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Abstract: The present study investigated the role of tebuconazole (TEB) and trifloxystrobin (TRI)
on cucumber plants (Cucumis sativus L. cv. Tokiwa) under salt stress (60 mM NaCl). The cucumber
plants were grown semi-hydroponically in a glasshouse. Plants were exposed to two different doses
of fungicides (1.375 µM TEB + 0.5 µM TRI and 2.75 µM TEB + 1.0 µM TRI) solely and in combination
with NaCl (60 mM) for six days. The application of salt phenotypically deteriorated the cucumber
plant growth that caused yellowing of the whole plant and significantly destructed the contents
of chlorophyll and carotenoids. The oxidative damage was created under salinity by increasing
the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL)
resulting in the disruption of the antioxidant defense system. Furthermore, in the leaves, stems,
and roots of cucumber plants increased Na+ content was observed under salt stress, whereas the
K+/Na+ ratio and contents of K+, Ca2+, and Mg2+ decreased. In contrast, the exogenous application
of TEB and TRI reduced the contents of MDA, H2O2, and EL by improving the activities of enzymatic
and non-enzymatic antioxidants. In addition, ion homeostasis was regulated by reducing Na+ uptake
and enhanced K+ accumulation and the K+/Na+ ratio after application of TEB and TRI. Therefore, this
study indicates that the exogenous application of TEB and TRI enhanced salt tolerance in cucumber
plants by regulating reactive oxygen species production and antioxidant defense systems.

Keywords: fungicides; biocatalyst; reactive oxygen species; antioxidant defense; osmotic stress

1. Introduction

Climate changes, especially global warming and environmental calamities, severely affect plant
productivity worldwide. It also leads to the development of various abiotic stresses, such as salinity,
metal/metalloids toxicity, drought, low and high temperatures, flooding, atmospheric pollutants,
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and ultraviolet-radiation [1]. Among them, salinity is a very common threat to reduce the growth,
productivity, and yield of crop plants [2].

Salinity causes osmotic stress [3] as well as ionic toxicity [4], which affect morphological,
physiological, and biochemical processes of plants [5]. Salinity reduces the rate of photosynthesis
and increases the reactive oxygen species (ROS) formation and, ultimately, causes oxidative stress
by disrupting the antioxidant defense system [1,6]. Salt stress produces significant amounts of ROS
(singlet oxygen, 1O2, superoxide, O2

•−, hydrogen peroxide, H2O2, and hydroxyl radical, OH•) [7], which
are extremely toxic and cause cell damage, lipid peroxidation, protein denaturing, and programmed
cell death [8].

To develop salt stress tolerance, plants improved osmotic and ionic balance and ROS
detoxification [4,9]. Moreover, plants mitigate osmotic injury by producing different osmolytes
(such as proline, glycinebetaine) to regulate the water balance and stabilize the protein and enzyme
structures [10,11]. In addition, plants can modulate the antioxidant defense mechanism under stress
conditions to detoxify ROS, which is driven by enzymatic and non-enzymatic antioxidants [12,13].
The enzymatic antioxidants are mainly superoxide dismutase (SOD), catalase (CAT), glutathione
S-transferase (GST), glutathione peroxidase (GPX), ascorbate peroxidase (APX), monodehydroascorbate
reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), while
non-enzymatic antioxidants are mainly ascorbate (AsA), glutathione (GSH), alkaloids, α-tocopherols,
phenolic compounds, and some amino acids [13,14].

Exogenous application of bio-stimulants such as plant growth hormones, trace elements, organic
chemicals, signaling molecules, etc., are now the most well-liked technique to mitigate the oxidative
stress and develop stress tolerance in plants [15,16]. Fungicides are chemicals, which are normally
used to control plant diseases by destroying disease-causing fungi. However, some fungicides such as
triazole and strobilurin, are able to provide protection against biotic and abiotic stresses. The strobilurins
fungicides inhibit the growth of fungi by blocking the electron transport at the cytochrome-bc1 complex
during the respiration in mitochondria [17]. They also prompt a positive effect on plant growth and
physiology by interacting with the transfer of electrons in mitochondria [18]. Strobilurins application
increased the yields of grain, kernel weights, and contents of protein related to a delay of flag leaf
senescence [19], as well as increased abiotic stress tolerance [20]. Triazole is another fungicide that
has high affinity to increase the activity of cytochrome-P450 oxidase enzyme in fungi [21], which
is responsible for demethylation of ergosterol precursor 24-methylenedihydrolanosterol via several
oxidation processes [22]. However, ergosterol is a vital membrane component in most of the fungi,
and inhibition of sterol synthesis leads to failure of membrane stability and ultimate fungal cell
death [22]. Apart from this, several reports also showed the effect of triazole fungicides in plant
physiology [23] by improving plant growth and biomass, chlorophyll (chl) content, and the activities
of antioxidant enzymes (SOD, CAT, and APX) [23,24].

Cucumber (Cucumis sativus L.), which is widely popular and an economically important
fruit vegetable crop, contains a medicinal value, and is the source of raw material for various
industries [25]. It is a highly salt-sensitive crop [26,27]. Salinity reduces the growth and production
of the cucumber [28–30]. Exogenous application of triazole [31] and strobilurin [32] fungicides can
alleviate salt stress, but the exact mechanism is still unknown. There are hardly any studies reporting
the strobilurin and triazole fungicides effect on plant physiological and biochemical mechanisms.
Thus, the experiment was undertaken to investigate the role of tebuconazole(TEB, triazole fungicide)
and trifloxystrobin(TRI, strobilurin fungicide) in relation to salt stress tolerance by modulating the
antioxidant system of cucumber plants.
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2. Results

2.1. Plant Growth

Phenotypic appearance clearly indicated that salinity inhibited the growth and development of
the cucumber plant (Figure 1). Plants treated with salt caused yellowing of the whole plant, whereas
the supplementation of TEB and TRI improved the phenotypic appearance of the cucumber plant by
reducing the salt-induced damage.
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respectively. 
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Figure 1. Phenotypic appearance of cucumber plants under different treatments. (TT1, 1.375 µM TEB +

0.5 µM TRI; TT2, 2.75 µM TEB + 1.0 µM TRI; S, 60 mM NaCl; respective treatments were applied on
50–day old plants for six days).

Salt treatment reduced the height, leaf number, and internodes’ length (Table 1) of cucumber
plants. Salt stress also decreased the fresh weight (FW) and dry weight (DW) of leaves and roots
(Table 2). Compared with the control, salinity decreased the plant height, number of leaves, and length
of internodes by 61%, 17%, and 34%, respectively (Table 1). Similarly, it also reduced the leaf FW,
leaf DW, root FW, and root DW by 30%, 44%, 44%, and 46%, respectively. This is in contrast with the
control (Table 2). No significant difference was found after application of both doses of TEB and TRI
on salt-treated plants for plant height and number of leaves, but a significant difference was shown
for the length of internodes, leaf FW, leaf DW, root FW, and root DW at a high dose of TEB and TRI,
compared to stress plant only.

Table 1. Effect of TEB and TRI on plant height, leaf numbers, and internode length of 50–day-old
cucumber plants under salt stress for 6 days. Means (±SD) were calculated from three replicates for
each treatment. Values with different letters are significantly different at p ≤ 0.05 by applying Fisher’s
LSD test. In this case, TT1, TT2, and S indicate 1.375 µM TEB+0.5 µM TRI, 2.75 µM TEB+1.0 µM TRI,
and 60 mM NaCl, respectively.

Treatments Plant Height (cm) Number of Leaf Plant−1 Internodes Length (cm)

Control 50.33 ± 5.50 a 7.66 ± 0.57 b 9.08 ± 1.04 a
TT1 27.00 ± 2.02 b 9.33 ± 1.15 a 4.08 ± 0.52 cd
TT2 19.00 ± 1.05 d 7.66 ± 0.57 b 3.91 ± 0.63 cd

S 19.83 ± 0.76 cd 6.33 ± 0.59 c 6.03 ± 0.46 b
S+TT1 26.00 ± 1.02 b 6.66 ± 0.56 bc 4.55 ± 0.51 c
S+TT2 24.16 ± 1.04 bc 7.33 ± 0.61 bc 3.38 ± 0.42 d
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Table 2. Effect of TEB and TRI on fresh and dry weights of 50–day-old cucumber plants under salt
stress for 6 days. Means ( ± SD) were calculated from three replicates for each treatment. Values
with different letters are significantly different at P ≤ 0.05 by applying the Fisher’s LSD test. In this
scenario, TT1, TT2, and S indicate 1.375 µM TEB+0.5 µM TRI, 2.75 µM TEB+1.0 µM TRI, and 60 mM
NaCl, respectively.

Treatments
Leaf Root

FW (g leaf−1) DW (g leaf−1) FW (g plant−1) DW (g plant−1)

Control 2.75 ± 0.157 a 0.39 ± 0.025 ab 11.34 ± 0.56 b 1.14 ± 0.10 b
TT1 2.45 ± 0.136 ab 0.32 ± 0.023 cd 12.38 ± 1.37 b 1.27 ± 0.11 b
TT2 2.61 ± 0.241 a 0.35 ± 0.024 bc 9.38 ± 0.96 c 0.93 ± 0.13 c

S 1.92 ± 0.164 c 0.22 ± 0.029 e 6.32 ± 0.67 d 0.61 ± 0.08 d
S+TT1 2.19 ± 0.152 bc 0.29 ± 0.004 d 9.20 ± 0.56 c 0.93 ± 0.05 c
S+TT2 2.75 ± 0.219 a 0.41 ± 0.022 a 14.65 ± 0.87 a 1.46 ± 0.06 a

2.2. Photosynthetic Pigments

Salt stress significantly destroyed the photosynthetic pigments of cucumber plants, which was
evident from the content of chl and carotenoid (car) reduction. Compared to the control, the content of
chl a and b were reduced by 41% and 39%, respectively. Under salt stress, therefore, chl (a+b) content
was also reduced by 40%. Salt treatment also reduced the car content by 36% compared to the control.
Alternatively, the application of both low and high doses of TEB and TRI significantly recovered the
chl and car content (Figure 2A–D).
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Figure 2. Effect of TEB and TRI on photosynthetic pigment contents: chl a (A), chl b (B), chl (a+b) (C),
and carotenoid (D) in leaf of 50–day-old cucumber plants under salt stress for six days. In this case,
TT1, TT2, and S indicate 1.375 µM TEB+0.5 µM TRI, 2.75 µM TEB+1.0 µM TRI, and 60 mM NaCl,
respectively. Means (±SD) were calculated from three replicates for each treatment. Bars with different
letters are significantly different at p ≤ 0.05 by applying the Fisher’s LSD test.

2.3. MDA and ROS Production

Salt-treated cucumber plants were considerably damaged by oxidative stress signified by the
content of the lipid peroxidation component (malondialdehyde, MDA content) and production of ROS
(H2O2 content). Under stress conditions, MDA content increased by 147% in contrast with the control.
Apart from this, salt treatment increased H2O2 content by 184%, compared with the control. On the



Plants 2019, 8, 428 5 of 17

contrary, exogenous application of TEB and TRI at both low and high doses significantly mitigated
the oxidative damage by declining the content of MDA and H2O2, where a low dose showed a better
result than a high dose of TEB and TRI (Figure 3A,B).Plants 2019, 8, x FOR PEER REVIEW 5 of 16 
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2.4. Antioxidant Non-Enzymatic

In comparison to the control, the AsA content decreased by 56% while dehydroascorbate (DHA)
content increased by 96% in response to salt stress, which resulted in a 78% reduction of the AsA/DHA
ratio. On the contrary, the application of either doses of TEB and TRI could increase in AsA content
and the AsA/DHA ratio in a stressed plant compared to the stressed group. However, the DHA content
was markedly reduced by the application of both doses of TEB and TRI in salt exposed plants than
stressed plants only (Figure 4A–C).

Salt stress increased the GSH and oxidized glutathione (GSSG) content by 56% and 253%,
respectively. The concomitant reduction of the GSH/GSSG ratio was about 56% compared to the control.
However, TEB and TRI treatments improved the GSH/GSSG ratio by reducing both GSSG and GSH
contents in salt-exposed plants, in contrast with salt stress alone (Figure 4D–F).
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Figure 4. Effect of TEB and TRI on the non-enzymatic antioxidant. AsA content (A), DHA content (B),
AsA/DHA ratio (C), GSSG content (D), GSH content (E), and GSH/GSSG ratio (F) in leaf of 50–day-old
cucumber plants under salt stress for six days. Here, TT1, TT2, and S indicate 1.375 µM TEB+0.5 µM
TRI, 2.75 µM TEB+1.0 µM TRI and 60 mM NaCl, respectively. Means (±SD) were calculated from three
replicates for each treatment. Bars with different letters are significantly different at p ≤ 0.05 when
applying the Fisher’s LSD test.

2.5. Antioxidant Enzymes

Salt treatment enhanced the APX activity by 36%, whereas MDHAR, DHAR, and GR activity
declined by 31%, 45%, and 30%, respectively; compared to the control. On the other hand, the application
of TEB and TRI at both low and high doses in salt-treated cucumber plants declined APX activity by
21% and 27%, respectively. However, it increased the activity of MDHAR by 48% and 57%, DHAR by
84% and 155%, and GR by 32% and 87%, respectively; compared with only stress plants (Figure 5A–D).
Furthermore, salt stress reduced the activity of CAT and GST by 37% and 45%, respectively, in contrast
with the control. However, the use of TEB and TRI of low and high doses with salt increased the CAT
activity by 61% and 38% and GST activity by 40% and 59%, respectively; compared with stress plants
only (Figure 5E,F).
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Figure 5. Effect of TEB and TRI on AsA-GSH pathway enzymes. APX (A), MDHAR (B), DHAR (C),
GR (D), GST (E), and CAT (F) activity in leaf of 50–day-old cucumber plants under salt stress for six
days. Here, TT1, TT2, and S indicate 1.375 µM TEB+0.5 µM TRI, 2.75 µM TEB+1.0 µM TRI, and 60 mM
NaCl, respectively. Means (±SD) were calculated from three replicates for each treatment. Bars with
different letters are significantly different at p ≤ 0.05 by applying the Fisher’s LSD test.

2.6. Electrolytic Leakage

A remarkable increase in electrolyte leakage (EL) was observed in cucumber plants under salt
stress. In contrast to the control, salt treatment increased EL by 222%, while exogenous application of
TEB and TRI at either dose significantly reduced the EL. However, a low dose showed a better result
than a high dose of TEB and TRI (Figure 6).
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Figure 6. Effect of TEB and TRI on electrolytic leakage in leaves of 50–day-old cucumber plants under
salt stress for six days. Here, TT1, TT2, and S indicate 1.375 µM TEB+0.5 µM TRI, 2.75 µM TEB+1.0 µM
TRI, and 60 mM NaCl, respectively. Means (±SD) were calculated from three replicates for each treatment.
Bars with different letters are significantly different at p ≤ 0.05 when applying the Fisher’s LSD test.
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2.7. Ion Homeostasis

Ion homeostasis was disrupted in the leaves, stems, and roots of salt-treated cucumber plants
by increasing the accumulation of Na+ and decreasing the K+/Na+ ratio and K+ uptake, compared
to the control. On the contrary, the exogenous application of TEB and TRI at low and high doses
on salt-treated cucumber plants decreased Na+ accumulation, and enhanced the K+/Na+ ratio and
the uptake of K+ in the leaves, stems, and roots that were observed when compared to salt-treated
plants alone. In contrast to stressed plants, the K+/Na+ ratio increased after the application of TEB
and TRI at low and high doses by 550% and 679% in leaves, 113% and 107% in stems, and 141% and
135% in roots, respectively (Figure 7A–C). Furthermore, the accumulation of Ca2+ was reduced in the
leaves, stems, and roots of salt-treated plants by 59%, 40%, and 36%, respectively; compared to the
control. Similarly, salt stress reduced the Mg2+ accumulation in the leaves, stems, and roots by 41%,
47%, and 61%, respectively, in contrast with the control plants. Moreover, the exogenous application of
both low and high doses TEB and TRI increased Ca2+ and Mg2+ content in the leaves, stems, and roots
of salt-exposed cucumber plants, compared to salt stress alone (Figure 7D,E).
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Figure 7. Effect of TEB and TRI on ion homeostasis. Na+ contents (A), K+ contents (B), K+/Na+ ratio
(C), Ca2+ content (D), and Mg2+ content (E) in the leaf, stem, and root of 50–day-old cucumber plants
under salt stress for six days. Here, TT1, TT2, and S indicate 1.375 µM TEB+0.5 µM TRI, 2.75 µM
TEB+1.0 µM TRI, and 60 mM NaCl, respectively. Means (±SD) were calculated from three replicates
for each treatment. Bars with different letters are significantly different at p ≤ 0.05 when applying the
Fisher’s LSD test.
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3. Discussion

This study was aimed at understanding the antioxidative role of TEB and TRI to mitigate the
salinity-induced oxidative damages in cucumber plants. The introductions of triazoles and strobilurins
fungicides have been exploring the new concept, which has not only the disease control ability but
also has positive effects on plant physiology [33]. In this study, salt stress reduced the plant growth
and biomass, which might be due to the higher accumulation of Na+ [34], and the reduction of the
photosynthetic pigment content [35]. A similar loss of plant growth and biomass was reported by Wang
et al. [36] and Wu et al. [37] in stressed cucumber plants. On the other hand, the application of TEB
and TRI in salt-treated plants restored the growth parameters. This might be due to the improvement
of ion homeostasis. Several reports also found that triazole fungicides enhanced plant growth and
biomass under salinity stress [38,39]. However, the sole treatment of TEB and TRI showed a negative
effect on plant height. This might be due to the activity of triazoles on isoprenoid pathway, which
inhibits gibberellic acid synthesis [40].

The complex of pigment-protein becomes destabilized under high salt concentration, which
increases the activity of the chlorophyllase enzyme and produces a higher amount of ROS, thus inhibit
photosynthetic pigment synthesis [2]. In the present study, we observed that the salt-treated plants
reduced the content of chl and car. However, using TEB and TRI with salt significantly increased the
chl and car content. The content of chl and car improvement might be due to increasing the production
of cytokinin after applying tebuconazole, which stimulates the biosynthesis of the photosynthesis
pigments [41].

The crucial effect of salt stress is the overproduction of ROS, which increases lipid peroxidation
and inhibits ROS-scavenging enzymes’ activities [2,14]. In the present investigation, the cucumber
plants exposed to salt showing an excessive production of H2O2 might be due to the destruction of the
membrane properties by enhancing lipid peroxidation (MDA content). Damaging the cell membrane
indicates the production of salt-induced oxidative stress. These results supported by previously
published reports that salinity enhanced the permeability of the membrane by improving the content
of MDA in cucumber plants [42,43]. On the other hand, exogenous TEB and TRI reduced salt-induced
oxidative damage in cucumber plants by inhibiting the overproduction of ROS and lipid peroxidation.
A number of reports found that exogenous application of triazole and strobilurin fungicide reduced
the overproduction of ROS to mitigate lipid peroxidation of the cell membrane [44–46].

Ascorbate and GSH are non-enzymatic antioxidants, which play a vital role to defend plant cells
and biomolecules from oxidative stress by quenching ROS [14]. To maintain the cellular redox state,
AsA/DHA and GSH/GSSG ratios are more important under abiotic stress [47]. The antioxidant, AsA,
can directly react and quench of ROS [14] and GSH regulates the GPX and GST enzymes’ activity to
scavenge ROS and create plant stress tolerance [48]. In the present study, AsA content was reduced by
salinity while DHA content increased. Therefore, salinity stress reduced the AsA/DHA ratio, which
indicated the overproduction of ROS and enhanced oxidative damage. Under salt stress, lower AsA
content and AsA/DHA ratio was also found by Hasanuzzaman et al. [49]. In contrast, the exogenous
TEB and TRI improved the content of the AsA and AsA/DHA ratio, while the content of DHA declined
with increasing activity of MDHAR and DHAR. A similar report published by Akbari et al. [39], who
found that the uses of hexaconazole in canola leaves increased the AsA content under salt stress. To
improve plant tolerance under salt stress, GSH plays a vital role by scavenging ROS and regenerating
the content of AsA [50]. In the present study, salt treatment enhanced the content of GSSG and GSH,
which resulted in the decrease in the GSH/GSSG ratio. Similar results also reported by Nahar et al. [15],
where salinity improved GSSG content, while the GSH/GSSG ratio decreased. On the other hand,
exogenous TEB and TRI decreased the content of GSSG and GSH, where the GSH/GSSG ratio was
enhanced with increasing GR activity. The results suggested that TEB and TRI improved the AsA
and GSH content under salt stress and related findings have been reported by Sankar et al. [51] in the
Arachis hypogaea L. plant and Akbari et al. [39] in the Brassica napus L. plant.
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The AsA-GSH cycle pathway enzymes (APX, MDHAR, DHAR, and GR) efficiently work together
with non-enzymatic antioxidants (AsA and GSH) to scavenge ROS and reproduce AsA and GSH [47].
In the present study, the activity of APX significantly increased, where MDHAR, DHAR, and GR
activity reduced under salt stress. Moreover, under salinity, lower content of AsA was found, which
might be due to higher APX activity and lower activity of MDHAR and DHAR. This result was
corroborated by Hasanuzzaman et al. [52]. The APX detoxify the H2O2 to H2O using AsA and produce
MDHA and DHA where, MDHAR and DHAR are responsible for restoring AsA from MDHA and
DHA with the help of nicotinamide adenine dinucleotide phosphate (NADPH) and GSH [6]. On the
other hand, the activity of MDHAR and DHAR significantly increased in TEB and TRI-treated plants
under salt stress, which might be responsible for the increase of AsA content. In addition, exogenous
TEB and TRI treatment also increased the GR activity and regulated the GSH/GSSG ratio.

In our investigation, lower CAT activity was found under salt stress, which increased the
production of H2O2 and a similar result was also found by Hasanuzzaman et al. [13]. Regardless,
cucumber plants were treated with TEB and TRI with salt, which increased the CAT activity by reducing
H2O2 production. This result is supported by Liang et al. [45]. The enzyme GST has multi-functional
activities, which can scavenge H2O2 by using GSH and has the ability to detoxify the xenobiotic
substances [53]. In this study, the activity of GST was reduced under salt stress, which is supported by
Hasanuzzaman et al. [13]. In contrast, exogenous TEB and TRI improved the activity of GST, which
might help detoxify H2O2 in salt-treated cucumber plants.

Cell membrane injury can be easily identified by EL under stress conditions. It is the indicator
of cell membrane integrity [54]. In the present study, salt-stress significantly increased the EL,
which hampered the cell membrane integrity. This was evident from higher lipid peroxidation (MDA).
Similar results were also reported by Zhu et al. [55], who found salinity-imposed cell membrane damage
of cucumber plants by creating higher EL. However, exogenous TEB and TRI reduced salt-induced
damage by inhibiting the higher EL. Decreased EL indicated the reduction of membrane damage and
lower lipid peroxidation, which resulted in membrane stability improved. Arivalagan et al. [56] also
found that exogenous propiconazole regulated cell membrane integrity by reducing EL.

Under a high salt concentration, the initial response of plants is Na+-induced K+ efflux. Higher
Na+ accumulation under salinity condition reduces the K+/Na+ ratio and disrupts ion homeostasis [57].
In our study, under the salt condition, higher content of Na+ was found in all observed plant parts,
where the K+ content was lower. This resulted in a decreased K+/Na+ ratio. The higher accumulation
of Na+ was found in the roots when compared to the stems and leaves. Similarly, Wu and Wang [58]
reported higher Na+ concentration in rice plant roots than shoots as well as a lower K+/Na+ ratio under
salinity. The higher Na+ concentration and lower K+ was also found under salt stress, which was
reported by Kaya et al. [59] and Stepien and Kobus [60]. However, exogenous TEB and TRI reduced the
uptake of Na+ while increasing the K+ uptake and K+/Na+ ratio in leaves, stems, and roots of cucumber
plants under salt stress. Hajihashemi et al. [61] also observed that the application of paclobutrazol
(PBZ) decreased the accumulation of Na+ in the wheat plant, while enhancing the contents of K+, P,
and N under salt stress. In our investigation, salt treatment reduced Ca2+ and Mg2+ content in all
observed plant parts, which might be due to the Na+ activity to displace the Ca2+ and Mg2+. Similar
results were found by Rahman et al. [4] in rice plants under salt stress. However, the application of
TEB and TRI improved the Ca2+ and Mg2+ content in all parts of cucumber plants that were exposed
to salinity.

4. Materials and Methods

4.1. Plant Materials and Test Conditions

Healthy and uniform cucumber (Cucumis sativus L. cv. Tokiwa) seeds were selected to perform
this experiment. Cucumber plants were grown in a glasshouse at normal light conditions on 25–28 ◦C
air temperature and relative humidity of 60–70%. Seedling plug trays were used for sowing the seeds,
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which filled with the mixture of vermiculite and peat at the ratio of 1:2 (v/v). After 29 days of seed
sowing, the first true leaf was developed and then seedlings were transferred to plastic pots using
grow rock and half-strength Hoagland solution was used as nutrients [62]. After every three days,
nutrient solutions were changed during the growing period. Twenty-one days after transplanting,
the plants were exposed to salt (60 mM NaCl) and fungicides (1.375 µM TEB + 0.5 µM TRI, and 2.75
µM TEB + 1.0 µM TRI) solely and in combination for the next 6 days. Un-treated plants were grown
with nutrient solution only. The experiment was arranged in a completely randomized design (CRD)
and each treatment was replicated three times.

4.2. Salt Toxicity Symptoms and Growth Parameters

Plant growth was determined by measuring plant height, number of leaves plant−1, internodes
length, and FW and DW of leaf and root of the plants. The height of the plant was observed from the
shoot base to the tip of the top leaf. After harvest, the leaf and root were weighed for FW determination
and then dried at 70 ◦C for 48 h to measure DW.

4.3. Determination of Photosynthetic Pigment Content

Photosynthetic pigment (chl and car) was measured according to Lichtenthaler [63]. Leaves were
cut into smaller pieces and placed in small centrifuge tubes containing 100% ethanol. The samples were
heated in a water bath at 60 ◦C. Thereafter, the absorbance of each sample was cooled and measured
spectrophotometrically at 664, 648, and 470 nm to calculate chl a, chl b, and car content.

4.4. Determination of Malondialdehyde Content

The content of MDA was observed following the technique of Heath and Packer [64] with
modification from Hasanuzzaman et al. [16]. Trichloroacetic acid (TCA) was used to homogenize
the fresh leaves and centrifuged at 11,500× g. The thiobarbituric acid (TBA) reagent was added with
leaf extracts and incubated in a hot water bath. Thereafter, the mixture was quickly chilled to stop
the reaction and centrifuged again at 11,500× g. The optical absorbance was observed at 532 nm,
and corrected at 600 nm.

4.5. Observation of H2O2 Content

Hydrogen peroxide content was observed according to Hossain et al. [65]. Leaves were
homogenized with 5% (w/v) TCA, and centrifuged at 11,500× g. After centrifuging, the leaf extract was
mixed with K-P buffer and 1 M KI. A standard curve was used to calculate the H2O2 content after
collecting the absorbance at 390 nm.

4.6. Observation of Ascorbate and Glutathione Content

Fresh leaves were extracted with 5% (w/v) TCA, and centrifuged at 11,500× g. Total ascorbate
and DHA contents were measured following the method of Lechno et al. [66]. For total ascorbate
determination, CuSO4.5H2O was used to oxidize AsA. Therefore, the reaction mixture (dinitrophenyl
hydrazine and thiourea dissolved in diluted H2SO4) was added and incubated for 3 h at 37 ◦C.
Ice-cold H2SO4 was used to stop the reaction. For the DHA measurement, DW was used instead of
CuSO4.5H2O. The total ascorbate and DHA was observed spectrophotometrically at 520 nm, and known
concentrations of AsA were used to prepare a standard curve. The content of AsA was measured by
subtracting of DHA from the total ascorbate.

Glutathione was determined following the method of Law et al. [67]. Leaf extract was mixed
with K-P buffer (pH 7.0) and DW to be neutralized for total glutathione whereas 2-vinylpyridine was
used instead of DW for GSSG. Standard curves were prepared using known concentrations of GSH
and GSSG for determining total glutathione and GSSG content, respectively, and measured at 412 nm.
The content of GSH was calculated by subtracting GSSG from total glutathione.
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4.7. Protein Quantification

Protein concentration was determined according to Bradford [68]. Bovine serum albumin (BSA)
was used to prepare the standards.

4.8. Enzyme Activity Determination

Leaf tissues were homogenized by using ice-cold extraction buffer containing 50 mM K-P buffer
(pH 7.0), 1 mM AsA, 100 mM KCl, 5 mM β-mercaptoethanol, and 10% glycerol (w/v). Therefore,
centrifugation (11,500× g) was done, and supernatants were collected separately and further used to
determine the enzyme activity assay.

Catalase (CAT; EC: 1.11.1.6) activity was assayed according to Hasanuzzaman et al. [16]. Reduction
of absorbance was measured at 240 nm caused by the H2O2 degradation in the reaction mixture
containing 50 mM K-P buffer (pH 7.0), 15 mM H2O2, and enzyme solution. Catalase activity was
computed using the extinction coefficient 39.4 M−1 cm−1.

Ascorbate peroxidase (APX, EC: 1.11.1.11) activity was measured according to Nakano and
Asada [69], where, the reaction reagent contained 50 mM K-P buffer (pH 7.0), 0.5 mM AsA, 0.1 mM
EDTA, 0.1 mM H2O2, and enzyme solution. Decreased absorbance was observed at 290 nm and the
APX activity was estimated using 2.8 mM−1 cm−1 as the extinction coefficient.

Monodehydroascorbate reductase (MDHAR, EC: 1.6.5.4) activity was estimated following Hossain
et al. [70], where the reaction mixture comprised of 50 mM Tris–HCl buffer (pH 7.5), 2.5 mM AsA,
AO (0.5 units), 0.2 mM NADPH, and enzyme solution. The absorbance was measured at 340 nm and
the activity was computed using 6.2 mM−1 cm−1 as an extinction coefficient.

The activity of dehydroascorbate reductase (DHAR, EC: 1.8.5.1) was measured according to
Nakano and Asada [69], where 50 mM K-P buffer (pH 7.0), 2.5 mM GSH, 0.1 mM DHA, and 0.1 mM
EDTA were mixed when making the reaction buffer. The activity was calculated by observing the
absorbance at 265 nm and using an extinction coefficient of 14 mM−1 cm−1.

Glutathione reductase (GR, EC: 1.6.4.2) activity was assayed following Hasanuzzaman et al. [16],
where the buffer solution contained 0.1 M K-P buffer (pH 7), 1 mM GSSG, 1 mM EDTA, 0.2 mM
NADPH, and enzyme solution. The activity was measured by monitoring the absorbance at 340 nm
and estimated using the extinction coefficient 6.2 mM−1 cm−1.

Glutathione S-transferase (GST, EC: 2.5.1.18) activity was estimated according to Hasanuzzaman
et al. [49], where the reaction buffer solution was comprised of 100 mM Tris-HCl buffer (pH 6.5), 1 mM
1-chloro-2,4-dinitrobenzene (CDNB), 1.5 mM GSH, and enzyme solution. The increase absorbance was
monitored at 340 nm and the activity was estimated using 9.6 mM−1 cm−1 as the extinction coefficient.

4.9. Measurement of Electrolyte Leakage

Electrolytic leakage was measured following the technique of Dionisio-Sese and Tobita [71]. Pieces
of leaves were kept into a test tube containing deionized H2O and heated at 40 ◦C. Therefore, test tubes
were cooled at room temperature and primary electrical conductivity (EC1) was collected using CON
700 EC meter, Eutech Instruments, Singapore. Again, the test tubes were heated using an autoclave and
cooled at room temperature and, thus, final electrical conductivity (EC2) was observed. To calculate
EL, the following formula was used: EL (%) = EC1/EC2 × 100.

4.10. Determination of Mineral Content

The contents of mineral nutrients (Na+, K+, Ca2+, and Mg2+) were determined using an atomic
absorption spectrophotometer (Shimadzu GFA-7000A, Shimadzu, Japan). The samples of the plant
were dried in an oven at 70 ◦C for 48 h. After drying, 0.1 g of each samples were digested using
HNO3:HClO4 (5:1 v/v) acid mixture at 70 ◦C for 48 h.
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4.11. Statistical Analysis

Computer-based software XLSTAT v. 2018 [72] was used to analyze the data employing the
analysis of variance (ANOVA) technique. Means were compared using Fisher’s least significant
difference (LSD) test, where p ≤ 0.05 were considered as significant.

5. Conclusions

From the findings of the study, it can be concluded that salinity disrupted the cucumber plant’s
growth and physiological activity by the higher accumulation of Na+, which was the main cause for the
overproduction of ROS and change in ion homeostasis. Salt-induced higher ROS developed oxidative
damage and hampered the normal growing mechanisms of cucumber plants. However, the exogenous
TEB and TRI could enhance the physiological activity of cucumber plants under salinity, which is linked
with the TEB and TRI mediated mitigation of higher ROS by up-regulating the mechanisms of the
antioxidant defense. The ion homeostasis also regulated the application of TEB and TRI by increasing
the K+/Na+ ratio under salt condition. Lastly, it is recommended that TEB and TRI fungicide can be
used in cucumber plants for better growth by regulating oxidative damage under stress conditions.

Author Contributions: S.M.M. conceived, designed, and performed the experiment and prepared the manuscript.
M.H. designed the experiment and analyzed the data. M.H.M.B.B. and K.P. actively participated in executing the
experiment. M.F. conceived, designed, and monitored the experiment.

Funding: This research received no external funding.

Acknowledgments: The Ministry of Education, Culture, Sports, Science and Technology (MEXT) funded
this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hasanuzzaman, M.; Nahar, K.; Fujita, M. Plant response to salt stress and role of exogenous protectants
to mitigate salt-induced damages. In Ecophysiology and Responses of Plants under Salt Stress; Ahmed, P.,
Azooz, M.M., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2013; pp. 25–87.

2. Hasanuzzaman, M.; Nahar, K.; Rohman, M.M.; Anee, T.I.; Huang, Y.; Fujita, M. Exogenous silicon protects
Brassica napus plants from salinity-induced oxidative stress through the modulation of AsA-GSH pathway,
thiol-dependent antioxidant enzymes and glyoxalase systems. Gesunde Pflanz. 2018, 70, 185–194. [CrossRef]

3. Manivannan, A.; Soundararajan, P.; Muneer, S.; Ko, C.H.; Jeong, B.R. Silicon mitigates salinity stress by
regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum
Bugwang. Biomed Res. Int. 2016, 2016, 3076357. [CrossRef] [PubMed]

4. Rahman, A.; Nahar, K.; Hasanuzzaman, M.; Fujita, M. Calcium supplementation improves Na+/K+ ratio,
antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front. Plant Sci. 2016, 7, 609.
[CrossRef]

5. Mahmood, S.; Daur, I.; Al-Solaimani, S.G.; Ahmad, S.; Madkour, M.H.; Yasir, M.; Hirt, H.; Ali, S.; Ali, Z.
Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean.
Front. Plant Sci. 2016, 7, 876. [CrossRef] [PubMed]

6. Mishra, P.; Bhoomika, K.; Dubey, R.S. Differential responses of antioxidative defense system to prolonged
salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 2013,
250, 3–19. [CrossRef] [PubMed]

7. Pérez-López, U.; Robredo, A.; Lacuesta, M.; Sgherri, C.; Muñoz-Rueda, A.; Navari-Izzo, F.; Mena-Petite, A.
The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol. Plant.
2010, 135, 29–42. [CrossRef]

8. Mahmud, J.A.; Hasanuzzaman, M.; Nahar, K.; Rahman, A.; Hossain, M.S.; Fujita, M. γ-aminobutyric acid
(GABA) confers chromium stress tolerance in Brassica juncea L. by modulating the antioxidant defense and
glyoxalase systems. Ecotoxicology 2017, 26, 675–690. [CrossRef]

9. Wutipraditkul, N.; Wongwean, P.; Buaboocha, T. Alleviation of salt-induced oxidative stress in rice seedlings
by proline and/or glycinebetaine. Biol. Plant. 2015, 59, 547–553. [CrossRef]

http://dx.doi.org/10.1007/s10343-018-0430-3
http://dx.doi.org/10.1155/2016/3076357
http://www.ncbi.nlm.nih.gov/pubmed/27088085
http://dx.doi.org/10.3389/fpls.2016.00609
http://dx.doi.org/10.3389/fpls.2016.00876
http://www.ncbi.nlm.nih.gov/pubmed/27379151
http://dx.doi.org/10.1007/s00709-011-0365-3
http://www.ncbi.nlm.nih.gov/pubmed/22194018
http://dx.doi.org/10.1111/j.1399-3054.2008.01174.x
http://dx.doi.org/10.1007/s10646-017-1800-9
http://dx.doi.org/10.1007/s10535-015-0523-0


Plants 2019, 8, 428 14 of 17

10. Iqbal, N.; Shahid, U.; Khan, N.A. Nitrogen availability regulates proline and ethylene production and
alleviates salinity stress in mustard (Brassica juncea). J. Plant Physiol. 2015, 178, 84–91. [CrossRef]

11. Nahar, K.; Hasanuzzaman, M.; Alam, M.A.; Rahman, A.; Fujita, M. Polyamine and nitric oxide cross talk:
Antagonistic effects on cadmium toxicity in mungbean plants through up regulating the metal detoxification,
antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol. Environ. Saf. 2016, 126, 245–255.
[CrossRef]

12. Beak, K.H.; Skinner, D.Z. Alteration of antioxidant enzyme gene expression during cold acclimation of
near-isogenic wheat lines. Plant Sci. 2003, 165, 1221–1227. [CrossRef]

13. Hasanuzzaman, M.; Alam, M.M.; Rahman, A.; Hasanuzzaman, M.; Nahar, K.; Fujita, M. Exogenous proline
and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better
protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Biomed. Res. Int. 2014,
757219. [CrossRef] [PubMed]

14. Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop
plants. Plant Physiol. Biochem. 2010, 48, 909–930. [CrossRef] [PubMed]

15. Nahar, K.; Hasanuzzaman, M.; Alam, M.M.; Fujita, M. Roles of exogenous glutathione in antioxidant defense
system and methylglyoxal detoxification during salt stress in mung bean. Biol. Plant. 2015, 59, 745–756.
[CrossRef]

16. Hasanuzzaman, M.; Nahar, K.; Anee, T.I.; Khan, M.I.R.; Fujita, M. Silicon-mediated regulation of antioxidant
defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. S. Afr. J. Bot. 2018,
115, 50–57. [CrossRef]

17. Sauter, H. Fungicides acting on oxidative phosphorylation. In Modern Crop Protection Compounds;
Schirmer, K.W., Ed.; Wiley: Weinheim, Germany, 2007; pp. 457–495.

18. Diaz-Espejo, A.; Cuevas, M.V.; Ribas-Carbo, M.; Flexas, J.; Martorell, S.; Fernández, J.E. The effect of
strobilurins on leaf gas exchange, water use efficiency and ABA content in grapevine under field conditions.
J. Plant Physiol. 2012, 169, 379–386. [CrossRef]

19. Zhang, Y.J.; Zhang, X.; Chen, C.J.; Zhou, M.G.; Wang, H.C. Effects of fungicides JS399-19, azoxystrobin,
tebuconazloe, and carbendazim on the physiological and biochemical indices and grain yield of winter
wheat. Pestic. Biochem. Physiol. 2010, 98, 151–157. [CrossRef]

20. Köhle, H.; Grossmann, K.; Jabs, T.; Gerhard, M.; Kaiser, W.; Glaab, J.; Conrath, U.; Seehaus, K.; Herms, S.
Physiological effects of the strobilurin fungicide F 500 on plants. In Modern fungicides and antifungal compounds
III; Dehne, H.-W., Gisi, U., Kuck, K.H., Russell, P.E., Lyr, H., Eds.; AgroConcept: Bonn, Germany, 2002;
pp. 61–74.

21. Carelli, A.; Farina, G.; Gozza, F.; Merlini, L. Interaction of tetraconazole and its enantiomers with cytochrome
P-450 from Ustilago maydis. Pesticide Sci. 1992, 35, 167–170. [CrossRef]

22. Koller, W. Isomers of sterol synthesis inhibitors: Fungicidal effects and plant growth regulator activities.
Pesticide Sci. 1987, 18, 129–147. [CrossRef]

23. Grossmann, K.; Kwiatkowski, J.; Retzlaff, G. Regulation of phytohormone levels, leaf senescence and
transpiration by the strobilurin kresoxim-methyl in wheat (Triticum aestivum). J. Plant Physiol. 1999, 154,
805–808. [CrossRef]

24. Kumar, M.; Chand, R.; Shah, K. Evidences for growth-promoting and fungicidal effects of low doses of
tricyclazole in barley. Plant Physiol. Biochem. 2016, 103, 176–182. [CrossRef] [PubMed]

25. Law-Ogbomo, K.E.; Osaigbovo, A.U. Growth and yield responses of cucumber (Cucumis sativum L.) to
different nitrogen levels of goat manure in the humid ultisols environment. Not. Sci. Biol. 2018, 10, 228–232.
[CrossRef]

26. Jones, J.R.W.; Pike, L.M.; Yourman, L.F. Salinity influences cucumber growth and yield. J. Am. Soc. Hortic. Sci.
1989, 114, 547–551.

27. Duan, J.J.; Li, J.; Guo, S.R.; Kang, Y.Y. Exogenous spermidine affects polyamine metabolism in salinity-stressed
Cucumis sativus roots and enhances short-term salinity tolerance. J. Plant Physiol. 2008, 165, 1620–1635.
[CrossRef]

28. Shu, S.; Guo, S.R.; Sun, J.; Yuan, L.Y. Effects of salt stress on the structure and function of the photosynthetic
apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiol. Plant. 2012, 146, 285–296.
[CrossRef]

http://dx.doi.org/10.1016/j.jplph.2015.02.006
http://dx.doi.org/10.1016/j.ecoenv.2015.12.026
http://dx.doi.org/10.1016/S0168-9452(03)00329-7
http://dx.doi.org/10.1155/2014/757219
http://www.ncbi.nlm.nih.gov/pubmed/24991566
http://dx.doi.org/10.1016/j.plaphy.2010.08.016
http://www.ncbi.nlm.nih.gov/pubmed/20870416
http://dx.doi.org/10.1007/s10535-015-0542-x
http://dx.doi.org/10.1016/j.sajb.2017.12.006
http://dx.doi.org/10.1016/j.jplph.2011.11.014
http://dx.doi.org/10.1016/j.pestbp.2010.04.007
http://dx.doi.org/10.1002/ps.2780350211
http://dx.doi.org/10.1002/ps.2780180206
http://dx.doi.org/10.1016/S0176-1617(99)80262-4
http://dx.doi.org/10.1016/j.plaphy.2016.03.002
http://www.ncbi.nlm.nih.gov/pubmed/26995312
http://dx.doi.org/10.15835/nsb10210227
http://dx.doi.org/10.1016/j.jplph.2007.11.006
http://dx.doi.org/10.1111/j.1399-3054.2012.01623.x


Plants 2019, 8, 428 15 of 17

29. Colla, G.; Rouphael, Y.; Rea, E.; Cardarelli, M. Grafting cucumber plants enhance tolerance to sodium chloride
and sulfate salinization. Sci. Hortic. 2012, 135, 177–185. [CrossRef]

30. Kere, G.M.; Guo, Q.; Shen, J.; Xu, J.; Chen, J. Heritability and gene effects for salinity tolerance in cucumber
(Cucumis sativus L.) estimated by generation mean analysis. Sci. Hortic. 2013, 159, 122–127. [CrossRef]

31. Nabati, D.A.; Schmidt, R.E.; Parrish, D.J. Alleviation of salinity stress in Kentucky bluegrass by plant growth
regulators and iron. Crop Sci. 1994, 34, 198–202. [CrossRef]

32. Filippou, P.; Antoniou, C.; Obata, T.; Harokopos, E.; Van Der Kelen, K.; Kanetis, L.; Aidinis, V.; Van
Breusegem, F.; Fernie, A.R.; Fotopoulos, V. Kresoxim-methyl primes Medicago truncatula plants against
abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream
transcriptional and metabolic readjustment. J. Exp. Bot. 2016, 67, 1259–1274. [CrossRef]

33. Ijaz, M.; Honermeier, B. Effect of triazole and strobilurin fungicides on seed yield formation and grain quality
of winter rapeseed (Brassica napus L.). Field Crops Res. 2012, 130, 80–86. [CrossRef]

34. Munns, R.; Tester, M. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 2008, 59, 651–681. [CrossRef]
[PubMed]

35. Shabani, A.; Sepaskhah, A.R.; Kamgar-Haghighi, A.A. Growth and physiologic response of rapeseed
(Brassica napus L.) to deficit irrigation, water salinity and planting method. Int. J. Plant Prod. 2013, 7, 569–596.

36. Wang, L.Y.; Liu, J.L.; Wang, W.X.; Sun, Y. Exogenous melatonin improves growth and photosynthetic capacity
of cucumber under salinity-induced stress. Photosynthetica 2016, 54, 19–27. [CrossRef]

37. Wu, Y.; Jin, X.; Liao, W.; Hu, L.; Dawuda, M.M.; Zhao, X.; Tang, Z.; Gong, T.; Yu, J. 5-Aminolevulinic
Acid (ALA) alleviated salinity stress in cucumber seedlings by enhancing chlorophyll synthesis pathway.
Front. Plant Sci. 2018, 9, 635. [CrossRef]

38. Manivannan, P.; Jaleel, C.A.; Kishorekumar, A.; Sankar, B.; Somasundaram, R.; Panneerselvam, R. Protection
of Vigna unguiculata (L.) Walp. plants from salt stress by paclobutrazol. Colloids Surf. B Biointerfaces 2008,
61, 315–318. [CrossRef]

39. Akbari, G.A.; Hojati, M.; Modarres-Sanavy, S.A.M.; Ghanati, F. Exogenously applied hexaconazole ameliorates
salinity stress by inducing an antioxidant defense system in Brassica napus L. plants. Pestic. Biochem. Physiol.
2011, 100, 244–250. [CrossRef]

40. Graebe, J.E. Gibberellin biosynthesis and control. Ann. Rev. Plant Physiol. 1987, 38, 419–465. [CrossRef]
41. Fletcher, R.A.; Gilley, A.; Sankhla, N.; Davis, T.D. Triazoles as plant growth regulators and stress protectants.

Hortic. Rev. 2000, 24, 55–138.
42. Huang, Y.; Bie, Z.; Liu, Z.; Zhen, A.; Wang, W. Protective role of proline against salt stress is partially related

to the improvement of water status and peroxidase enzyme activity in cucumber. Soil Sci. Plant Nutr. 2009,
55, 698–704. [CrossRef]

43. Tiwari, J.K.; Munshi, A.D.; Kumar, R.; Pandey, R.N.; Arora, A.; Bhat, J.S.; Sureja, A.K. Effect of salt stress
on cucumber: Na+–K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiol. Plant.
2010, 32, 103–114. [CrossRef]

44. Li, J.; Sun, C.; Yu, N.; Wang, C.; Zhang, T.; Bu, H. Hexaconazole–Cu complex improves the salt tolerance of
Triticum aestivum seedlings. Pestic. Biochem. Physiol. 2016, 127, 90–94. [CrossRef] [PubMed]

45. Liang, S.; Xu, X.; Lu, Z. Effect of azoxystrobin fungicide on the physiological and biochemical indices and
ginsenoside contents of ginseng leaves. J. Ginseng Res. 2018, 42, 175–182. [CrossRef] [PubMed]

46. Amaro, A.C.E.; Ramos, A.R.P.; Macedo, A.C.; Ono, E.O.; Rodrigues, J.D. Effects of the fungicides azoxystrobin,
pyraclostrobin and boscalid on the physiology of Japanese cucumber. Sci. Hortic. 2018, 228, 66–75. [CrossRef]

47. Hasanuzzaman, M.; Bhuyan, M.H.M.; Anee, T.I.; Parvin, K.; Nahar, K.; Mahmud, J.A.; Fujita, M. Regulation
of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants
2019, 8, 384. [CrossRef]

48. Szalai, G.; Kellõs, T.; Galiba, G.; Kocsy, G. Glutathione as an antioxidant and regulatory molecule in plants
under abiotic stress conditions. Plant Growth Regul. 2009, 28, 66–80. [CrossRef]

49. Hasanuzzaman, M.; Hossain, M.A.; Fujita, M. Nitric oxide modulates antioxidant defense and
the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings.
Plant Biotechnol. Rep. 2011, 5, 353–365. [CrossRef]

50. Foyer, C.H.; Noctor, G. Redox sensing and signaling associated with reactive oxygen in chloroplasts,
peroxisomes and mitochondria. Physiol. Plant. 2003, 119, 355–364. [CrossRef]

http://dx.doi.org/10.1016/j.scienta.2011.11.023
http://dx.doi.org/10.1016/j.scienta.2013.04.020
http://dx.doi.org/10.2135/cropsci1994.0011183X003400010035x
http://dx.doi.org/10.1093/jxb/erv516
http://dx.doi.org/10.1016/j.fcr.2012.02.017
http://dx.doi.org/10.1146/annurev.arplant.59.032607.092911
http://www.ncbi.nlm.nih.gov/pubmed/18444910
http://dx.doi.org/10.1007/s11099-015-0140-3
http://dx.doi.org/10.3389/fpls.2018.00635
http://dx.doi.org/10.1016/j.colsurfb.2007.09.007
http://dx.doi.org/10.1016/j.pestbp.2011.04.008
http://dx.doi.org/10.1146/annurev.pp.38.060187.002223
http://dx.doi.org/10.1111/j.1747-0765.2009.00412.x
http://dx.doi.org/10.1007/s11738-009-0385-1
http://dx.doi.org/10.1016/j.pestbp.2015.09.012
http://www.ncbi.nlm.nih.gov/pubmed/26821663
http://dx.doi.org/10.1016/j.jgr.2017.02.004
http://www.ncbi.nlm.nih.gov/pubmed/29719464
http://dx.doi.org/10.1016/j.scienta.2017.10.016
http://dx.doi.org/10.3390/antiox8090384
http://dx.doi.org/10.1007/s00344-008-9075-2
http://dx.doi.org/10.1007/s11816-011-0189-9
http://dx.doi.org/10.1034/j.1399-3054.2003.00223.x


Plants 2019, 8, 428 16 of 17

51. Sankar, B.; Jaleel, C.A.; Manivannan, P.; Kishorekumar, A.; Somasundaram, R.; Panneerselvam, R. Effect of
paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in
Arachis hypogaea L. Colloids Surf. B Biointerfaces 2007, 60, 229–235. [CrossRef]

52. Hasanuzzaman, M.; Hossain, M.A.; Fujita, M. Exogenous selenium pretreatment protects rapeseed
seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal
detoxification systems. Biol. Trace Elem. Res. 2012, 149, 248–261. [CrossRef]

53. Parvin, K.; Hasanuzzaman, M.; Bhuyan, M.H.M.; Mohsin, S.M.; Fujita, M. Quercetin mediated salt tolerance
in tomato through the enhancement of plant antioxidant defense and glyoxalase systems. Plants 2019, 8, 247.
[CrossRef]

54. Niu, C.F.; Wei, W.E.I.; Zhou, Q.Y.; Tian, A.G.; Hao, Y.J.; Zhang, W.K.; Ma, B.; Lin, Q.; Zhang, Z.B.; Zhang, J.S.;
et al. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis
plants. Plant Cell Environ. 2012, 35, 1156–1170. [CrossRef] [PubMed]

55. Zhu, J.; Bie, Z.; Li, Y. Physiological and growth responses of two different salt-sensitive cucumber cultivars to
NaCl stress. Soil Sci. Plant Nutr. 2008, 54, 400–407. [CrossRef]

56. Arivalagan, M.; Somasundaram, R. Propiconazole and Salicylic acid alleviate effect of drought stress in
sorghum (Sorghum bicolor L. Moench) through biochemical and some physiological characters. J. Appl.
Adv. Res. 2016, 1, 1–7. [CrossRef]

57. Bose, J.; Rodrigo-Moreno, A.; Shabala, S. ROS homeostasis in halophytes in the context of salinity stress
tolerance. J. Exp. Bot. 2014, 65, 1241–1257. [CrossRef] [PubMed]

58. Wu, G.Q.; Wang, S.M. Calcium regulates K+/Na+ homeostasis in rice (Oryza sativa L.) under saline conditions.
Plant Soil Environ. 2012, 58, 121–127. [CrossRef]

59. Kaya, C.; Higgs, D.; Ince, F.; Amador, B.M.; Cakir, A.; Sakar, E. Ameliorative effects of potassium phosphate
on salt stressed pepper and cucumber. J. Plant Nutr. 2003, 26, 807–820. [CrossRef]

60. Stepien, P.; Kobus, S. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress.
Biol. Plant. 2005, 50, 610–616. [CrossRef]

61. Hajihashemi, S.; Kiarostami, K.; Saboora, A.; Enteshari, S. Exogenously applied paclobutrazol modulates
growth in salt-stressed wheat plants. Plant Growth Regul. 2007, 53, 117–128. [CrossRef]

62. Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil; Circ No. 347; California
Agricultural Experiment Station: Davis, CA, USA, 1950.

63. Lichtenthaler, H.K. Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown.
J. Plant Physiol. 1987, 131, 101–110. [CrossRef]

64. Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid
peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [CrossRef]

65. Hossain, M.S.; Hasanuzzaman, M.; Sohag, M.M.H.; Bhuyan, M.H.M.B.; Fujita, M. Acetate-induced modulation
of ascorbate: Glutathione cycle and restriction of sodium accumulation in shoot confer salt tolerance in
Lens culinaris Medik. Physiol. Mol. Biol. Plants 2019, 25, 443–455. [CrossRef] [PubMed]

66. Lechno, S.; Zamski, E.; Tel-Or, E. Salt stress-induced responses in cucumber plants. J. Plant Physiol. 1997,
150, 206–211. [CrossRef]

67. Law, M.Y.; Charles, S.A.; Halliwell, B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts.
The effect of hydrogen peroxide and of paraquat. Biochem. J. 1983, 210, 899–903. [CrossRef] [PubMed]

68. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [CrossRef]

69. Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach
chloroplasts. Plant Cell Physiol. 1981, 22, 867–880.

70. Hossain, M.A.; Nakano, Y.; Asada, K. Monodehydroascorbate reductase in spinach chloroplasts and its
participation in the regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol. 1984,
25, 385–395.

http://dx.doi.org/10.1016/j.colsurfb.2007.06.016
http://dx.doi.org/10.1007/s12011-012-9419-4
http://dx.doi.org/10.3390/plants8080247
http://dx.doi.org/10.1111/j.1365-3040.2012.02480.x
http://www.ncbi.nlm.nih.gov/pubmed/22220579
http://dx.doi.org/10.1111/j.1747-0765.2008.00245.x
http://dx.doi.org/10.21839/jaar.2016.v1i3.26
http://dx.doi.org/10.1093/jxb/ert430
http://www.ncbi.nlm.nih.gov/pubmed/24368505
http://dx.doi.org/10.17221/374/2011-PSE
http://dx.doi.org/10.1081/PLN-120018566
http://dx.doi.org/10.1007/s10535-006-0096-z
http://dx.doi.org/10.1007/s10725-007-9209-8
http://dx.doi.org/10.1016/S0176-1617(87)80271-7
http://dx.doi.org/10.1016/0003-9861(68)90654-1
http://dx.doi.org/10.1007/s12298-018-00640-6
http://www.ncbi.nlm.nih.gov/pubmed/30956427
http://dx.doi.org/10.1016/S0176-1617(97)80204-0
http://dx.doi.org/10.1042/bj2100899
http://www.ncbi.nlm.nih.gov/pubmed/6307273
http://dx.doi.org/10.1016/0003-2697(76)90527-3


Plants 2019, 8, 428 17 of 17

71. Dionisio-Sese, M.L.; Tobita, S. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 1998,
135, 1–9. [CrossRef]

72. Addinsoft. XLSTAT. In Data Analysis and Statistics Software for Microsoft Excel; Addinsoft: Paris, France, 2018.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0168-9452(98)00025-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Plant Growth 
	Photosynthetic Pigments 
	MDA and ROS Production 
	Antioxidant Non-Enzymatic 
	Antioxidant Enzymes 
	Electrolytic Leakage 
	Ion Homeostasis 

	Discussion 
	Materials and Methods 
	Plant Materials and Test Conditions 
	Salt Toxicity Symptoms and Growth Parameters 
	Determination of Photosynthetic Pigment Content 
	Determination of Malondialdehyde Content 
	Observation of H2O2 Content 
	Observation of Ascorbate and Glutathione Content 
	Protein Quantification 
	Enzyme Activity Determination 
	Measurement of Electrolyte Leakage 
	Determination of Mineral Content 
	Statistical Analysis 

	Conclusions 
	References

