An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements
Abstract
:1. Introduction
2. Experiment Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braun, A.; Korn, G.; Liu, X.; Du, D.; Squier, J.; Mourou, G. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 1995, 20, 73–75. [Google Scholar] [CrossRef]
- Couairon, A.; Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 2007, 441, 47–189. [Google Scholar] [CrossRef]
- Kasparian, J.; Sauerbrey, R.; Chin, S.L. The critical laser intensity of self-guided light filaments in air. Appl. Phys. B 2000, 71, 877–879. [Google Scholar] [CrossRef]
- Kasparian, J.; Sauerbrey, R.; Mondelain, D.; Niedermeier, S.; Yu, J.; Wolf, J.-P.; André, Y.-B.; Franco, M.; Prade, B.; Tzortzakis, S.; et al. Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere. Opt. Lett. 2000, 25, 1397–1399. [Google Scholar] [CrossRef]
- Aközbek, N.; Iwasaki, A.; Becker, A.; Scalora, M.; Chin, S.L.; Bowden, C.M. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses. Phys. Rev. Lett. 2002, 89, 143901. [Google Scholar] [CrossRef]
- Xi, T.T.; Lu, X.; Zhang, J. Enhancement of third harmonic emission by interaction of two colored filament with droplet in air. Opt. Commun. 2009, 282, 3140–3143. [Google Scholar] [CrossRef]
- Chen, X.W.; Liu, J.; Zhu, Y.; Leng, Y.X.; Ge, X.C.; Li, R.X.; Xu, Z.Z. Self-compression of high-intensity femtosecond laser pulses in air. Acta Phys. Sin. 2005, 54, 3665–3669. [Google Scholar] [CrossRef]
- Couairon, A.; Franco, M.; Mysyrowicz, A.; Biegert, J.; Keller, U. Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient. Opt. Lett. 2005, 30, 2657–2659. [Google Scholar] [CrossRef]
- Xu, L.; Xi, T. Generation of high quality sub-two-cycle pulses by self-cleaning of spatiotemporal solitons in air-plasma channels. arXiv 2023. [Google Scholar] [CrossRef]
- Kasparian, J.; Rodriguez, M.; Méjean, G.; Yu, J.; Salmon, E.; Wille, H.; Bourayou, R.; Frey, S.; Andre, Y.-B.; Mysyrowicz, A.; et al. White-light filaments for atmospheric analysis. Science 2003, 301, 61–64. [Google Scholar] [CrossRef]
- Xu, H.L.; Chin, S.L. Femtosecond laser filamentation for atmospheric sensing. Sensors 2011, 11, 32–53. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Wahlstrand, J.K.; Jhajj, N.; Milchberg, H.M. The effect of long timescale gas dynamics on femtosecond filamentation. Opt. Express 2013, 21, 4740–4751. [Google Scholar] [CrossRef]
- Jhajj, N.; Rosenthal, E.W.; Birnbaum, R.; Wahlstrand, J.K.; Milchberg, H.M. Demonstration of long-lived high-power optical waveguides in air. Phys. Rev. X 2014, 4, 011027. [Google Scholar]
- Goffin, A.; Larkin, I.; Tartaro, A.; Schweinsberg, A.; Valenzuela, A.; Rosenthal, E.W.; Milchberg, H.M. Optical guiding in 50-meter-scale air waveguides. Phys. Rev. X 2023, 13, 011006. [Google Scholar] [CrossRef]
- Dogariu, A.; Michael, J.B.; Scully, M.O.; Miles, R.B. High-gain backward lasing in air. Science 2011, 331, 442–445. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, X.; Wang, Y.; Fang, Y.; Lu, Q.; Li, Z.; Liu, Y.; Wu, C.; Gong, Q.; Liu, Y.; et al. Structured air lasing of N2+. Commun. Phys. 2023, 6, 97. [Google Scholar] [CrossRef]
- Hu, Y.; Ye, Z.; Li, H.; Lu, C.; Chen, F.; Wang, J.; Pan, S.; Zhang, M.; Gao, J.; Wu, J. Generation of vortex N2+ lasing. Optica 2023, 10, 682–687. [Google Scholar] [CrossRef]
- Kasparian, J.; Ackermann, R.; André, Y.-B.; Méchain, G.; Méjean, G.; Prade, B.; Rohwetter, P.; Salmon, E.; Stelmaszczyk, K.; Yu, J.; et al. Progress towards lightning control using lasers. J. Eur. Opt. Soc. Rapid 2008, 3, 08035. [Google Scholar] [CrossRef]
- Houard, A.; Walch, P.; Produit, T.; Moreno, V.; Mahieu, B.; Sunjerga, A.; Herkommer, C.; Mostajabi, A.; Andral, U.; André, Y.; et al. Laser-guided lightning. Nat. Photonics 2023, 17, 231–235. [Google Scholar] [CrossRef]
- Stelmaszczyk, K.; Rohwetter, P.; Méjean, G.; Yu, J.; Salmon, E.; Kasparian, J.; Ackermann, R.; Wolf, J.P.; Wöste, L. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air. Appl. Phys. Lett. 2004, 85, 3977–3979. [Google Scholar] [CrossRef]
- Xu, H.L.; Liu, W.W.; Chin, S.L. Remote time-resolved filament-induced breakdown spectroscopy of biological materials. Opt. Lett. 2006, 31, 1540–1542. [Google Scholar] [CrossRef]
- Burger, M.; Polynkin, P.; Jovanovic, I. Filament-induced breakdown spectroscopy with structured beams. Opt. Express 2020, 28, 36812–36821. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Li, H.; Ni, J.; Zeng, B.; Yao, J.; Zhang, H.; Li, G.; Jing, C.; Xie, H.; Xu, H.; et al. Lasing action induced by femtosecond laser filamentation in ethanol flame for combustion diagnosis. Appl. Phys. Lett. 2014, 104, 091106. [Google Scholar] [CrossRef]
- Zang, H.; Li, H.; Zhang, W.; Fu, Y.; Chen, S.; Xu, H.; Li, R. Robust and ultralow-energy-threshold ignition of a lean mixture by an ultrashort-pulsed laser in the filamentation regime. Light Sci. Appl. 2021, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Fibich, G.; Gaeta, A.L. Critical power for self-focusing in bulk media and in hollow waveguides. Opt. Lett. 2000, 25, 335–337. [Google Scholar] [CrossRef]
- Chernev, P.; Petrov, V. Self-focusing of light pulses in the presence of normal group velocity dispersion. Opt. Lett. 1992, 17, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chin, S.L. Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air. Opt. Express 2005, 13, 5750–5755. [Google Scholar] [CrossRef]
- Kozlov, S.A.; Drozdov, A.A.; Choudhary, S.; Kniazev, M.A.; Boyd, R.W. Suppression of self-focusing for few-cycle pulses. J. Opt. Soc. Am. B 2019, 36, G68–G77. [Google Scholar] [CrossRef]
- Whalen, P.; Moloney, J.V.; Kolesik, M. Self-focusing collapse distance in ultrashort pulses and measurement of nonlinear index. Opt. Lett. 2011, 36, 2542–2544. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Danilov, P.A.; Kuzmin, E.V.; Gulina, Y.S.; Rupasov, A.E.; Krasin, G.K.; Zubarev, I.G.; Levchenko, A.O.; Kovalev, M.S.; Pakholchuk, P.P.; et al. Pulse-width-dependent critical power for self-focusing of ultrashort laser pulses in bulk dielectrics. Opt. Lett. 2022, 47, 3487–3490. [Google Scholar]
- Bernhardt, J.; Simard, P.T.; Liu, W.; Xu, H.L.; Théberge, F.; Azarm, A.; Daigle, J.F.; Chin, S.L. Critical power for self-focusing of a femtosecond laser pulse in helium. Opt. Commun. 2008, 281, 2248–2251. [Google Scholar] [CrossRef]
- Li, H.; Chu, W.; Zang, H.W.; Xu, H.L.; Cheng, Y.; Chin, S.L. Critical power and clamping intensity inside a filament in a flame. Opt. Express 2016, 24, 3424–3431. [Google Scholar] [CrossRef]
- Akturk, S.; D’Amico, C.; Franco, M.; Couairon, A.; Mysyrowicz, A. A simple method for determination of nonlinear propagation regimes in gases. Opt. Express 2007, 15, 15260–15267. [Google Scholar] [CrossRef]
- Ji, L.; Liang, W.; Li, D.; Chang, J.; Li, D.; Zhang, L.; Xi, T.; Hao, Z. Influence of a pinhole diameter on the experimental determination of critical power for femtosecond filamentation in air. Opt. Express 2022, 30, 44886–44895. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Zhang, Y.; Yu, M.; Wang, Y.; Liu, F.; Jin, M. Femtosecond filamentation in water studied by the interference of supercontinuum. Phys. Scr. 2023, 98, 015501. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, Y.; Liang, C.; Chen, A.; Li, S.; Jin, M. Exploring the femtosecond filamentation threshold in liquid media using a Mach–Zehnder interferometer. Sensors 2023, 23, 9163. [Google Scholar] [CrossRef]
- Kruglov, V.; Logvin, Y.A.; Volkov, V. The theory of spiral laser beams in nonlinear media. J. Mod. Optic. 1992, 39, 2277–2291. [Google Scholar] [CrossRef]
- Fibich, G.; Gavish, N. Critical power of collapsing vortices. Phys. Rev. A 2008, 77, 045803. [Google Scholar] [CrossRef]
- Liang, W.; Li, D.; Chang, J.; Xi, T.; Ji, L.; Li, D.; Zhang, L.; Hao, Z. Experimentally determined critical power for self-focusing of femtosecond vortex beams in air by a fluorescence measurement. Opt. Express 2023, 31, 1557–1566. [Google Scholar] [CrossRef]
- Shimoji, Y.; Fay, A.T.; Chang, R.S.F.; Djeu, N. Direct measurement of the nonlinear refractive index of air. J. Opt. Soc. Am. B 1989, 6, 1994–1998. [Google Scholar] [CrossRef]
- McAllister, G.L.; Marburger, J.H.; DeShazer, L.G. Observation of optical pulse shaping by the self-focusing effects. Phys. Rev. Lett. 1968, 21, 1648–1649. [Google Scholar] [CrossRef]
- Chin, S.L.; Aközbek, N.; Proulx, A.; Petit, S.; Bowden, C.M. Transverse ring formation of a focused femtosecond laser pulse. Opt. Commun. 2001, 188, 181–186. [Google Scholar] [CrossRef]
- Geints, Y.É.; Zemlyanov, A.A.; Ionin, A.A.; Kudryashov, S.I.; Seleznev, L.V.; Sinitsyn, D.V.; Sunchugasheva, E.S. Peculiarities of filamentation of sharply focused ultrashort laser pulses in air. J. Exp. Theor. Phys. 2010, 111, 724–730. [Google Scholar] [CrossRef]
- Nishibata, I.; Nakanii, N.; Sano, T. Focusing characteristic change and processing characteristic evaluation of femtosecond-to-picosecond pulse lasers above the air ionization threshold. Opt. Continuum 2023, 2, 1735–1751. [Google Scholar] [CrossRef]
- Méchain, G.; D’Amico, C.; André, Y.-B.; Tzortzakis, S.; Franco, M.; Prade, B.; Mysyrowicz, A.; Couairon, A.; Salmon, E.; Sauerbrey, R. Range of plasma filaments created in air by a multi-terawatt femtosecond laser. Opt. Commun. 2005, 247, 171–180. [Google Scholar] [CrossRef]
- Available online: https://imagej.net/ (accessed on 27 December 2023).
- Yan, B.; Li, D.; Zhang, L.; Xi, T.; Cai, Y.; Hao, Z. Filamentation of femtosecond vortex laser pulses in turbulent air. Opt. Laser Technol. 2023, 164, 109515. [Google Scholar] [CrossRef]
- Li, D.; Liang, W.; Li, D.; Ji, L.; Yan, B.; Chang, J.; Xi, T.; Zhang, L.; Cai, Y.; Hao, Z. Distinguishing the nonlinear propagation regimes of vortex femtosecond pulses in fused silica by evaluating the broadened spectrum. Opt. Express 2023, 31, 32752–32760. [Google Scholar] [CrossRef]
- Xu, R.; Bai, Y.; Song, L.; Li, N.; Peng, P.; Tang, J.; Miao, T.; Liu, P.; Wang, Z.; Li, R. Self-focusing of few-cycle laser pulses at 1800 nm in air. J. Phys. B 2015, 48, 094015. [Google Scholar] [CrossRef]
- Lim, K.; Durand, M.; Baudelet, M.; Richardson, M. Transition from linear- to nonlinear-focusing regime in filamentation. Sci. Rep. 2014, 4, 7217. [Google Scholar] [CrossRef]
- Afonasenko, A.V.; Apeksimov, D.V.; Geints, Y.E.; Golik, S.S.; Kabanov, A.M.; Zemlyanov, A.A. Study of filamentation dynamics of ultrashort laser radiation in air: Beam diameter effect. J. Opt. 2014, 16, 105204. [Google Scholar] [CrossRef]
- Laban, D.E.; Wallace, W.C.; Glover, R.D.; Sang, R.T.; Kielpinski, D. Self-focusing in air with phase-stabilized few-cycle light pulses. Opt. Lett. 2010, 35, 1653–1655. [Google Scholar] [CrossRef] [PubMed]
- Polynkin, P.; Kolesik, M. Critical power for self-focusing in the case of ultrashort laser pulses. Phys. Rev. A 2013, 87, 053829. [Google Scholar] [CrossRef]
- Yin, F.; Wang, T.; Long, J.; Liu, Y.; Wei, Y.; Zhu, B.; Zhou, K.; Leng, Y.; Li, R. Pulse repetition rate effect on the intensity inside femtosecond laser filament in air. High Power Laser Sci. 2023, 11, E46. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Hao, Z.; Yan, B.; Liu, F.; Li, D.; Chang, J.; Cai, Y.; Zhang, L. An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements. Photonics 2024, 11, 66. https://doi.org/10.3390/photonics11010066
Song H, Hao Z, Yan B, Liu F, Li D, Chang J, Cai Y, Zhang L. An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements. Photonics. 2024; 11(1):66. https://doi.org/10.3390/photonics11010066
Chicago/Turabian StyleSong, Huiting, Zuoqiang Hao, Bingxin Yan, Faqian Liu, Dongwei Li, Junwei Chang, Yangjian Cai, and Lanzhi Zhang. 2024. "An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements" Photonics 11, no. 1: 66. https://doi.org/10.3390/photonics11010066
APA StyleSong, H., Hao, Z., Yan, B., Liu, F., Li, D., Chang, J., Cai, Y., & Zhang, L. (2024). An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements. Photonics, 11(1), 66. https://doi.org/10.3390/photonics11010066