Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Georgia Batra ORCID = 0000-0001-5470-7122

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4598 KiB  
Article
Use of Pulsed Electric Field as a Low-Temperature and High-Performance “Green” Extraction Technique for the Recovery of High Added Value Compounds from Olive Leaves
by Vasileios M. Pappas, Achillia Lakka, Dimitrios Palaiogiannis, Eleni Bozinou, George Ntourtoglou, Georgia Batra, Vassilis Athanasiadis, Dimitris P. Makris, Vassilis G. Dourtoglou and Stavros I. Lalas
Beverages 2021, 7(3), 45; https://doi.org/10.3390/beverages7030045 - 1 Jul 2021
Cited by 27 | Viewed by 5413
Abstract
Olive leaves (OLL), an agricultural waste by-product, are considered a significant bioresource of polyphenols, known as bioactive compounds. This study evaluates the pulsed electric field (PEF) technique for the extraction of polyphenols from OLL. The study parameters included a series of “green” solvents [...] Read more.
Olive leaves (OLL), an agricultural waste by-product, are considered a significant bioresource of polyphenols, known as bioactive compounds. This study evaluates the pulsed electric field (PEF) technique for the extraction of polyphenols from OLL. The study parameters included a series of “green” solvents (ethanol, water as well as mixtures of them at a 25% step gradient) and different input values for the pulse duration of PEF. The phytochemical extraction degree was evaluated using total phenol concentration (Folin–Ciocalteu method) and high-performance liquid chromatography (HPLC) analyses, while the antioxidant activity was assessed using differential scanning calorimetry (DSC). The results obtained from the PEF extracts were compared with those of the extracts produced without the PEF application. The highest PEF effect was observed for aqueous ethanol, 25% v/v, using a pulse duration of 10 μs. The increase in the total polyphenols reached 31.85%, while the increase in the specific metabolites reached 265.67%. The recovery in polyphenols was found to depend on the solvent, the pulse duration of treatment and the structure of the metabolites extracted. Full article
Show Figures

Graphical abstract

16 pages, 712 KiB  
Article
Microbiological and Chemical Properties of Chokeberry Juice Fermented by Novel Lactic Acid Bacteria with Potential Probiotic Properties during Fermentation at 4 °C for 4 Weeks
by Christos Bontsidis, Athanasios Mallouchos, Antonia Terpou, Anastasios Nikolaou, Georgia Batra, Ioanna Mantzourani, Athanasios Alexopoulos and Stavros Plessas
Foods 2021, 10(4), 768; https://doi.org/10.3390/foods10040768 - 3 Apr 2021
Cited by 52 | Viewed by 5674
Abstract
On the frame of this research survey, a novel potentially probiotic strain (Lactobacillus paracasei SP5) recently isolated from kefir grains was evaluated for chokeberry juice fermentation. Chokeberry juice was retrieved from the variety Aronia melanocarpa, a plant known to provide small, [...] Read more.
On the frame of this research survey, a novel potentially probiotic strain (Lactobacillus paracasei SP5) recently isolated from kefir grains was evaluated for chokeberry juice fermentation. Chokeberry juice was retrieved from the variety Aronia melanocarpa, a plant known to provide small, dark berries and to be one of the richest sources of antioxidants. The juice was subsequently fermented inoculating L. paracasei SP5 for 48 h at 30 °C. The fermented juices were left at 4 °C and tested regarding microbiological and physicochemical characteristics for 4 weeks. The potentially probiotic strain was proved capable of performing lactic acid fermentation at 30 °C. Cell viability of L. paracasei was detected in high levels during fermentation and the whole storage period, while the fermented juice showed higher levels of viability in juice with 40.3 g/L of initial sugar concentration. No ethanol was detected in the final fermented juice. Fermented chokeberry juice was characterized by aromatic desirable volatiles, which were retained in adequate levels for the whole storage period. Specifically, the occurrence of organic esters detected in fermented juices is considered as positive evidence of the provision of fruity and floral notes to the final product. During storage, total phenolics content and antioxidant activity were observed in higher levels in fermented chokeberry juice compared with non-fermented juice. Subsequently, fermentation of chokeberry juice by potentially probiotic lactic acid bacteria could provide high industrialization potential, providing the market with a nutritional beverage of good volatile quality with an enhanced shelf-life compared with an unfermented fresh juice. Full article
Show Figures

Figure 1

17 pages, 2939 KiB  
Article
A Green Extraction Process for Polyphenols from Elderberry (Sambucus nigra) Flowers Using Deep Eutectic Solvent and Ultrasound-Assisted Pretreatment
by Olga Kaltsa, Achillia Lakka, Spyros Grigorakis, Ioanna Karageorgou, Georgia Batra, Eleni Bozinou, Stavros Lalas and Dimitris P. Makris
Molecules 2020, 25(4), 921; https://doi.org/10.3390/molecules25040921 - 19 Feb 2020
Cited by 61 | Viewed by 5663
Abstract
Sambucus nigra flowers, known as elderberry flowers (EBF), are a plant tissue rich in polyphenolic phytochemicals with important bioactivities. However, there are few studies dealing with the production of polyphenol-containing EBF extracts. The objective of the investigation presented herein was the development of [...] Read more.
Sambucus nigra flowers, known as elderberry flowers (EBF), are a plant tissue rich in polyphenolic phytochemicals with important bioactivities. However, there are few studies dealing with the production of polyphenol-containing EBF extracts. The objective of the investigation presented herein was the development of a high-performance green extraction methodology, to generate EBF extracts enriched in polyphenolic substances, using an efficient deep eutectic solvent, combined with ultrasonication pretreatment. The DES was composed of L-lactic acid (hydrogen bond donor—HBD) and glycine (hydrogen bond acceptor—HBA) and, after an initial screening to properly regulate HBD/HBA ratio, the extraction was optimized by deploying response surface methodology. Under the optimized conditions, which were DES/water (85% w/v), liquid-to-solid ratio 60 mL g−1, and stirring speed 200 rounds per minute, the extraction yield in total polyphenols amounted to 121.24 ± 8.77 mg gallic acid equivalents per g dry matter. The integration of ultrasonication prior to the batch stirred-tank extraction boosted polyphenol recovery of up to 174.73 ± 2.62 mg gallic acid equivalents per g dry matter. Liquid chromatography–mass spectrometry analysis showed that the richest EBF extract obtained was dominated by rutin, a di-p-coumaroylquic acid and chlorogenic acid. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

19 pages, 2708 KiB  
Article
The Effect of Ultrasonication Pretreatment on the Production of Polyphenol-Enriched Extracts from Moringa oleifera L. (Drumstick Tree) Using a Novel Bio-Based Deep Eutectic Solvent
by Achillia Lakka, Spyros Grigorakis, Olga Kaltsa, Ioanna Karageorgou, Georgia Batra, Eleni Bozinou, Stavros Lalas and Dimitris P. Makris
Appl. Sci. 2020, 10(1), 220; https://doi.org/10.3390/app10010220 - 27 Dec 2019
Cited by 40 | Viewed by 4139
Abstract
Moringa oleifera L. leaves are a plant tissue particularly rich in polyphenolic phytochemicals with significant bioactivities, and there has been significant recent interest for the production of extracts enriched in these substances. The current investigation is aimed at establishing a green extraction process, [...] Read more.
Moringa oleifera L. leaves are a plant tissue particularly rich in polyphenolic phytochemicals with significant bioactivities, and there has been significant recent interest for the production of extracts enriched in these substances. The current investigation is aimed at establishing a green extraction process, using a novel eco-friendly natural deep eutectic solvent, composed of glycerol and nicotinamide. Furthermore, sample ultrasonication prior to batch stirred-tank extraction was studied to examine its usefulness as a pretreatment step. Optimization of the extraction process through response surface methodology showed that the maximum total polyphenol yield (82.87 ± 4.28 mg gallic acid equivalents g−1 dry mass) could be achieved after a 30 min ultrasonication pretreatment, but the difference with the yield obtained from the non-pretreated sample was statistically non-significant (p < 0.05). Extraction kinetics revealed that the activation energy for the ultrasonication-pretreated samples was more energy-demanding, a fact attributed to phenomena pertaining to washing of the readily extracted polyphenols during pretreatment. Liquid-chromatography-diode array-mass spectrometry showed that ultrasonication pretreatment may have a limited positive effect on polyphenol extractability, but the overall polyphenolic profile was identical for the ultrasonication-pretreated and non-pretreated samples. Full article
(This article belongs to the Special Issue High-Performance Green Extraction of Natural Products)
Show Figures

Figure 1

15 pages, 1495 KiB  
Article
Saffron Processing Wastes as a Bioresource of High-Value Added Compounds: Development of a Green Extraction Process for Polyphenol Recovery Using a Natural Deep Eutectic Solvent
by Achillia Lakka, Spyros Grigorakis, Ioanna Karageorgou, Georgia Batra, Olga Kaltsa, Eleni Bozinou, Stavros Lalas and Dimitris P. Makris
Antioxidants 2019, 8(12), 586; https://doi.org/10.3390/antiox8120586 - 25 Nov 2019
Cited by 84 | Viewed by 5404
Abstract
The current investigation was undertaken to examine saffron processing waste (SPW) as a bioresource, which could be valorized to produce extracts rich in antioxidant polyphenols, using a green, natural deep eutectic solvent (DES). Initially, there was an appraisal of the molar ratio of [...] Read more.
The current investigation was undertaken to examine saffron processing waste (SPW) as a bioresource, which could be valorized to produce extracts rich in antioxidant polyphenols, using a green, natural deep eutectic solvent (DES). Initially, there was an appraisal of the molar ratio of hydrogen bond donor/hydrogen bond acceptor in order to come up with the most efficient DES composed of L-lactic acid/glycine (5:1). The following step was the optimization of the extraction process using response surface methodology. The optimal conditions thus determined were a DES concentration of 55% (w/v), a liquid-to-solid ratio of 60 mL g−1, and a stirring speed of 800 rounds per minute. Under these conditions, the extraction yield in total polyphenols achieved was 132.43 ± 10.63 mg gallic acid equivalents per g of dry mass. The temperature assay performed within a range of 23 to 80 °C, suggested that extracts displayed maximum yield and antioxidant activity at 50–60 °C. Liquid chromatography-mass spectrometry analysis of the SPW extract obtained under optimal conditions showed that the predominant flavonol was kaempferol 3-O-sophoroside and the major anthocyanin delphinidin 3,5-di-O-glucoside. The results indicated that SPW extraction with the DES used is a green and efficient methodology and may afford extracts rich flavonols and anthocyanins, which are considered to be powerful antioxidants. Full article
(This article belongs to the Special Issue Polyphenolic Antioxidants from Agri-Food Waste Biomass)
Show Figures

Figure 1

15 pages, 3633 KiB  
Article
Polyphenol Extraction from Humulus lupulus (Hop) Using a Neoteric Glycerol/L-Alanine Deep Eutectic Solvent: Optimisation, Kinetics and the Effect of Ultrasound-Assisted Pretreatment
by Achillia Lakka, Ioanna Karageorgou, Olga Kaltsa, Georgia Batra, Eleni Bozinou, Stavros Lalas and Dimitris Makris
AgriEngineering 2019, 1(3), 403-417; https://doi.org/10.3390/agriengineering1030030 - 8 Aug 2019
Cited by 33 | Viewed by 5326
Abstract
The investigation presented herein had as its scope the development of an integrated process for the efficient extraction of polyphenols from hop. For this purpose, a novel, natural deep eutectic solvent (DES) was synthesised, composed of glycerol and L-alanine, and the process was [...] Read more.
The investigation presented herein had as its scope the development of an integrated process for the efficient extraction of polyphenols from hop. For this purpose, a novel, natural deep eutectic solvent (DES) was synthesised, composed of glycerol and L-alanine, and the process was optimised by deploying a response surface methodology based on a Box–Behnken design. The variables considered were the DES/water proportion, the liquid-to-solid ratio and the stirring speed. Under the optimised conditions, the yield in total polyphenols achieved was 118.97 ± 8.27 mg gallic acid equivalents per g of dry mass. Ultrasonication, incorporated into the process as a pretreatment step, was shown to significantly change the kinetic pattern of polyphenol extraction and contributed to attaining higher yields only at 80 °C, whereas at lower temperatures a supressing effect was observed. Furthermore, increasing temperature was negatively correlated with the second-order extraction rates, evidencing a slow-down of the extraction rate at elevated temperatures. Full article
Show Figures

Figure 1

13 pages, 269 KiB  
Article
Pulsed Electric Field Extraction and Antioxidant Activity Determination of Moringa oleifera Dry Leaves: A Comparative Study with Other Extraction Techniques
by Eleni Bozinou, Ioanna Karageorgou, Georgia Batra, Vassilis G. Dourtoglou and Stavros I. Lalas
Beverages 2019, 5(1), 8; https://doi.org/10.3390/beverages5010008 - 13 Jan 2019
Cited by 77 | Viewed by 8394
Abstract
The scope of this work was to determine the possibility of the application of the pulsed electric field (PEF) technique to the production of extracts from Moringa oleifera plant material (freeze-dried leaves). Various PEF conditions (pulse duration—PD; and pulse interval—PI) were tested. A [...] Read more.
The scope of this work was to determine the possibility of the application of the pulsed electric field (PEF) technique to the production of extracts from Moringa oleifera plant material (freeze-dried leaves). Various PEF conditions (pulse duration—PD; and pulse interval—PI) were tested. A field strength of 7 kV/cm was used. The total phenols in the extracts were evaluated by the Folin–Ciocalteu method and the antioxidant activity was evaluated by the radical scavenging activity (DPPH), ferric reducing antioxidant power (FRAP) and Rancimat methods. The results were compared with those of the extracts obtained using other extraction techniques, namely microwave-assisted and ultrasound-assisted extractions, simple boiling water extraction, and plain maceration with water (as the control). The highest extraction of total phenols was achieved by the PEF procedure using 40 min treatment at a PD of 20 msec and a PI of 100 μsec. Additionally, all methods for the determination of the antioxidant activity showed that the activity of the extracts was proportional to the total phenol content. Concerning the PEF procedure, a low pulse duration with a high pulse interval is proposed in order to achieve higher extraction efficiency. Full article
(This article belongs to the Special Issue Pulse Electric Field in Liquid Food Processing and Extraction)
13 pages, 1454 KiB  
Article
Enhanced Antioxidant Activity of Capsicum annuum L. and Moringa oleifera L. Extracts after Encapsulation in Microemulsions
by Georgia Batra, Olga Gortzi, Stavros I. Lalas, Anna Galidi, Angeliki Alibade and George D. Nanos
ChemEngineering 2017, 1(2), 15; https://doi.org/10.3390/chemengineering1020015 - 16 Nov 2017
Cited by 24 | Viewed by 4979
Abstract
Carotenoids are powerful natural antioxidants that can easily degrade and are almost insoluble in water. Their incorporation into microemulsions (MEs) can solve these problems. In this study, ethanol extracts (prepared using different protocols) of Capsicum annuum L. (green and red), Moringa oleifera L. [...] Read more.
Carotenoids are powerful natural antioxidants that can easily degrade and are almost insoluble in water. Their incorporation into microemulsions (MEs) can solve these problems. In this study, ethanol extracts (prepared using different protocols) of Capsicum annuum L. (green and red), Moringa oleifera L. leaves, and their mixtures [Red Pepper/Μ. oleifera (50/50 w/w) and Green Pepper/M. oleifera (50/50 w/w)], were encapsulated in MEs for the first time. The encapsulation efficiency was determined and the physicochemical characteristics of the prepared MEs were assessed by particle size, turbidity, centrifugation, and thermal stress determination. The antioxidant activity of extracts and their MEs was determined by the DSC and DPPH methods. Prepared MEs did not present phase separation, creaming, sedimentation, presence of aggregates, or other unacceptable macroscopic drawbacks. Turbidity measurements showed that only small differences in optical density appeared. MEs’ particle size dispersion was found to be around the average value and varied between 10 and 95 nm. The highest resistance to oxidation of crude extracts was observed by the M. oleifera leaf extract, followed by that of Red Pepper/Μ. oleifera (50/50 w/w) mixture, Green Pepper/M. oleifera (50/50 w/w) mixture, Red Pepper and, finally, Green Pepper. The results concerning MEs-encapsulated samples followed the same trend. Full article
Show Figures

Figure 1

Back to TopTop