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Abstract: The filamentation of femtosecond pulses has attracted significant attention, owing to its
unique characteristics and related applications. The self-focusing critical power of femtosecond
pulses is one of the key parameters in the filamentation process and its application. However, the
experimental determination of this power remains a challenging task. In this study, we propose
an experimental approach to investigating the critical power for self-focusing of both femtosecond
Gaussian and vortex beams with relatively low topological charges by analyzing the changes in the
focal spot at different propagation distances. Our work offers a practical and convenient method for
determining the self-focusing critical power of femtosecond pulses.

Keywords: critical power for self-focusing; focal spot; focus shifting; vortex beam

1. Introduction

Intense femtosecond laser pulses can propagate over very long distances in the form
of filamentation with a clamped intensity [1–3]. This unique phenomenon has attracted
significant interest among researchers due to its diverse range of potential applications
in various fields, including supercontinuum and third harmonic generation [4–6], pulse
self-compression [7–9], remote sensing [10,11], air waveguides [12–14], air lasing [15–17],
laser-guided lightning [18,19], filament-induced breakdown spectroscopy [11,20–22], com-
bustion diagnostics and laser ignition [23,24]. It is well known that this nonlinear phe-
nomenon is the result of dynamic balance mainly between the optical Kerr self-focusing
effect and the plasma defocusing effect. When the incident laser power exceeds a certain
value, the self-focusing effect can overcome the diffraction of the beam, resulting in the
collapse of the beam. This specific value is known as the critical power for self-focusing,
denoted as Pcr given by Pcr = 3.77λ2/8πn2n0, where λ is the laser central wavelength, n0
denotes the linear index of refraction, and n2 is the coefficient of the nonlinear index of
refraction. It is a fundamental parameter in studies of filamentation, and is very useful in
various applications. However, this formula is given under a continuous-wave (cw) laser
condition. It has been demonstrated that many factors including beam profile, group veloc-
ity dispersion, pulse duration, and external focusing conditions have significant influences
on the critical power [25–30]. It seems unfeasible, in practice, to directly determine the
exact value of nominal critical power for self-focusing of ultrashort laser pulses [29]. For
the same reason, the nominal critical power calculated using the aforementioned formula
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may not be suitable for ultrashort laser pulse cases. This leads to a lack of practical refer-
ence values of the critical power for self-focusing of ultrashort laser pulses, and thus it is
necessary to determine quantitatively the critical power for different conditions. Liu et al.
directly determined the critical power for self-focusing of femtosecond laser pulses in air
by measuring the movement of the focus with the increase in the input laser energy [27].
By using this focus-shifting method, the critical powers in helium [31] and flame [32] were
further successfully obtained. Akturk et al. proposed a P-scan method to evaluate different
propagation regimes of femtosecond laser pulses, and determine the critical powers for
filamentation and multi-filamentation regimes [33]. Kudryashov et al. determined the
critical power for self-focusing by observing the difference between the luminous track and
Rayleigh lengths (initiation of filamentation) [30]. Recently, by using a pinhole located at a
focus region, we obtained experimentally and numerically the critical power for femtosec-
ond filamentation in air [34]. Li and Zhang et al. explored the threshold of filamentation in
liquid by using interferometry [35,36]. For structured laser beams, the situation becomes
more complicated. The critical power for self-focusing of vortex beams was initially derived
by Kruglov et al. [37]. Subsequently, Fibich et al. achieved a simplified expression for this
critical power [38]. In our recent experimental study, we proposed a simple method to
determine the critical powers for self-focusing of both femtosecond Gaussian and vortex
beams in air by measuring fluorescence emission with a photomultiplier tube [39].

As pointed out by Liu et al. in Ref. [27], the most direct way for determining the critical
power is to analyze the change in laser intensity along the laser propagation direction [40,41].
However, it is extremely challenging to accurately measure the intensity, especially at the
focal region, mainly due to the change of the pulse shape during the self-focusing process
and the high intensity involved. Therefore, using phenomena closely associated with the
high intensity, such as ablation, diffraction, fluorescence or acoustic emission, becomes a
more practical approach to investigate the laser filamentation. Among these methods, the
ablation spot method is widely used for characterizing laser filamentation [42,43]. Recently,
Nishibata et al. conducted a study on the focusing properties of ultrashort laser pulses
in laser processing by analyzing the irradiation and ablation areas [44]. Their findings
indicate that the ablation technique can effectively demonstrate the evolution of intensity
or fluence in the laser focal region. Therefore, the ablation method could be a promising
approach for determining the critical power for self-focusing of femtosecond laser pulses.
In this study, we propose a simple and efficient experimental method to measure the
critical power. By analyzing the ablation region on photosensitive paper at various laser
propagation distances and input laser energies, we determine the critical power for self-
focusing of femtosecond Gaussian and vortex beams. Additionally, our findings reveal that
the proposed method is not applicable to vortex beams with a higher topological charge.
Nevertheless, we demonstrate that the ablation technique remains a practical and valuable
approach for studying the dynamics of laser self-focusing and determining the critical
power for self-focusing.

2. Experiment Setup

The schematic of our experimental setup to measure the self-focusing critical power
is shown in Figure 1. The laser source was an amplified Ti:sapphire femtosecond laser
system (Solstice Ace, Spectra-Physics, Milpitas, CA, USA) with a central wavelength of
790 nm, pulse duration of 65 fs, beam diameter of 9.5 mm (1/e2), a repetition rate of
1 kHz, and maximum pulse energy of 4.2 mJ. However, our experiment was carried out
under the conditions of relatively low laser power, typically within the range of several
GW, and a relatively large beam diameter. The potential influence of the focusing lens
and other optical elements used in the experiment on the beam quality is considered
to be negligible. A combination of a half-wave plate (HWP20-800B, LBTEK, Changsha,
China) and a polarizer (WP25L-UB, Thorlabs, Newtown, NJ, USA) was used to adjust the
laser energy. Subsequently, a vortex plate (VRx-800, LBTEK) and two quarter-wave plates
(QWP20-800B. LBTEK) were employed to generate vortex beams. In order to control the
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exposure time, a shutter was positioned after the vortex beam generation system, set to a
duration of 30 ms. A lens with a focal length of 500 mm was used to focus the femtosecond
laser pulse in air. The pulse duration after optics elements used in our experiment was
optimized by adjusting the compressor of the laser system through pre-compensating for
the pulse dispersion introduced by the elements. The photosensitive paper, affixed to a
translation stage, captured the focal spot generated by 30 pulses, which were controlled
by a mechanical shutter (GCI-7103M, Daheng Optics, Beijing, China). Finally, the ablation
patterns were recorded using a microscope (alpha300 R, WITec, Ulm, Germany).
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Figure 1. The schematic of the experimental setup. HWP: half-wave plate. P: polarizer. QWP:
quarter-wave plate. VWP: vortex wave plate.

3. Results and Discussion

Figure 2 shows several typical patterns ablated by femtosecond Gaussian and vortex
beams with different topological charges (1, 2, and 3, respectively). These patterns are ob-
tained by placing photosensitive paper before the focal point, enabling a clear visualization
of the singularities in the center of the vortex beams. We can see from the patterns that
the ablation area primarily corresponds to the region with high laser intensity, which is
a commonly used method to investigate the evolution of femtosecond filamentation [45].
To investigate the evolution of the ablation in the focal region, we observed the ablation
patterns at different positions using the photosensitive paper. As an example, we can take
the case of vortex beams, and the ablation patterns at various positions around the focal
region of the beam are presented in Figure 3. The patterns clearly show the evolution of
the vortex beams around the focus. The ablation area undergoes a reduction as the beam
approaches the focal position, whereas it experiences an expansion upon departure. Note
that the singularities of vortex beams near the focus are too small to be recognized from
the ablation patterns. The peak intensities are evaluated based on photographic paper
measurements, as an example, at distances of 498 mm and 494 mm for input laser energies
of 250 µJ and 550 µJ, respectively. These values are estimated to be 2.22 TW/cm2 and
2.26 TW/cm2. However, it is expected that these calculated intensities would be lower
when compared to those using metal samples, due to the fact that the beam size is over-
estimated in our experiment. The explanation will be provided in the following section.
Furthermore, the change in the ablation area serves as an indicator of the laser intensity,
which enables the exploration of the evolution of the laser beam along its propagation
direction [44]. Therefore, by systematically analyzing the variation of the ablation area
in relation to the propagation distance as the input energy gradually increases, we can
explore the evolution of the laser intensity and, subsequently, determine the critical power
for self-focusing of femtosecond pulses.
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Figure 3. Ablation patterns of femtosecond vortex beam with m = 1 (250 µJ), m = 2 (350 µJ), and m = 3
(550 µJ) at several typical propagation distances.

First, we evaluated the ablation patterns of the Gaussian beam, and then quantified
the areas of the ablated regions using ImageJ software (Ver. 1.8) [46]. During the analysis,
we maintained the same tolerance of 30 in the Wand Tool of the software. The Wand Tool
of ImageJ software allowed us to select a contiguous area under the condition such that all
pixel values in that area were within the range of the initial value ± tolerance. The ablation
area can be automatically and properly selected by using this tool. For instance, the selected
areas for the vortex beam patterns are marked by yellow lines in Figure 3. Subsequently,
the area of the region of interest was calculated using the software. The results are plotted
in Figure 4a, with the data being fitted using the polynomial fitting method. It is evident
that for each input laser energy, there exists a minimum ablation area. Moreover, as the
input energy increases, the position corresponding to the minimum area undergoes a shift
towards the focusing lens, illustrating the manifestation of the self-focusing effect. Here,
the displacement of the minimum area serves as an indicator of the movement of the beam
focus. Hence, the determination of the critical power for self-focusing through the ablation
method is also based on the measuring of the focus-shifting. Therefore, we followed the
approach of the focus-shifting method [27]. The focus (minimum area) positions for various
input energies are plotted in Figure 4b. The evolution of the position with a minimum
area as the function of input energy exhibits the same trend as those obtained using the
methods of focus-shifting and fluorescence measurement [27,39]. The position experiences
negligible change when the input energy is relatively low, and then undergoes a rapid shift
with further increases in input lase energy. To identify the deviation position, linear fittings
were applied to the data. The intersection of the two red fitted lines can be considered the
critical power point, from which the critical power for self-focusing of the femtosecond
Gaussian beam can be obtained. The calculated critical power was approximately 2.05 GW.
The value was very close to that obtained in our previous work by using fluorescence
measurements [39].
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We then applied the method to the case of vortex laser beams. The results are shown
in Figure 5. It is evident that the areas of the ablated spots by vortex beams with m = 1
and 2 have a similar evolution with the increasing input laser energy to that of Gaussian
beam. By fitting the experimental data using polynomial fitting method, the positions with
minimum areas were obtained and are plotted in Figure 5b,d for the two cases, respectively.
A similar trend to the Gaussian case was observed. Hence, the same linear fitting method
was used to find the deviation positions, indicated by the arrows in Figure 5b,d, and the
critical powers for the self-focusing of the two vortex beams were successfully obtained,
which were found to be 3.48 GW and 6.12 GW, respectively. These values are in good
agreement with the values obtained in our recent study, where the critical powers for the
self-focusing of vortex beams were determined through fluorescence measurements [39].

We extended the study to include a vortex beam with a higher topological charge
m = 3. The areas of ablated spots were evaluated and are plotted in Figure 6. We can see
that the areas start to show irregular evolutions with the increase in input energy, compared
to the above three cases. Especially for higher input energies, the data have much bigger
fluctuations along the propagation direction. The polynomial fitting lines are not reliable
any more. The R2 of the fitting becomes worse with the increase in input energy, and it is
only 66% for 900 µJ case. Under this condition, it is hard to find a position which has the
minimum area. This phenomenon is similar to what we observed in our previous work [39],
where the fluorescence peak position of air ionization became worse with the increase in
the topological charge (as can be seen from Figure 6 in the Ref. [39]). The main reason
for this should be that the non-uniform distribution of laser intensity in the ring-shape
cross-section of vortex beam influences greatly the focus-shifting process [39]. On the other
hand, the coincidence is not surprising, because both the ablation method proposed in this
study and the fluorescence measurements obtained using CCD imaging used in Ref. [39]
are basically the measuring of the focus shifting. Therefore, it can be concluded that the
method is not applicable for vortex beams with higher topological charges either.

We noticed that the area in the focal region looked more diffused in the case of vortex
beams than that in the Gaussian beam case. A possible mechanism is as follows. The
distinct intensity distribution of the Gaussian and vortex beams leads to different outcomes
under the influence of self-focusing. For the Gaussian beam, the laser energy concentrates
gradually to the beam axis. However, for the vortex beam, the ring-shape distributed laser
energy will be concentrated into a narrower ring. Consequently, any non-uniformity in
the intensity distribution of the ring-shaped beam will be amplified in the subsequent
self-focusing process, intensifying energy competition and promoting modulation insta-
bility. Consequently, vortex beams are expected to exhibit greater fluctuations in focus
size compared to Gaussian beams as the incident laser energy increases. On the other
hand, in our experiments, each ablation pattern was generated by approximately 30 laser
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pulses, which was determined by the limitations of our equipment. This accumulation will
unavoidably introduce deviations to the ablation pattern due to the drift of filamentation
in air [47], thereby reducing the precision of the spot area evolution along the propagation
distance. To improve the accuracy of this method in determining the critical power, it is
highly recommended to employ single pulse ablation, followed by statistical analysis.
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fitting is used to find the deviation position, which can be considered the critical power point. 
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Figure 5. The areas of the ablated spots by vortex beams with (a) m = 1 and (c) m = 2 as functions of 
propagation distance for various input laser energies. Fitted lines are plotted to find the positions 
with minimum areas. (b,d) plot the positions with minimum areas of the ablated spots as the in-
crease in the input energy. Linear fitting is used to find the deviation position which, can be consid-
ered the critical power point. 

Figure 5. The areas of the ablated spots by vortex beams with (a) m = 1 and (c) m = 2 as functions of
propagation distance for various input laser energies. Fitted lines are plotted to find the positions
with minimum areas. (b,d) plot the positions with minimum areas of the ablated spots as the increase
in the input energy. Linear fitting is used to find the deviation position which, can be considered the
critical power point.
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Additionally, instead of using metal samples such as aluminum or copper plates, we
used photosensitive paper for laser ablation in consideration of the challenge to obtain
ablation patterns under relatively low input laser energy conditions. Although this choice
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would result in larger beam ablation spots due to the relatively low ablation threshold of
the photosensitive paper, it did not hinder us from obtaining the evolution of the beam size
along the laser propagation direction for various input laser energies. However, the plots
shown in Figures 4–6 lack clear indications of filamentation formation; even a filamentation
regime might have been achieved under certain conditions. The filamentation should be
submerged in the ablation spots during the filamentation process. This limitation arises
from the use of photosensitive paper.

It is also worth noting that the measured critical power value is experiment-dependent.
First, the choice of a suitable measurement technique is crucial, as different methods are
based on different physical mechanisms. Consequently, there are variations in accuracy and
sensitivity, resulting in different measurement outcomes. Therefore, using an appropriate
experimental method to determine the critical power is of great importance. For instance,
the approaches of P-scan, S-scan, and PMT fluorescence measurement typically exhibit
higher sensitivity compared to the focal-shifting method [33,39,48]. Furthermore, the deter-
mination of the critical power for self-focusing is also influenced by experimental conditions,
particularly the laser pulse duration and the external focusing conditions [29,30,39,49–51].

4. Conclusions

The critical power for self-focusing of femtosecond laser pulses in air is experimentally
determined by evaluating the focal spots. This method relies on the fact that when the laser
power exceeds a certain power, the focal position will move toward the laser source, while,
below the critical power, the focal position remains unchanged. By evaluating the ablated
spot area at various propagation distances for different input energies, the displacement
of the focal position as a function of input laser energy is obtained. Consequently, the
critical powers for the self-focusing of femtosecond Gaussian and vortex beams with m = 1
and 2 are successfully determined, respectively. However, our results also indicate that
this method, along with the commonly used focus-shifting method, is not suitable for
higher-order vortex beams.

One crucial aspect to consider is whether the experimental measured crossover
power is suitable to be regarded as the critical power for self-focusing of femtosecond
pules [27,29–32,34,39,48,49,52,53]. The theoretical definition of the critical power for self-
focusing of a cw laser is well established. However, determining the critical power in
the ultrashort-pule case is still a significant challenge. Furthermore, Polynkin and Kole-
sik concluded that the critical power concept is not straightforwardly applicable to the
ultrashort-pulse case, and no particular value of peak pulse power can be viewed as a
sharp demarcation line between linear and nonlinear propagation regimes [53]. How-
ever, some experimental studies demonstrated that as the input laser energy increases,
the laser pulse experiences different nonlinear propagation regimes. As reported by Ak-
turk et al. in Ref. [33], prior to the formation of filament, there exists a region (termed
region II in the reference) where the self-focusing effect starts to play a significant role
and the nonlinear focus moves towards the laser. In this region, the laser focus starts to
move, which is the physical basis of the focal-shifting method proposed by Liu et al. in
Ref. [27] for experimentally determining the critical power for self-focusing. Therefore,
considering the characteristic observed in their data plot, the power at the onset of region
II can be regarded as the critical power for self-focusing. Furthermore, region III represents
a filamentation-dominated region, and thus the power at the beginning of this region can
be regarded as the critical power for filamentation. Interestingly, in our recent work [48],
we observed a similar transition of laser propagation regimes from self-focusing to fila-
mentation, where we defined two critical powers: one for self-focusing and the other for
mature filamentation. Hence, we contend that using just one critical power is inadequate
for comprehensively studying the filamentation process in certain cases [33,35,36,48], and it
is also reasonable to assign the crossover power as the self-focusing critical power at which
the self-focusing effects become evident, which has been used in our recent work and other
relevant studies [27,30–32,34,39,48,49,52]. These experimental measurements of critical
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powers under various conditions by using different methods are of great importance in the
field of femtosecond filamentation. These measurements provide valuable reference values,
in addition to the nominal ones, that are essential for both experimental investigations and
practical applications of femtosecond filamentation.

Furthermore, the N2 and O2 molecules in excited states or thermal waveguide struc-
tures induced by laser pulses may have an impact on the subsequent pulses [12,54], and
also on the determination of critical power for self-focusing. The complex dynamics can
be revealed through the manipulation of the laser repetition frequency, which requires
further studies.
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