succeeding to soil formation. Anthropogenic [...] Read more.
Selenium (Se) is a widely distributed trace element with dual (beneficial or toxic) effects for humans, animals, and plants. The availability of Se in the soil is reliant on the structure of the parental material and the procedures succeeding to soil formation. Anthropogenic activities affect the content of Se in the environment. Although plants are the core source of Se in animal and human diet, the role of Se in plants is still debatable. A low concentration of Se can be beneficial for plant growth, development, and ecophysiology both under optimum and unfavorable environmental conditions. However, excess Se results in toxic effects, especially in Se sensitive plants, due to changing structure and function of proteins and induce oxidative/nitrosative stress, which disrupts several metabolic processes. Contrary, Se hyperaccumulators absorb and tolerate exceedingly large amounts of Se, could be potentially used to remediate, i.e., remove, transfer, stabilize, and/or detoxify Se-contaminants in the soil and groundwater. Thereby, Se-hyperaccumulators can play a dynamic role in overcoming global problem Se-inadequacy and toxicity. However, the knowledge of Se uptake and metabolism is essential for the effective phytoremediation to remove this element. Moreover, selecting the most efficient species accumulating Se is crucial for successful phytoremediation of a particular Se-contaminated area. This review emphasizes Se toxicity in plants and the environment with regards to Se biogeochemistry and phytoremediation aspects. This review follows a critical approach and stimulates thought for future research avenues. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

42 pages, 2405 KiB  
Review
Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence
by Mirza Hasanuzzaman, M. H. M. Borhannuddin Bhuyan, Khursheda Parvin, Tasnim Farha Bhuiyan, Taufika Islam Anee, Kamrun Nahar, Md. Shahadat Hossen, Faisal Zulfiqar, Md. Mahabub Alam and Masayuki Fujita
Int. J. Mol. Sci. 2020, 21(22), 8695; https://doi.org/10.3390/ijms21228695 - 18 Nov 2020
Cited by 378 | Viewed by 17413
Abstract
Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation [...] Read more.
Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence. Full article
(This article belongs to the Special Issue Environmental Stress and Plants)
Show Figures

Figure 1

17 pages, 1918 KiB  
Article
Exogenous Tebuconazole and Trifloxystrobin Regulates Reactive Oxygen Species Metabolism Toward Mitigating Salt-Induced Damages in Cucumber Seedling
by Sayed Mohammad Mohsin, Mirza Hasanuzzaman, M. H. M. Borhannuddin Bhuyan, Khursheda Parvin and Masayuki Fujita
Plants 2019, 8(10), 428; https://doi.org/10.3390/plants8100428 - 18 Oct 2019
Cited by 36 | Viewed by 5485
Abstract
The present study investigated the role of tebuconazole (TEB) and trifloxystrobin (TRI) on cucumber plants (Cucumis sativus L. cv. Tokiwa) under salt stress (60 mM NaCl). The cucumber plants were grown semi-hydroponically in a glasshouse. Plants were exposed to two different doses [...] Read more.
The present study investigated the role of tebuconazole (TEB) and trifloxystrobin (TRI) on cucumber plants (Cucumis sativus L. cv. Tokiwa) under salt stress (60 mM NaCl). The cucumber plants were grown semi-hydroponically in a glasshouse. Plants were exposed to two different doses of fungicides (1.375 µM TEB + 0.5 µM TRI and 2.75 µM TEB + 1.0 µM TRI) solely and in combination with NaCl (60 mM) for six days. The application of salt phenotypically deteriorated the cucumber plant growth that caused yellowing of the whole plant and significantly destructed the contents of chlorophyll and carotenoids. The oxidative damage was created under salinity by increasing the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) resulting in the disruption of the antioxidant defense system. Furthermore, in the leaves, stems, and roots of cucumber plants increased Na+ content was observed under salt stress, whereas the K+/Na+ ratio and contents of K+, Ca2+, and Mg2+ decreased. In contrast, the exogenous application of TEB and TRI reduced the contents of MDA, H2O2, and EL by improving the activities of enzymatic and non-enzymatic antioxidants. In addition, ion homeostasis was regulated by reducing Na+ uptake and enhanced K+ accumulation and the K+/Na+ ratio after application of TEB and TRI. Therefore, this study indicates that the exogenous application of TEB and TRI enhanced salt tolerance in cucumber plants by regulating reactive oxygen species production and antioxidant defense systems. Full article
(This article belongs to the Special Issue 2019 Feature Papers by Plants’ Editorial Board Members)
Show Figures

Figure 1

50 pages, 3622 KiB  
Review
Regulation of Ascorbate-Glutathione Pathway in Mitigating Oxidative Damage in Plants under Abiotic Stress
by Mirza Hasanuzzaman, M. H. M. Borhannuddin Bhuyan, Taufika Islam Anee, Khursheda Parvin, Kamrun Nahar, Jubayer Al Mahmud and Masayuki Fujita
Antioxidants 2019, 8(9), 384; https://doi.org/10.3390/antiox8090384 - 9 Sep 2019
Cited by 919 | Viewed by 27746
Abstract
Reactive oxygen species (ROS) generation is a usual phenomenon in a plant both under a normal and stressed condition. However, under unfavorable or adverse conditions, ROS production exceeds the capacity of the antioxidant defense system. Both non-enzymatic and enzymatic components of the antioxidant [...] Read more.
Reactive oxygen species (ROS) generation is a usual phenomenon in a plant both under a normal and stressed condition. However, under unfavorable or adverse conditions, ROS production exceeds the capacity of the antioxidant defense system. Both non-enzymatic and enzymatic components of the antioxidant defense system either detoxify or scavenge ROS and mitigate their deleterious effects. The Ascorbate-Glutathione (AsA-GSH) pathway, also known as Asada–Halliwell pathway comprises of AsA, GSH, and four enzymes viz. ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase, play a vital role in detoxifying ROS. Apart from ROS detoxification, they also interact with other defense systems in plants and protect the plants from various abiotic stress-induced damages. Several plant studies revealed that the upregulation or overexpression of AsA-GSH pathway enzymes and the enhancement of the AsA and GSH levels conferred plants better tolerance to abiotic stresses by reducing the ROS. In this review, we summarize the recent progress of the research on AsA-GSH pathway in terms of oxidative stress tolerance in plants. We also focus on the defense mechanisms as well as molecular interactions. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant)
Show Figures

Figure 1

16 pages, 6124 KiB  
Article
Comparative Physiological and Biochemical Changes in Tomato (Solanum lycopersicum L.) under Salt Stress and Recovery: Role of Antioxidant Defense and Glyoxalase Systems
by Khursheda Parvin, Mirza Hasanuzzaman, M. H. M. Borhannuddin Bhuyan, Kamrun Nahar, Sayed Mohammad Mohsin and Masayuki Fujita
Antioxidants 2019, 8(9), 350; https://doi.org/10.3390/antiox8090350 - 1 Sep 2019
Cited by 66 | Viewed by 5957
Abstract
Salinity toxicity and the post-stress restorative process were examined to identify the salt tolerance mechanism in tomato, with a focus on the antioxidant defense and glyoxalase systems. Hydroponically grown 15 day-old tomato plants (Solanum lycopersicum L. cv. Pusa Ruby) were treated with [...] Read more.
Salinity toxicity and the post-stress restorative process were examined to identify the salt tolerance mechanism in tomato, with a focus on the antioxidant defense and glyoxalase systems. Hydroponically grown 15 day-old tomato plants (Solanum lycopersicum L. cv. Pusa Ruby) were treated with 150 and 250 mM NaCl for 4 days and subsequently grown in nutrient solution for a further 2 days to observe the post-stress responses. Under saline conditions, plants showed osmotic stress responses that included low leaf relative water content and high proline content. Salinity induced oxidative stress by the over-accumulation of reactive oxygen species (H2O2 and O2•−) and methylglyoxal. Salinity also impaired the non-enzymatic and enzymatic components of the antioxidant defense system. On the other hand, excessive Na+ uptake induced ionic stress which resulted in a lower content of other minerals (K+, Ca2+, and Mg2+), and a reduction in photosynthetic pigment synthesis and plant growth. After 2 days in the normal nutrient solution, the plants showed improvements in antioxidant and glyoxalase system activities, followed by improvements in plant growth, water balance, and chlorophyll synthesis. The antioxidant and glyoxalase systems worked in concert to scavenge toxic reactive oxygen species (ROS), thereby reducing lipid peroxidation and membrane damage. Taken together, these findings indicate that tomato plants can tolerate salinity and show rapid post-stress recovery by enhancement of their antioxidant defense and glyoxalase systems. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

20 pages, 4849 KiB  
Article
Quercetin Mediated Salt Tolerance in Tomato through the Enhancement of Plant Antioxidant Defense and Glyoxalase Systems
by Khursheda Parvin, Mirza Hasanuzzaman, M. H. M. Borhannuddin Bhuyan, Sayed Mohammad Mohsin and Masayuki Fujita
Plants 2019, 8(8), 247; https://doi.org/10.3390/plants8080247 - 25 Jul 2019
Cited by 115 | Viewed by 6797
Abstract
Quercetin (Qu) is a strong antioxidant among the phenolic compounds having physiological and biochemical roles in plants. Hence, we have studied the Qu evolved protection against salinity in tomato (Solanum lycopersicum L.). Salinity caused ionic toxicity by increasing Na+ content in [...] Read more.
Quercetin (Qu) is a strong antioxidant among the phenolic compounds having physiological and biochemical roles in plants. Hence, we have studied the Qu evolved protection against salinity in tomato (Solanum lycopersicum L.). Salinity caused ionic toxicity by increasing Na+ content in seedlings along with nutritional starvation of K+, Ca2+, and Mg2+. While osmotic stress was detected by higher free proline (Pro) content and lower leaf relative water content (LRWC) in salt-stressed seedlings. Salt toxicity also induced higher H2O2 generation, malondialdehyde (MDA) content and lipoxygenase (LOX) activity as a sign of oxidative stress. Tomato seedlings suffered from methylglyoxal (MG) toxicity, degradation of chlorophyll, along with lower biomass accumulation and growth due to salt exposure. However, Qu application under salinity resulted in lower Na+/K+ due to reduced Na+ content, higher LRWC, increased Pro, and reduction of H2O2 and MDA content, and LOX activity, which indicated alleviation of ionic, osmotic, and oxidative stress respectively. Quercetin caused oxidative stress, lessening through the strengthening of both enzymatic and non-enzymatic antioxidants. In addition, Qu increased glutathione S-transferase activity in salt-invaded seedlings, which might be stimulated reactive oxygen species (ROS) scavenging along with higher GSH content. As a result, toxic MG was detoxified in Qu supplemented salt-stressed seedlings by increasing both Gly I and Gly II activities. Moreover, Qu insisted on better plant growth and photosynthetic pigments synthesis in saline or without saline media. Therefore, exogenous applied Qu may become an important actor to minimize salt-induced toxicity in crops. Full article
Show Figures

Figure 1

18 pages, 1722 KiB  
Article
Unraveling Morphophysiological and Biochemical Responses of Triticum aestivum L. to Extreme pH: Coordinated Actions of Antioxidant Defense and Glyoxalase Systems
by M. H. M. Borhannuddin Bhuyan, Mirza Hasanuzzaman, Jubayer Al Mahmud, Md. Shahadat Hossain, Tasnim Farha Bhuiyan and Masayuki Fujita
Plants 2019, 8(1), 24; https://doi.org/10.3390/plants8010024 - 18 Jan 2019
Cited by 25 | Viewed by 6202
Abstract
Soil pH, either low (acidity) or high (alkalinity), is one of the major constraints that affect many biochemical and biological processes within the cell. The present study was carried out to understand the oxidative damage and antioxidant defense in wheat (Triticum aestivum [...] Read more.
Soil pH, either low (acidity) or high (alkalinity), is one of the major constraints that affect many biochemical and biological processes within the cell. The present study was carried out to understand the oxidative damage and antioxidant defense in wheat (Triticum aestivum L. cv. BARI Gom-25) grown under different pH regimes. Eight-day-old seedlings were exposed to growing media with different pH levels (4.0, 5.5, 7.0, and 8.5). Seedlings grown in pH 4.0 and in pH 8.5 showed reductions in biomass, water, and chlorophyll contents; whereas plants grown at pH 7.0 (neutral) exhibited a better performance. Extremely acidic (pH 4.0) and/or strongly alkaline (pH 8.5)-stress also increased oxidative damage in wheat by excess reactive oxygen species (ROS) generation and methylglyoxal (MG) production, which increased lipid peroxidation and disrupted the redox state. In contrary, the lowest oxidative damage was observed at a neutral condition, followed by a strong acidic condition (pH 5.5), which was mainly attributed to the better performance of the antioxidant defense and glyoxalase systems. Interestingly, seedlings grown at pH 5.5 showed a significant increase in morphophysiological attributes compared with extreme acidic (pH 4.0)- and strong alkaline (pH 8.5)-stress treatments, which indicates the tolerance of wheat to the acidic condition. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

29 pages, 2023 KiB  
Review
Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses
by Mirza Hasanuzzaman, M. H. M. Borhannuddin Bhuyan, Kamrun Nahar, Md. Shahadat Hossain, Jubayer Al Mahmud, Md. Shahadat Hossen, Abdul Awal Chowdhury Masud, Moumita and Masayuki Fujita
Agronomy 2018, 8(3), 31; https://doi.org/10.3390/agronomy8030031 - 12 Mar 2018
Cited by 755 | Viewed by 51888
Abstract
Among the plant nutrients, potassium (K) is one of the vital elements required for plant growth and physiology. Potassium is not only a constituent of the plant structure but it also has a regulatory function in several biochemical processes related to protein synthesis, [...] Read more.
Among the plant nutrients, potassium (K) is one of the vital elements required for plant growth and physiology. Potassium is not only a constituent of the plant structure but it also has a regulatory function in several biochemical processes related to protein synthesis, carbohydrate metabolism, and enzyme activation. Several physiological processes depend on K, such as stomatal regulation and photosynthesis. In recent decades, K was found to provide abiotic stress tolerance. Under salt stress, K helps to maintain ion homeostasis and to regulate the osmotic balance. Under drought stress conditions, K regulates stomatal opening and helps plants adapt to water deficits. Many reports support the notion that K enhances antioxidant defense in plants and therefore protects them from oxidative stress under various environmental adversities. In addition, this element provides some cellular signaling alone or in association with other signaling molecules and phytohormones. Although considerable progress has been made in understanding K-induced abiotic stress tolerance in plants, the exact molecular mechanisms of these protections are still under investigation. In this review, we summarized the recent literature on the biological functions of K, its uptake, its translocation, and its role in plant abiotic stress tolerance. Full article
(This article belongs to the Special Issue Role of Plant Nutrients in Agronomic Crops)
Show Figures

Figure 1

Back to TopTop