Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Authors = Huiting Zhang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6719 KiB  
Article
circSATB1 Modulates Cell Senescence in Age-Related Acute Myeloid Leukemia: A Mechanistic Proposal
by Linxiang Han, Xi Wen, Ling Zhang, Xingcheng Yang, Ziyan Wei, Haodong Wu, Yichen Zhan, Huiting Wang and Yu Fang
Cells 2025, 14(15), 1181; https://doi.org/10.3390/cells14151181 - 31 Jul 2025
Viewed by 236
Abstract
Acute myeloid leukemia (AML) is a malignant hematological tumor with a high prevalence in elderly people, and circular RNA (circRNA) plays an important role in age-related diseases. Induction of cancer cell senescence is a highly promising therapeutic strategy; however, the presence of senescence-associated [...] Read more.
Acute myeloid leukemia (AML) is a malignant hematological tumor with a high prevalence in elderly people, and circular RNA (circRNA) plays an important role in age-related diseases. Induction of cancer cell senescence is a highly promising therapeutic strategy; however, the presence of senescence-associated circRNAs in AML remains to be elucidated. Here, we show that the expression patterns of circRNAs differed between elderly AML patients and healthy volunteers. circSATB1 was significantly overexpressed in elderly patients and AML cells. Knockdown of circSATB1 resulted in the inhibition of proliferation and arrest of the cell cycle in the G0/G1 phase; no effect on apoptosis or DNA integrity was observed, and precocious cellular senescence was promoted, characterized by no change in telomere length. Database analysis revealed that there may be two miRNA and nine RNA-binding proteins (RBPs) involved in regulating the cellular functions of circSATB1. Our observations uncover circSATB1-orchestrated cell senescence in AML, which provides clues for finding more modest therapeutic targets for AML. Full article
(This article belongs to the Special Issue The Role of Cellular Senescence in Health, Disease, and Aging)
Show Figures

Figure 1

13 pages, 3548 KiB  
Article
Analysis of Carcass and Meat Characteristics in Breast Muscle Between Hubbard White Broilers and Xueshan Chickens
by Fan Li, Xingyu Zhang, Jiajia Yu, Jiaxue Yuan, Yuanfeng Zhang, Huiting He, Qing Ma, Yinglin Lu, Xiaoe Xiang and Minli Yu
Animals 2025, 15(14), 2099; https://doi.org/10.3390/ani15142099 - 16 Jul 2025
Viewed by 345
Abstract
The focus on selecting broilers for rapid growth rates and enhanced breast muscle yield has resulted in a decline in meat quality. The differences in carcass characteristics and meat quality between Hubbard white broilers (HWs, a commercial breed) and Xueshan chickens (XSs, an [...] Read more.
The focus on selecting broilers for rapid growth rates and enhanced breast muscle yield has resulted in a decline in meat quality. The differences in carcass characteristics and meat quality between Hubbard white broilers (HWs, a commercial breed) and Xueshan chickens (XSs, an indigenous breed) at market age were analyzed to determine the potential mechanisms responsible for these differences. The results show that HWs exhibited significantly better carcass performance than XSs, including the larger weight of the carcass, the breast muscle, and the thigh muscle (p < 0.01). In addition, based on HE staining analysis, HWs’ breast muscles had a considerably larger average myofiber area and diameter than those of XSs (p < 0.01). Furthermore, the physical characteristics of the meat revealed that XSs had higher redness and yellowness and also higher lightness. HW meat had a higher pH and thermal loss, but a lower shear force and drip loss than XS meat (p < 0.01). The content of saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs) was, remarkably, lower in the breast muscles of HWs than of XSs (p < 0.01). In contrast, HWs had a larger concentration of monounsaturated fatty acids (MUFAs) than XSs (p < 0.01). Finally, the breast muscles of XSs had lower levels of mRNA expression for genes linked to lipid metabolism, such as fatty acid binding protein 4 (Fabp4) and peroxisome proliferator-activated receptor alpha (Pparα), and had higher levels of the phosphofructokinase muscle type (Pfkm) compared to HWs (p < 0.01). These results indicate that a lower carcass yield was observed in XSs compared with HWs, but that XSs showed better performance in terms of meat quality than HW. Full article
(This article belongs to the Special Issue Advances in Genetic Analysis of Important Traits in Poultry)
Show Figures

Figure 1

14 pages, 3171 KiB  
Article
Genome-Wide Identification and Functional Analysis of the PEBP Gene Family in Begonia semperflorens ‘Super Olympia’ Reveal Its Potential Role in Regulating Flowering
by Congcong Fu, Mengru Zhao, Huiting Xia, Puyu Ren, Weichao Liu, Qirui Wang and Kaiming Zhang
Int. J. Mol. Sci. 2025, 26(13), 6291; https://doi.org/10.3390/ijms26136291 - 29 Jun 2025
Viewed by 391
Abstract
The phosphatidylethanolamine-binding protein (PEBP) gene family, known for its pivotal role in controlling floral transition, regulates flowering time, and, thus, shapes the continuous-flowering trait in ornamental plants. In this study, we conducted the first genome-wide identification and bioinformatics analysis of the PEBP gene [...] Read more.
The phosphatidylethanolamine-binding protein (PEBP) gene family, known for its pivotal role in controlling floral transition, regulates flowering time, and, thus, shapes the continuous-flowering trait in ornamental plants. In this study, we conducted the first genome-wide identification and bioinformatics analysis of the PEBP gene family in Begonia semperflorens ‘Super Olympia’, a variety that exhibits year-round flowering. Via phylogenetic analysis, a total of 10 BsPEBP genes were identified and categorized into four subfamilies: the FT-like (two members), TFL1-like (three members), PEBP-like (three members), and MFT-like (two members) subfamilies. Gene structure analysis revealed highly conserved motif compositions among family members, and protein tertiary structure prediction indicated the dominance of random coils in their structures. Promoter cis-acting element analysis revealed light-responsive, hormone-responsive (ABA, GA, and JA), and abiotic stress-responsive elements in the BsPEBP genes, suggesting their potential integration into multiple regulatory pathways. The tissue-specific expression profiles revealed that BsPEBP6 was significantly upregulated in floral organs, whereas TFL1-like subfamily members were predominantly expressed in vegetative tissues. These findings imply that the FT-like and TFL1-like genes antagonistically regulate the continuous-flowering trait of B. semperflorens ‘Super Olympia’ through their respective roles in promoting and repressing flowering. Our findings provide a preliminary theoretical foundation for elucidating the molecular mechanisms by which the PEBP gene family regulates flowering time in ornamental plants and offer valuable insights for developing breeding strategies aimed at flowering time modulation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 7628 KiB  
Article
Optimization of Actuator Arrangement of Cable–Strut Tension Structures Based on Multi-Population Genetic Algorithm
by Huiting Xiong, Tingmei Zhou, Pei Zhang, Zhibing Shang, Mithun Biswas, Hao Li and Huayang Zhu
Symmetry 2025, 17(5), 695; https://doi.org/10.3390/sym17050695 - 1 May 2025
Viewed by 372
Abstract
This study addresses the optimization of actuator arrangements in adaptive cable–strut tension structures to enhance structural controllability and performance. Two novel optimization criteria are proposed: (1) a weighted sensitivity criterion that integrates nodal displacements and internal force increments, and (2) a system strain [...] Read more.
This study addresses the optimization of actuator arrangements in adaptive cable–strut tension structures to enhance structural controllability and performance. Two novel optimization criteria are proposed: (1) a weighted sensitivity criterion that integrates nodal displacements and internal force increments, and (2) a system strain energy criterion reflecting overall structural stiffness. Nonlinear optimization models are formulated for these criteria, with actuator positions as design variables, and solved using a robust multi-population genetic algorithm. The weighted sensitivity criterion prioritizes targeted control of specific nodes and members, while the strain energy criterion ensures balanced global response. Numerical validation is conducted on a Geiger cable dome and a four-layer tensegrity structure. Results demonstrate that both criteria yield actuator arrangements satisfying geometric symmetry while achieving high sensitivity in displacement and internal force control. The proposed framework offers practical insights for optimizing adaptive structures under static control requirements, and advances the field by bridging localized and global response optimization, enabling smarter, more resilient tension structures. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

16 pages, 3695 KiB  
Article
Odor-Binding Protein 2 in Apis mellifera ligustica Plays Important Roles in the Response to Floral Volatiles Stimuli from Melon and Tomato Flowers
by Jiangchao Zhang, Weihua Ma, Yue Zhang, Surong Lu, Chaoying Zhang, Huiting Zhao and Yusuo Jiang
Int. J. Mol. Sci. 2025, 26(7), 3176; https://doi.org/10.3390/ijms26073176 - 29 Mar 2025
Viewed by 452
Abstract
Honeybee olfaction can influence foraging behavior and affect crop pollination. Odor-binding proteins play a vital role in honeybee olfactory perception. A previous study based on the antennal transcriptome of Apis mellifera ligustica in melon and tomato greenhouses revealed that AmelOBP2 is highly expressed. [...] Read more.
Honeybee olfaction can influence foraging behavior and affect crop pollination. Odor-binding proteins play a vital role in honeybee olfactory perception. A previous study based on the antennal transcriptome of Apis mellifera ligustica in melon and tomato greenhouses revealed that AmelOBP2 is highly expressed. Therefore, we aimed to further investigate the olfactory recognition mechanism of honeybees by detecting the expression levels and binding ability of AmelOBP2 to floral volatiles of melon and tomato flowers. The results show that AmelOBP2 mRNA was highly expressed in the antennae of honeybees, and its protein expression was highest in the antennae at 20 days of age and was higher in the melon greenhouse. The binding ability of AmelOBP2 to floral volatiles of melon was stronger than that of tomato. AmelOBP2 had a stronger binding ability with aldehydes in melon floral volatiles and with terpenes and benzenes in tomato floral volatiles. After feeding with siRNA, the electroantennogram response of honeybees to E-2-hexenal, E-2-octenal, and 1-nonanal decreased markedly, confirming the role of AmelOBP2 in the recognition of melon and tomato floral volatiles. These results elucidate the molecular mechanisms underlying honeybee flower-visiting behavior and provide a theoretical reference for regulating the behavior of honeybees using plant volatiles. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 3478 KiB  
Article
Multifunctional Stimuli-Responsive Polyaniline-Based Conductive Composite Film
by Wenxin Wang, Huiting Cheng, Xiaobin Zhang, Huan Yang, Haoxiang Ma, Zhiwen Wang, Yijun Chen, Xin Chen, Yihan Pu, Yijun Shen and Qi Chen
Polymers 2025, 17(6), 759; https://doi.org/10.3390/polym17060759 - 13 Mar 2025
Viewed by 658
Abstract
There is a growing demand for multifunctional materials that can meet the increasingly complex needs of modern society. The combination of functionalization and intellectualization promotes the development of multifunctional smart materials. These materials are not only required to possess excellent basic properties, but [...] Read more.
There is a growing demand for multifunctional materials that can meet the increasingly complex needs of modern society. The combination of functionalization and intellectualization promotes the development of multifunctional smart materials. These materials are not only required to possess excellent basic properties, but also need to integrate multiple functions to adapt to various application scenarios. In this study, a simple solution co-blending method for preparing a polyaniline-based multifunctional conductive composite film was proposed. This methodology employs polyvinyl alcohol (PVA) as a stimuli-responsive matrix, combined with polyaniline (PANI) serving as a functional component, while glutaraldehyde (GA) acts as the crosslinking agent. This PANI-based composite film overcomes the disadvantage that PANI does not easily form a uniform film. The maximum conductivity of this film can reach 0.034 S·cm−1. It is worth noting that the combination of PANI with the stimuli-responsive PVA film resulted in a composite film that not only retained good electrical conductivity, but also exhibited multiple stimuli-responsive properties. These stimuli-responsive properties can be controlled by external stimuli such as heat, voltage, light, or water. The PANI-based composite film could recover its original shape within 25 s when the applied voltage reached 30 V. These characteristics open up possibilities of potential applications where controlled deformation is desired. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 7080 KiB  
Article
Genome-Wide Identification and Expression Analysis of FD Gene Family in Bamboos
by Lihan Hou, Huiting Zhang, Yakun Fan, Yaling Zhang, Wengen Zhang, Guangyao Yang, Chunce Guo and Meixia Wang
Int. J. Mol. Sci. 2024, 25(23), 13062; https://doi.org/10.3390/ijms252313062 - 5 Dec 2024
Cited by 1 | Viewed by 1119
Abstract
The regulation of flowering time is a highly coordinative process that involves the interplay of multiple genes. The FLOWERING LOCUS D (FD) gene is one of those important players. In this study, we identified and characterized FD genes in bamboo, a [...] Read more.
The regulation of flowering time is a highly coordinative process that involves the interplay of multiple genes. The FLOWERING LOCUS D (FD) gene is one of those important players. In this study, we identified and characterized FD genes in bamboo, a plant with the unique monocarpy flowering phenomenon. An angiosperm-wide FD gene family analysis demonstrated that unlike the most recent common ancestor (MRCA) of angiosperms, which had only one FD gene, five FD copies were present in the MRCA of Poaceae, and the same gene copy number was retained in the MRCA of the Bambusoideae subfamily. Further analysis of the Poaceae FD gene family revealed five distinctive clades resulted from four duplication events, with two of these events being specific to the Bambusoideae subfamily. High levels of conservation were observed in the gene structure and amino acid composition of structural domain among the FD genes across bamboos and their close relatives, indicating functional conservation. Furthermore, gene expression profiling indicated that FD gene expression in bamboo closely resemble the expression patterns of their homologs in rice. Additionally, overexpression of two bamboo genes (Phy.ed_05093.t1 and Phy.ed_14669.t1) in Arabidopsis resulted in an early flowering phenotype, demonstrating their involvement in the regulation of the flowering process in plants. Our findings provide a comprehensive resource for understanding the evolution, structure, expression, and function of FD genes in Poaceae and Bambusoideae. Full article
Show Figures

Figure 1

16 pages, 4477 KiB  
Article
Analysis of VLF Electromagnetic Scattering in Lower Anisotropic Ionosphere Based on Transfer Matrix
by Lin Zhao, Zhiting Zhan, Zhigang Zhang and Huiting Feng
Atmosphere 2024, 15(11), 1396; https://doi.org/10.3390/atmos15111396 - 19 Nov 2024
Cited by 1 | Viewed by 844
Abstract
Very-low-frequency (VLF) electromagnetic waves (3–30 kHz) are stable and attenuated, suitable for various applications in submarine communication and earthquake prediction. Very-low-frequency electromagnetic waves usually propagate in atmospheric waveguides formed between the anisotropic ionosphere at low to medium heights and the earth. However, the [...] Read more.
Very-low-frequency (VLF) electromagnetic waves (3–30 kHz) are stable and attenuated, suitable for various applications in submarine communication and earthquake prediction. Very-low-frequency electromagnetic waves usually propagate in atmospheric waveguides formed between the anisotropic ionosphere at low to medium heights and the earth. However, the electromagnetic parameters of the anisotropic ionosphere at low to medium heights are very complex, making it difficult to accurately calculate and analyze the scattering characteristics of very-low-frequency electromagnetic waves. This article divides the mid to low altitude anisotropic ionosphere into fine layers, and establishes a more accurate transmission model for ultra-low-frequency electromagnetic waves in the layered structure of ionization layers by deriving the anisotropy/transmission matrix of each layer. In the comparative verification, we calculated the field strength of 17 kHz VLF electromagnetic waves within a transmission distance range of 500–1600 km based on the proposed method and compared it with statistical data collected from actual communication experiments and theoretical calculation results based on traditional ITU-R P.372-11. The results show that compared with the theoretical results based on ITU-R P.372-11, the method proposed in this paper fully considers the vertical height non-uniformity of the ionosphere, and its calculated results are more consistent with actual measurement data, with higher accuracy. Our work provides excellent guidance for the development of precise models for the propagation and prediction of extremely low-frequency electromagnetic waves, as well as a good idea for the accurate calculation of VLF electromagnetic scattering within 500–1500 km. Full article
Show Figures

Figure 1

14 pages, 8117 KiB  
Article
Ferulic Acid Interferes with Radioactive Intestinal Injury Through the DJ-1-Nrf2 and Sirt1-NF-κB-NLRP3 Pathways
by Xuemei Zhang, Haoyu Zhang, Mingyue Huang, Yu Mei, Changkun Hu, Congshu Huang, Huiting Zhang, Xue Wei, Yue Gao and Zengchun Ma
Molecules 2024, 29(21), 5072; https://doi.org/10.3390/molecules29215072 - 26 Oct 2024
Cited by 2 | Viewed by 1779
Abstract
Radiation-induced intestinal injury is a common complication of radiotherapy for abdominal and pelvic malignancies. Due to its rapid proliferation, the small intestine is particularly sensitive to radiation, making it a critical factor limiting treatment. Ferulic acid (FA), a derivative of cinnamic acid, exhibits [...] Read more.
Radiation-induced intestinal injury is a common complication of radiotherapy for abdominal and pelvic malignancies. Due to its rapid proliferation, the small intestine is particularly sensitive to radiation, making it a critical factor limiting treatment. Ferulic acid (FA), a derivative of cinnamic acid, exhibits antioxidant, anti-inflammatory, and anti-radiation properties. In this study, we established a mouse model of radiation-induced intestinal injury using a dose of 11 Gy at a rate of 96.62 cGy/min. Our findings indicate that FA’s protective effects against radiation-induced intestinal injury may be mediated through the parkinsonism-associated deglycase (DJ-1) nuclear factor erythroid 2-related factor 2 (Nrf2) and silent mating type information regulation 2 homolog 1 (Sirt1) nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) NOD-like receptor family, pyrin domain containing 3 (NLRP3). FA was found to mitigate changes in oxidative stress indices and inflammatory factors induced by radiation, as well as to attenuate radiation-induced pathological alterations in the small intestine. Furthermore, FA enhanced the expression of DJ-1 and Nrf2 at both the transcriptional and protein levels, inhibited NLRP3 protein fluorescence intensity, and reduced the expression of NLRP3, interleukin-18 (IL-18), and interleukin-1 beta (IL-1β). Additionally, FA suppressed the transcription and translation of NF-κB, NLRP3, cysteine-aspartic acid protease-1 (Caspase-1), IL-18, and IL-1β by upregulating Sirt1, thereby alleviating radiation-induced inflammatory injury in the small intestine. Thus, FA holds promise as an effective therapeutic agent for ameliorating radiation-induced intestinal injury. Full article
Show Figures

Graphical abstract

16 pages, 9658 KiB  
Article
Identification of DREB Family Genes in Banana and Their Function under Drought and Cold Stress
by Yi Xu, Yanshu Zhang, Funing Ma, Jingxi Zhao, Huiting Yang, Shun Song and Shaoling Zhang
Plants 2024, 13(15), 2119; https://doi.org/10.3390/plants13152119 - 31 Jul 2024
Cited by 2 | Viewed by 2060
Abstract
Bananas are one of the most important cash crops in the tropics and subtropics. Drought and low-temperature stress affect the growth of banana. The DREB (dehydration responsive element binding protein) gene family, as one of the major transcription factor families, plays crucial roles [...] Read more.
Bananas are one of the most important cash crops in the tropics and subtropics. Drought and low-temperature stress affect the growth of banana. The DREB (dehydration responsive element binding protein) gene family, as one of the major transcription factor families, plays crucial roles in defense against abiotic stress. Currently, systematic analyses of the banana DREB (MaDREB) gene family have not yet been reported. In this study, 103 members of the MaDREB gene family were identified in the banana genome. In addition, transcriptomic analysis results revealed that MaDREBs responded to drought and cold stress. The expression of MaDREB14/22/51 was induced by drought and cold stress; these geneswere selected for further analysis. The qRT-PCR validation results confirmed the transcriptome results. Additionally, transgenic Arabidopsis plants overexpressing MaDREB14/22/51 exhibited enhanced resistance to drought and cold stress by reducing MDA content and increasing PRO and soluble sugar content. This study enhances our understanding of the function of the MaDREB gene family, provides new insights into their regulatory role under abiotic stress, and lays a good foundation for improving drought and cold stress-tolerant banana verities. Full article
(This article belongs to the Special Issue Genetic Analysis of Plant Adaptation to Abiotic Stresses)
Show Figures

Figure 1

24 pages, 12908 KiB  
Article
Evolutionary Trend Analysis of Research on Immunotherapy for Brain Metastasis Based on Machine-Learning Scientometrics
by Xiaoqian Hu, Xinpei Deng, Jindong Xie, Hanqi Zhang, Huiting Zhang, Beibei Feng, Yutian Zou and Chuhuai Wang
Pharmaceuticals 2024, 17(7), 850; https://doi.org/10.3390/ph17070850 - 28 Jun 2024
Cited by 2 | Viewed by 2302
Abstract
Brain metastases challenge cancer treatments with poor prognoses, despite ongoing advancements. Immunotherapy effectively alleviates advanced cancer, exhibiting immense potential to revolutionize brain metastasis management. To identify research priorities that optimize immunotherapies for brain metastases, 2164 related publications were analyzed. Scientometric visualization via R [...] Read more.
Brain metastases challenge cancer treatments with poor prognoses, despite ongoing advancements. Immunotherapy effectively alleviates advanced cancer, exhibiting immense potential to revolutionize brain metastasis management. To identify research priorities that optimize immunotherapies for brain metastases, 2164 related publications were analyzed. Scientometric visualization via R software, VOSviewer, and CiteSpace showed the interrelationships among literature, institutions, authors, and topic areas of focus. The publication rate and citations have grown exponentially over the past decade, with the US, China, and Germany as the major contributors. The University of Texas MD Anderson Cancer Center ranked highest in publications, while Memorial Sloan Kettering Cancer Center was most cited. Clusters of keywords revealed six hotspots: ‘Immunology’, ‘Check Point Inhibitors’, ‘Lung Cancer’, ‘Immunotherapy’, ‘Melanoma’, ‘Breast Cancer’, and ‘Microenvironment’. Melanoma, the most studied primary tumor with brain metastases offers promising immunotherapy advancements with generalizability and adaptability to other cancers. Our results outline the holistic overview of immunotherapy research for brain metastases, which pinpoints the forefront in the field, and directs researchers toward critical inquiries for enhanced mechanistic insight and improved clinical outcomes. Moreover, governmental and funding agencies will benefit from assigning financial resources to entities and regions with the greatest potential for combating brain metastases through immunotherapy. Full article
Show Figures

Figure 1

31 pages, 3425 KiB  
Review
Traditional Uses, Chemical Constituents and Pharmacological Activities of the Toona sinensis Plant
by Mengyao Zhao, Huiting Li, Rongshen Wang, Shuying Lan, Yuxin Wang, Yuhua Zhang, Haishan Sui and Wanzhong Li
Molecules 2024, 29(3), 718; https://doi.org/10.3390/molecules29030718 - 4 Feb 2024
Cited by 8 | Viewed by 3171
Abstract
Toona sinensis (A. Juss.) Roem., which is widely distributed in China, is a homologous plant resource of medicine and food. The leaves, seeds, barks, buds and pericarps of T. sinensis can be used as medicine with traditional efficacy. Due to its extensive use [...] Read more.
Toona sinensis (A. Juss.) Roem., which is widely distributed in China, is a homologous plant resource of medicine and food. The leaves, seeds, barks, buds and pericarps of T. sinensis can be used as medicine with traditional efficacy. Due to its extensive use in traditional medicine in the ancient world, the T. sinensis plant has significant development potential. In this review, 206 compounds, including triterpenoids (1133), sesquiterpenoids (134135), diterpenoids (136142), sterols (143147), phenols (148167), flavonoids (168186), phenylpropanoids (187192) and others (193206), are isolated from the T. sinensis plant. The mass spectrum cracking laws of representative compounds (64, 128, 129, 154156, 175, 177, 179 and 183) are reviewed, which are conducive to the discovery of novel active substances. Modern pharmacological studies have shown that T. sinensis extracts and their compounds have antidiabetic, antidiabetic nephropathy, antioxidant, anti-inflammatory, antitumor, hepatoprotective, antiviral, antibacterial, immunopotentiation and other biological activities. The traditional uses, chemical constituents, compound cracking laws and pharmacological activities of different parts of T. sinensis are reviewed, laying the foundation for improving the development and utilization of its medicinal value. Full article
Show Figures

Figure 1

15 pages, 3444 KiB  
Article
Dynamic Splitting Performance and Energy Dissipation of Fiber-Reinforced Concrete under Impact Loading
by Dashun Cui, Limin Wang, Chunwei Zhang, Huiting Xue, Dianwei Gao and Fanxiu Chen
Materials 2024, 17(2), 421; https://doi.org/10.3390/ma17020421 - 14 Jan 2024
Cited by 50 | Viewed by 6840
Abstract
In this paper, the influence of different fiber materials on the dynamic splitting mechanical properties of concrete was investigated. Brazil disc dynamic splitting tests were conducted on plain concrete, palm fiber-reinforced concrete, and steel fiber-reinforced concrete specimens using a split Hopkinson pressure bar [...] Read more.
In this paper, the influence of different fiber materials on the dynamic splitting mechanical properties of concrete was investigated. Brazil disc dynamic splitting tests were conducted on plain concrete, palm fiber-reinforced concrete, and steel fiber-reinforced concrete specimens using a split Hopkinson pressure bar (SHPB) test device with a 100 mm diameter and a V2512 high-speed digital camera. The Digital Image Correlation (DIC) technique was used to analyze the fracture process and crack propagation behavior of different fiber-reinforced concrete specimens and obtain their dynamic tensile properties and energy dissipation. The experimental results indicate that the addition of fibers can enhance the impact toughness of concrete, reduce the occurrence of failure at the loading end of specimens due to stress concentration, delay the time to failure of specimens, and effectively suppress the expansion of cracks. Steel fibers exhibit a better crack-inhibiting effect on concrete compared to palm fibers. The incident energy for the three types of concrete specimens is roughly the same under the same impact pressure. Compared with plain concrete, the energy absorption rate of palm fiber concrete is decreased, while that of steel fiber concrete is increased. Palm fiber-reinforced concrete and steel fiber-reinforced concrete have lower peak strains than plain concrete under the same loading duration. The addition of steel fibers significantly impedes the internal cracking process of concrete specimens, resulting in a relatively slow growth of damage variables. Full article
Show Figures

Figure 1

10 pages, 2871 KiB  
Article
An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements
by Huiting Song, Zuoqiang Hao, Bingxin Yan, Faqian Liu, Dongwei Li, Junwei Chang, Yangjian Cai and Lanzhi Zhang
Photonics 2024, 11(1), 66; https://doi.org/10.3390/photonics11010066 - 8 Jan 2024
Cited by 3 | Viewed by 2548
Abstract
The filamentation of femtosecond pulses has attracted significant attention, owing to its unique characteristics and related applications. The self-focusing critical power of femtosecond pulses is one of the key parameters in the filamentation process and its application. However, the experimental determination of this [...] Read more.
The filamentation of femtosecond pulses has attracted significant attention, owing to its unique characteristics and related applications. The self-focusing critical power of femtosecond pulses is one of the key parameters in the filamentation process and its application. However, the experimental determination of this power remains a challenging task. In this study, we propose an experimental approach to investigating the critical power for self-focusing of both femtosecond Gaussian and vortex beams with relatively low topological charges by analyzing the changes in the focal spot at different propagation distances. Our work offers a practical and convenient method for determining the self-focusing critical power of femtosecond pulses. Full article
(This article belongs to the Special Issue Ultrafast Intense Laser Filamentation and Beyond)
Show Figures

Figure 1

23 pages, 12560 KiB  
Article
Feasibility of Advanced CO2 Injection and Well Pattern Adjustment to Improve Oil Recovery and CO2 Storage in Tight-Oil Reservoirs
by Lijun Zhang, Tianwei Sun, Xiaobing Han, Jianchao Shi, Jiusong Zhang, Huiting Tang and Haiyang Yu
Processes 2023, 11(11), 3104; https://doi.org/10.3390/pr11113104 - 29 Oct 2023
Cited by 8 | Viewed by 2897
Abstract
Global tight-oil reserves are abundant, but the depletion development of numerous tight-oil reservoirs remains unsatisfactory. CO2 injection development represents a significant method of reservoir production, potentially facilitating enhanced oil recovery (EOR) alongside CO2 storage. Currently, limited research exists on advanced CO [...] Read more.
Global tight-oil reserves are abundant, but the depletion development of numerous tight-oil reservoirs remains unsatisfactory. CO2 injection development represents a significant method of reservoir production, potentially facilitating enhanced oil recovery (EOR) alongside CO2 storage. Currently, limited research exists on advanced CO2 injection and well pattern adjustment aimed at improving the oil recovery and CO2 storage within tight-oil reservoirs. This paper focuses on the examination of tight oil within the Ordos Basin. Through the employment of slim-tube experiments, long-core displacement experiments, and reservoir numerical simulations, the near-miscible pressure range and minimum miscible pressure (MMP) for the target block were ascertained. The viability of EOR and CO2 sequestration via advanced CO2 injection was elucidated, establishing well pattern adjustment methodologies to ameliorate CO2 storage and enhance oil recovery. Simultaneously, the impacts of the injection volume and bottom-hole pressure on the development of advanced CO2 injection were explored in further detail. The experimental results indicate that the near-miscible pressure range of the CO2–crude oil in the study area is from 15.33 to 18.47 MPa, with an MMP of 18.47 MPa, achievable under reservoir pressure conditions. Compared to continuous CO2 injection, advanced CO2 injection can more effectively facilitate EOR and achieve CO2 sequestration, with the recovery and CO2 sequestration rates increasing by 4.83% and 2.29%, respectively. Through numerical simulation, the optimal injection volume for advanced CO2 injection was determined to be 0.04 PV, and the most favorable bottom-hole flowing pressure was identified as 10 MPa. By transitioning from a square well pattern to either a five-point well pattern or a row well pattern, the CO2 storage ratio significantly improved, and the gas–oil ratio of the production wells also decreased. Well pattern adjustment effectively supplements the formation energy, extends the stable production lives of production wells, and increases both the sweep efficiency and oil recovery. This study provides theoretical support and serves as a reference for CO2 injection development in tight-oil reservoirs. Full article
Show Figures

Figure 1

Back to TopTop