Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Le Luo Guan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 813 KiB  
Article
Impact of Feed Composition on Rumen Microbial Dynamics and Phenotypic Traits in Beef Cattle
by André L. A. Neves, Ricardo Augusto Mendonça Vieira, Einar Vargas-Bello-Pérez, Yanhong Chen, Tim McAllister, Kim H. Ominski, Limei Lin and Le Luo Guan
Microorganisms 2025, 13(2), 310; https://doi.org/10.3390/microorganisms13020310 - 31 Jan 2025
Viewed by 1166
Abstract
The rumen microbiome is central to feed digestion and host performance, making it an important target for improving ruminant productivity and sustainability. This study investigated how feed composition influences rumen microbial abundance and phenotypic traits in beef cattle. Fifty-nine Angus bulls were assigned [...] Read more.
The rumen microbiome is central to feed digestion and host performance, making it an important target for improving ruminant productivity and sustainability. This study investigated how feed composition influences rumen microbial abundance and phenotypic traits in beef cattle. Fifty-nine Angus bulls were assigned to forage- and grain-based diets in a randomized block design, evaluating microbial dynamics, methane emissions, and feed efficiency. Quantitative PCR (qPCR) quantified bacterial, archaeal, fungal, and protozoal populations. Grain-based diets reduced bacterial and fungal counts compared to forage diets (1.1 × 1011 vs. 2.8 × 1011 copies of 16S rRNA genes and 1.5 × 103 vs. 3.5 × 104 copies of 18S rRNA genes/mL, respectively), while protozoan and methanogen populations remained stable. Microbial abundance correlated with feed intake metrics, including dry matter and neutral detergent fiber intakes. Methane emissions were lower in grain-fed bulls (14.8 vs. 18.0 L CH4/kg DMI), though feed efficiency metrics showed no direct association with microbial abundance. Comparative analysis revealed adaptive microbial shifts in response to dietary changes, with functional redundancy maintaining rumen stability and supporting host performance. These findings provide insights into how feed composition shapes rumen microbial dynamics and host phenotypes, highlighting the functional adaptability of the rumen microbiome during dietary transitions. Full article
(This article belongs to the Special Issue Gut Microbiota of Food Animal)
Show Figures

Figure 1

19 pages, 2897 KiB  
Article
Mucosal Immunization with Spore-Based Vaccines against Mannheimia haemolytica Enhances Antigen-Specific Immunity
by Muhammed Salah Uddin, Angelo Kaldis, Rima Menassa, José Ortiz Guluarte, Daniel R. Barreda, Le Luo Guan and Trevor W. Alexander
Vaccines 2024, 12(4), 375; https://doi.org/10.3390/vaccines12040375 - 1 Apr 2024
Cited by 2 | Viewed by 3060
Abstract
Background: Mannheimia haemolytica is a bovine respiratory pathogen commonly associated with bacterial bronchopneumonia. Current vaccine strategies have shown variable efficacy in feedlot cattle, and therefore novel vaccines are needed. Bacillus subtilis spores have been investigated as a mucosal vaccine platform, due to their [...] Read more.
Background: Mannheimia haemolytica is a bovine respiratory pathogen commonly associated with bacterial bronchopneumonia. Current vaccine strategies have shown variable efficacy in feedlot cattle, and therefore novel vaccines are needed. Bacillus subtilis spores have been investigated as a mucosal vaccine platform, due to their ability to bind and present antigens to the mucosa and act as an adjuvant. The aim of this study was to develop two spore-based mucosal vaccines targeting M. haemolytica and evaluate their immunogenicity in mice. Methods: Two antigen constructs composed of cholera toxin B subunit, M. haemolytica leukotoxin, and either the M. haemolytica outer membrane protein PlpE (MhCP1) or GS60 (MhCP2) were synthesized, purified and then bound to spores as vaccines. In two separate mice trials, the spore-bound vaccines (Spore-MhCP1 and Spore-MhCP2) were administered to mice through intranasal and intragastric routes, while free antigens were administered intranasally and intramuscularly. Unbound spores were also evaluated intranasally. Antigen-specific serum IgG and mucosal IgA from bronchoalveolar lavage, feces, and saliva were measured after vaccination. Mice sera from all treatment groups were assessed for their bactericidal activity against M. haemolytica. Results: In both mice experiments, intramuscular immunization induced the strongest serum IgG antibody response. However, the intranasal administration of Spore-MhCP1 and Spore-MhCP2 elicited the greatest secretory IgA-specific response against leukotoxin, PlpE, and GS60 in bronchoalveolar lavage, saliva, and feces (p < 0.05). Compared to the intranasal administration of free antigen, spore-bound antigen groups showed greater bactericidal activity against M. haemolytica (p < 0.05). Conclusions: Since intranasally delivered Spore-MhCP1 and Spore-MhCP2 elicited both systemic and mucosal immune responses in mice, these vaccines may have potential to mitigate lung infection in cattle by restricting M. haemolytica colonization and proliferation in the respiratory tract. The efficacy of these mucosal spore-based vaccines merits further assessment against M. haemolytica in cattle. Full article
(This article belongs to the Special Issue Advances in Oral Vaccine Development)
Show Figures

Figure 1

13 pages, 3483 KiB  
Article
In Silico Analysis of Shiga Toxin-Producing Escherichia coli O157:H7 Strains from Presumptive Super- and Low-Shedder Cattle
by Emmanuel W. Bumunang, Vinicius S. Castro, Trevor Alexander, Rahat Zaheer, Tim A. McAllister, Le Luo Guan and Kim Stanford
Toxins 2024, 16(2), 86; https://doi.org/10.3390/toxins16020086 - 5 Feb 2024
Cited by 1 | Viewed by 2438
Abstract
Cattle are the primary reservoir for STEC O157, with some shedding >104 CFU/g in feces, a phenomenon known as super-shedding (SS). The mechanism(s) responsible for SS are not understood but have been attributed to the environment, host, and pathogen. This study aimed [...] Read more.
Cattle are the primary reservoir for STEC O157, with some shedding >104 CFU/g in feces, a phenomenon known as super-shedding (SS). The mechanism(s) responsible for SS are not understood but have been attributed to the environment, host, and pathogen. This study aimed to compare genetic characteristics of STEC O157 strains from cattle in the same commercial feedlot pens with SS or low-shedding (LS) status. Strains from SS (n = 35) and LS (n = 28) collected from 11 pens in three feedlots were analyzed for virulence genes, Shiga toxin-carrying bacteriophage insertion sites, and phylogenetic relationships. In silico analysis showed limited variation regarding virulence gene profiles. Stx-encoding prophage insertion sites mrlA and wrbA for stx1a and stx2a, respectively, were all occupied, but two isolates had fragments of the stx-carrying phage in mrlA and wrbA loci without stx1a and stx2a. All strains screened for lineage-specific polymorphism assay (LSPA-6) were 111111, lineage I. Of the isolates, 61 and 2 were clades 1 and 8, respectively. Phylogenetic analysis revealed that pens with more than one SS had multiple distantly related clusters of SS and LS isolates. Although virulence genes and lineage were largely similar within and across feedlots, multiple genetic origins of strains within a single feedlot pen illustrate challenges for on-farm control of STEC. Full article
(This article belongs to the Collection Shiga Toxins)
Show Figures

Graphical abstract

14 pages, 2134 KiB  
Article
Competitive Analysis of Rumen and Hindgut Microbiota Composition and Fermentation Function in Diarrheic and Non-Diarrheic Postpartum Dairy Cows
by Yangyi Hao, Tong Ouyang, Wei Wang, Yajing Wang, Zhijun Cao, Hongjian Yang, Le Luo Guan and Shengli Li
Microorganisms 2024, 12(1), 23; https://doi.org/10.3390/microorganisms12010023 - 22 Dec 2023
Cited by 9 | Viewed by 2034
Abstract
Postpartum dairy cows can develop nutritional diarrhea when their diet is abruptly changed for milk production. However, it is unclear whether nutritional diarrhea develops as a result of gut acidosis and/or dysbiosis. This study aimed to uncover changes in the gastrointestinal microbiota and [...] Read more.
Postpartum dairy cows can develop nutritional diarrhea when their diet is abruptly changed for milk production. However, it is unclear whether nutritional diarrhea develops as a result of gut acidosis and/or dysbiosis. This study aimed to uncover changes in the gastrointestinal microbiota and its fermentation parameters in response to nutritional diarrhea in postpartum dairy cows. Rumen and fecal samples were collected from twenty-four postpartum cows fed with the same diet but with different fecal scores: the low-fecal-score (LFS: diarrheic) group and high-fecal-score (HFS: non-diarrheic) group. A microbiota difference was only observed for fecal microbiota, with the relative abundance of Defluviitaleaceae_UCG-011 and Lachnospiraceae_UCG-001 tending (p < 0.10) to be higher in HFS cows compared to LFS cows, and Frisingicoccus were only detected in HFS cows. The fecal bacterial community in LFS cows had higher robustness (p < 0.05) compared to that in HFS cows, and also had lower negative cohesion (less competitive behaviors) and higher positive cohesion (more cooperative behaviors) (p < 0.05) compared that in to HFS cows. Lower total volatile fatty acids and higher ammonia nitrogen (p < 0.05) were observed in LFS cows’ feces compared to HFS cows. The observed shift in fecal bacterial composition, community networks, and metabolites suggests that hindgut dysbiosis could be related to nutritional diarrhea in postpartum cows. Full article
(This article belongs to the Special Issue Gut Microbiome of Farm Animals in Health and Disease 2.0)
Show Figures

Figure 1

14 pages, 690 KiB  
Review
Microbial Interventions to Improve Neonatal Gut Health
by Ranga Nakandalage, Le Luo Guan and Nilusha Malmuthuge
Microorganisms 2023, 11(5), 1328; https://doi.org/10.3390/microorganisms11051328 - 18 May 2023
Cited by 4 | Viewed by 2714
Abstract
The diverse pioneer microbial community colonizing the mammalian gastrointestinal tract is critical for the developing immune system. Gut microbial communities of neonates can be affected by various internal and external factors, resulting in microbial dysbiosis. Microbial dysbiosis during early life affects gut homeostasis [...] Read more.
The diverse pioneer microbial community colonizing the mammalian gastrointestinal tract is critical for the developing immune system. Gut microbial communities of neonates can be affected by various internal and external factors, resulting in microbial dysbiosis. Microbial dysbiosis during early life affects gut homeostasis by changing metabolic, physiological, and immunological status, which increases susceptibility to neonatal infections and long-term pathologies. Early life is crucial for the establishment of microbiota and the development of the host immune system. Therefore, it provides a window of opportunity to reverse microbial dysbiosis with a positive impact on host health. Recent attempts to use microbial interventions during early life have successfully reversed dysbiotic gut microbial communities in neonates. However, interventions with persistent effects on microbiota and host health are still limited. This review will critically discuss microbial interventions, modulatory mechanisms, their limitations, and gaps in knowledge to understand their roles in improving neonatal gut health. Full article
(This article belongs to the Special Issue Beneficial Microbes and Gastrointestinal Microbiota)
Show Figures

Figure 1

15 pages, 2276 KiB  
Article
Genomic Analysis of Shiga Toxin-Producing E. coli O157 Cattle and Clinical Isolates from Alberta, Canada
by Emmanuel W. Bumunang, Rahat Zaheer, Kim Stanford, Chad Laing, Dongyan Niu, Le Luo Guan, Linda Chui, Gillian A. M. Tarr and Tim A. McAllister
Toxins 2022, 14(9), 603; https://doi.org/10.3390/toxins14090603 - 31 Aug 2022
Cited by 5 | Viewed by 2844
Abstract
Shiga toxin (stx) is the principal virulence factor of the foodborne pathogen, Shiga toxin-producing Escherichia coli (STEC) O157:H7 and is associated with various lambdoid bacterio (phages). A comparative genomic analysis was performed on STEC O157 isolates from cattle (n = [...] Read more.
Shiga toxin (stx) is the principal virulence factor of the foodborne pathogen, Shiga toxin-producing Escherichia coli (STEC) O157:H7 and is associated with various lambdoid bacterio (phages). A comparative genomic analysis was performed on STEC O157 isolates from cattle (n = 125) and clinical (n = 127) samples to characterize virulence genes, stx-phage insertion sites and antimicrobial resistance genes that may segregate strains circulating in the same geographic region. In silico analyses revealed that O157 isolates harboured the toxin subtypes stx1a and stx2a. Most cattle (76.0%) and clinical (76.4%) isolates carried the virulence gene combination of stx1, stx2, eae and hlyA. Characterization of stx1 and stx2-carrying phages in assembled contigs revealed that they were associated with mlrA and wrbA insertion sites, respectively. In cattle isolates, mlrA and wrbA insertion sites were occupied more often (77% and 79% isolates respectively) than in clinical isolates (38% and 1.6% isolates, respectively). Profiling of antimicrobial resistance genes (ARGs) in the assembled contigs revealed that 8.8% of cattle (11/125) and 8.7% of clinical (11/127) isolates harboured ARGs. Eight antimicrobial resistance genes cassettes (ARCs) were identified in 14 isolates (cattle, n = 8 and clinical, n = 6) with streptomycin (aadA1, aadA2, ant(3’’)-Ia and aph(3’’)-Ib) being the most prevalent gene in ARCs. The profound disparity between the cattle and clinical strains in occupancy of the wrbA locus suggests that this trait may serve to differentiate cattle from human clinical STEC O157:H7. These findings are important for stx screening and stx-phage insertion site genotyping as well as monitoring ARGs in isolates from cattle and clinical samples. Full article
Show Figures

Figure 1

12 pages, 492 KiB  
Article
The Effects of Breed and Residual Feed Intake Divergence on the Abundance and Active Population of Rumen Microbiota in Beef Cattle
by Yawei Zhang, Fuyong Li, Yanhong Chen and Le-Luo Guan
Animals 2022, 12(15), 1966; https://doi.org/10.3390/ani12151966 - 3 Aug 2022
Cited by 4 | Viewed by 2672
Abstract
To assess the effects of residual feed intake (RFI) and breed on rumen microbiota, the abundance (DNA) and active population (RNA) of the total bacteria, archaea, protozoa, and fungi in the rumen of 96 beef steers from three different breeds (Angus (AN), Charolais [...] Read more.
To assess the effects of residual feed intake (RFI) and breed on rumen microbiota, the abundance (DNA) and active population (RNA) of the total bacteria, archaea, protozoa, and fungi in the rumen of 96 beef steers from three different breeds (Angus (AN), Charolais (CH), and Kinsella Composite (KC)), and divergent RFIs (High vs Low), were estimated by measuring their respective maker gene copies using qRT-PCR. All experimental animals were kept under the same feedlot condition and fed with the same high-energy finishing diet. Rumen content samples were collected at slaughter and used for the extraction of genetic material (DNA and RNA) and further analysis. There was a significant difference (p < 0.01) between the marker gene copies detected for abundance and active populations for all four microbial groups. AN steers had a higher abundance of bacteria (p < 0.05) and a lower abundance of eukaryotes (protozoa and fungi, p < 0.05) compared to KC steers, while the abundance of protozoa (p < 0.05) in the AN cattle and fungi (p < 0.05) in the KC cattle were lower and higher, respectively, than those in the CH steers. Meanwhile, the active populations of bacteria, archaea, and protozoa in the KC steers were significantly lower than those in the AN and CH animals (p < 0.01). This work demonstrates that cattle breed can affect rumen microbiota at both the abundance and activity level. The revealed highly active protozoal populations indicate their important role in rumen microbial fermentation under a feedlot diet, which warrants further study. Full article
Show Figures

Figure 1

20 pages, 6251 KiB  
Article
Accessing Dietary Effects on the Rumen Microbiome: Different Sequencing Methods Tell Different Stories
by Mi Zhou, Eóin O’Hara, Shaoxun Tang, Yanhong Chen, Matthew E. Walpole, Paweł Górka, Gregory B. Penner and Le Luo Guan
Vet. Sci. 2021, 8(7), 138; https://doi.org/10.3390/vetsci8070138 - 19 Jul 2021
Cited by 9 | Viewed by 4726
Abstract
The current study employed both amplicon and shotgun sequencing to examine and compare the rumen microbiome in Angus bulls fed with either a backgrounding diet (BCK) or finishing diet (HG), to assess if both methods produce comparable results. Rumen digesta samples from 16 [...] Read more.
The current study employed both amplicon and shotgun sequencing to examine and compare the rumen microbiome in Angus bulls fed with either a backgrounding diet (BCK) or finishing diet (HG), to assess if both methods produce comparable results. Rumen digesta samples from 16 bulls were subjected for microbial profiling. Distinctive microbial profiles were revealed by the two methods, indicating that choice of sequencing approach may be a critical facet in studies of the rumen microbiome. Shotgun-sequencing identified the presence of 303 bacterial genera and 171 archaeal species, several of which exhibited differential abundance. Amplicon-sequencing identified 48 bacterial genera, 4 archaeal species, and 9 protozoal species. Among them, 20 bacterial genera and 5 protozoal species were differentially abundant between the two diets. Overall, amplicon-sequencing showed a more drastic diet-derived effect on the ruminal microbial profile compared to shotgun-sequencing. While both methods detected dietary differences at various taxonomic levels, few consistent patterns were evident. Opposite results were seen for the phyla Firmicutes and Bacteroidetes, and the genus Selenomonas. This study showcases the importance of sequencing platform choice and suggests a need for integrative methods that allow robust comparisons of microbial data drawn from various omic approaches, allowing for comprehensive comparisons across studies. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

15 pages, 2186 KiB  
Article
Rumen and Hindgut Bacteria Are Potential Indicators for Mastitis of Mid-Lactating Holstein Dairy Cows
by Yifan Zhong, Ming-Yuan Xue, Hui-Zeng Sun, Teresa G. Valencak, Le Luo Guan and Jianxin Liu
Microorganisms 2020, 8(12), 2042; https://doi.org/10.3390/microorganisms8122042 - 20 Dec 2020
Cited by 23 | Viewed by 4314
Abstract
Mastitis is one of the major problems for the productivity of dairy cows and its classifications have usually been based on milk somatic cell counts (SCCs). In this study, we investigated the differences in milk production, rumen fermentation parameters, and diversity and composition [...] Read more.
Mastitis is one of the major problems for the productivity of dairy cows and its classifications have usually been based on milk somatic cell counts (SCCs). In this study, we investigated the differences in milk production, rumen fermentation parameters, and diversity and composition of rumen and hindgut bacteria in cows with similar SCCs with the aim to identify whether they can be potential microbial biomarkers to improve the diagnostics of mastitis. A total of 20 dairy cows with SCCs over 500 × 103 cells/mL in milk but without clinical symptoms of mastitis were selected in this study. Random forest modeling revealed that Erysipelotrichaceae UCG 004 and the [Eubacterium] xylanophilum group in the rumen, as well as the Family XIII AD3011 group and Bacteroides in the hindgut, were the most influential candidates as key bacterial markers for differentiating “true” mastitis from cows with high SCCs. Mastitis statuses of 334 dairy cows were evaluated, and 96 in 101 cows with high SCCs were defined as healthy rather than mastitis according to the rumen bacteria. Our findings suggested that bacteria in the rumen and hindgut can be a new approach and provide an opportunity to reduce common errors in the detection of mastitis. Full article
(This article belongs to the Special Issue Gut Microbiome and Aging)
Show Figures

Figure 1

19 pages, 2357 KiB  
Article
Effects of Thymol Supplementation on Goat Rumen Fermentation and Rumen Microbiota In Vitro
by Jiangkun Yu, Liyuan Cai, Jiacai Zhang, Ao Yang, Yanan Wang, Lei Zhang, Le Luo Guan and Desheng Qi
Microorganisms 2020, 8(8), 1160; https://doi.org/10.3390/microorganisms8081160 - 30 Jul 2020
Cited by 28 | Viewed by 4869
Abstract
This study was performed to explore the predominant responses of rumen microbiota with thymol supplementation as well as effective dose of thymol on rumen fermentation. Thymol at different concentrations, i.e., 0, 100 mg/L, 200 mg/L, and 400 mg/L (four groups × five replications) [...] Read more.
This study was performed to explore the predominant responses of rumen microbiota with thymol supplementation as well as effective dose of thymol on rumen fermentation. Thymol at different concentrations, i.e., 0, 100 mg/L, 200 mg/L, and 400 mg/L (four groups × five replications) was applied for 24 h of fermentation in a rumen fluid incubation system. Illumina MiSeq sequencing was applied to investigate the ruminal microbes in addition to the examination of rumen fermentation. Thymol doses reached 200 mg/L and significantly decreased (p < 0.05) total gas production (TGP) and methane production; the production of total volatile fatty acids (VFA), propionate, and ammonia nitrogen, and the digestibility of dry matter and organic matter were apparently decreased (p < 0.05) when the thymol dose reached 400 mg/L. A thymol dose of 200 mg/L significantly affected (p < 0.05) the relative abundance of 14 genera of bacteria, three species of archaea, and two genera of protozoa. Network analysis showed that bacteria, archaea, and protozoa significantly correlated with methane production and VFA production. This study indicates an optimal dose of thymol at 200 mg/L to facilitate rumen fermentation, the critical roles of bacteria in rumen fermentation, and their interactions with the archaea and protozoa. Full article
(This article belongs to the Special Issue Gut Microbiota Development in Farm Animals)
Show Figures

Figure 1

26 pages, 1131 KiB  
Article
The Bovine Metabolome
by Aidin Foroutan, Carolyn Fitzsimmons, Rupasri Mandal, Hamed Piri-Moghadam, Jiamin Zheng, AnChi Guo, Carin Li, Le Luo Guan and David S. Wishart
Metabolites 2020, 10(6), 233; https://doi.org/10.3390/metabo10060233 - 5 Jun 2020
Cited by 89 | Viewed by 6589
Abstract
From an animal health perspective, relatively little is known about the typical or healthy ranges of concentrations for many metabolites in bovine biofluids and tissues. Here, we describe the results of a comprehensive, quantitative metabolomic characterization of six bovine biofluids and tissues, including [...] Read more.
From an animal health perspective, relatively little is known about the typical or healthy ranges of concentrations for many metabolites in bovine biofluids and tissues. Here, we describe the results of a comprehensive, quantitative metabolomic characterization of six bovine biofluids and tissues, including serum, ruminal fluid, liver, Longissimus thoracis (LT) muscle, semimembranosus (SM) muscle, and testis tissues. Using nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography–tandem mass spectrometry (LC–MS/MS), and inductively coupled plasma–mass spectrometry (ICP–MS), we were able to identify and quantify more than 145 metabolites in each of these biofluids/tissues. Combining these results with previous work done by our team on other bovine biofluids, as well as previously published literature values for other bovine tissues and biofluids, we were able to generate quantitative reference concentration data for 2100 unique metabolites across five different bovine biofluids and seven different tissues. These experimental data were combined with computer-aided, genome-scale metabolite inference techniques to add another 48,628 unique metabolites that are biochemically expected to be in bovine tissues or biofluids. Altogether, 51,801 unique metabolites were identified in this study. Detailed information on these 51,801 unique metabolites has been placed in a publicly available database called the Bovine Metabolome Database. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Graphical abstract

Back to TopTop