Microbiological and Chemical Properties of Chokeberry Juice Fermented by Novel Lactic Acid Bacteria with Potential Probiotic Properties during Fermentation at 4 °C for 4 Weeks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Culture
2.2. Chokeberry Juice Fermentation
2.3. Microbiological Assessment and L. paracasei Viability
2.4. Chokeberries Juice Physicochemical Analysis: Residual Sugar, Ethanol, and Organic Acids Concentration
2.5. Total Phenolics Content
2.6. Determination of Antioxidant Activity
2.6.1. FRAP Assay
2.6.2. αTEAC Assay
2.7. Determination of Volatile Compounds in Fermented Chokeberry Juice by SPME/GC-MS
2.7.1. Sample Preparation and Sampling
2.7.2. Volatiles Evaluation by GC-MS Analysis
- ●
- A-level: agreement of retention index (RI) and mass spectrum (MS) with RI and MS of an authentic compound analyzed under identical experimental conditions
- ●
- B-level: agreement of RI (ΔRI < 20) and MS (match > 900)
- ●
- C-level: agreement of at least ΔRI < 20 or MS similarity match > 800
2.8. Statistical Analysis
3. Results and Discussion
3.1. Cell Viability
3.2. Ethanol, Organic Acids, and Residual Sugar Concentration
3.3. Total Phenolics and Antioxidant Activity
3.4. Volatiles Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Schulz, M.; Chim, J.F. Nutritional and bioactive value of Rubus berries. Food Biosci. 2019, 31, 100438. [Google Scholar] [CrossRef]
- Costa, A.G.V.; Garcia-Diaz, D.F.; Jimenez, P.; Silva, P.I. Bioactive compounds and health benefits of exotic tropical red–black berries. J. Funct. Foods 2013, 5, 539–549. [Google Scholar] [CrossRef]
- Sidor, A.; Drożdżyńska, A.; Gramza-Michałowska, A. Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors-An overview. Trends Food Sci. Technol. 2019, 89, 45–60. [Google Scholar] [CrossRef]
- Fang, J. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition 2015, 31, 1301–1306. [Google Scholar] [CrossRef]
- Gajic, D.; Saksida, T.; Koprivica, I.; Vujicic, M.; Despotovic, S.; Savikin, K.; Jankovic, T.; Stojanovic, I. Chokeberry (Aronia melanocarpa) fruit extract modulates immune response in vivo and in vitro. J. Funct. Foods 2020, 66, 103836. [Google Scholar] [CrossRef]
- Hirth, M.; Preiß, R.; Mayer-Miebach, E.; Schuchmann, H.P. Influence of HTST extrusion cooking process parameters on the stability of anthocyanins, procyanidins and hydroxycinnamic acids as the main bioactive chokeberry polyphenols. Lwt-Food Sci. Technol. 2015, 62, 511–516. [Google Scholar] [CrossRef]
- Mantzourani, I.; Kazakos, S.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S. Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods 2018, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Markkinen, N.; Laaksonen, O.; Nahku, R.; Kuldjärv, R.; Yang, B. Impact of lactic acid fermentation on acids, sugars, and phenolic compounds in black chokeberry and sea buckthorn juices. Food Chem. 2019, 286, 204–215. [Google Scholar] [CrossRef]
- Cirlini, M.; Ricci, A.; Galaverna, G.; Lazzi, C. Application of lactic acid fermentation to elderberry juice: Changes in acidic and glucidic fractions. LWT 2020, 118, 108779. [Google Scholar] [CrossRef]
- Di Cagno, R.; Filannino, P.; Gobbetti, M. Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice. Int. J. Food Microbiol. 2017, 248, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Mantzourani, I.; Nouska, C.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Panayiotidis, M.I.; Galanis, A.; Plessas, S. Production of a Novel Functional Fruit Beverage Consisting of Cornelian Cherry Juice and Probiotic Bacteria. Antioxidants 2018, 7, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nualkaekul, S.; Charalampopoulos, D. Survival of Lactobacillus plantarum in model solutions and fruit juices. Int. J. Food Microbiol. 2011, 146, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Terpou, A.; Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Bosnea, L.A.; Kopsahelis, N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curiel, J.A.; Pinto, D.; Marzani, B.; Filannino, P.; Farris, G.A.; Gobbetti, M.; Rizzello, C.G. Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries. Microb. Cell Factories 2015, 14, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kachouri, F.; Ksontini, H.; Kraiem, M.; Setti, K.; Mechmeche, M.; Hamdi, M. Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds. J. Food Sci. Technol. 2015, 52, 7924–7933. [Google Scholar] [CrossRef] [Green Version]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M.T.; Wu, M.; Sackey, A.S.; Xiao, L.; Tahir, H.E. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chem. 2018, 250, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Alex O’Hagan, L. Pure in body, pure in mind? A sociohistorical perspective on the marketisation of pure foods in great Britain. Discourse Context Media 2020, 34, 100325. [Google Scholar] [CrossRef]
- Žuntar, I.; Petric, Z.; Bursać Kovačević, D.; Putnik, P. Safety of Probiotics: Functional Fruit Beverages and Nutraceuticals. Foods 2020, 9, 947. [Google Scholar] [CrossRef]
- Pearce, J. Effects of milk and fermented dairy products on the blood cholesterol content and profile of mammals in relation to coronary heart disease. Int. Dairy J. 1996, 6, 661–672. [Google Scholar] [CrossRef]
- Martínez Vázquez, S.E.; Nogueira de Rojas, J.R.; Remes Troche, J.M.; Coss Adame, E.; Rivas Ruíz, R.; Uscanga Domínguez, L.F. The importance of lactose intolerance in individuals with gastrointestinal symptoms. Rev. De Gastroenterol. De N. M. (Engl. Ed.) 2020, 85, 321–331. [Google Scholar] [CrossRef]
- Abbring, S.; Hols, G.; Garssen, J.; van Esch, B.C.A.M. Raw cow’s milk consumption and allergic diseases–The potential role of bioactive whey proteins. Eur. J. Pharm. 2019, 843, 55–65. [Google Scholar] [CrossRef]
- Oh, Y.J.; Kim, T.S.; Moon, H.W.; Lee, S.Y.; Lee, S.Y.; Ji, G.E.; Hwang, K.T. Lactobacillus plantarum PMO 08 as a Probiotic Starter Culture for Plant-Based Fermented Beverages. Molecules 2020, 25, 5056. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.J.; Kim, K.-T.; Kim, T.Y.; Paik, H.-D. Probiotic Properties and Antioxidant Activities of Pediococcus pentosaceus SC28 and Levilactobacillus brevis KU15151 in Fermented Black Gamju. Foods 2020, 9, 1154. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Myracle, A.D. Fermentation alters the bioaccessible phenolic compounds and increases the alpha-glucosidase inhibitory effects of aronia juice in a dairy matrix following in vitro digestion. Food Funct. 2018, 9, 2998–3007. [Google Scholar] [CrossRef]
- Mantzourani, I.; Chondrou, P.; Bontsidis, C.; Karolidou, K.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Galanis, A.; Plessas, S. Assessment of the probiotic potential of lactic acid bacteria isolated from kefir grains:Evaluation of adhesion and antiproliferative properties in in vitro experimental systems. Ann. Microbiol. 2019, 69, 751–763. [Google Scholar] [CrossRef]
- Ganatsios, V.; Terpou, A.; Gialleli, A.-I.; Kanellaki, M.; Bekatorou, A.; Koutinas, A.A. A ready-to-use freeze-dried juice and immobilized yeast mixture for low temperature sour cherry (Prunus cerasus) wine making. Food Bioprod. Process. 2019, 117, 373–379. [Google Scholar] [CrossRef]
- Terpou, A.; Papadaki, A.; Bosnea, L.; Kanellaki, M.; Kopsahelis, N. Novel frozen yogurt production fortified with sea buckthorn berries and probiotics. LWT 2019, 105, 242–249. [Google Scholar] [CrossRef]
- Nikolaou, A.; Galanis, A.; Kanellaki, M.; Tassou, C.; Akrida-Demertzi, K.; Kourkoutas, Y. Assessment of free and immobilized kefir culture in simultaneous alcoholic and malolactic cider fermentations. Lwt-Food Sci. Technol. 2017, 76, 67–78. [Google Scholar] [CrossRef]
- Wu, C.; Li, T.; Qi, J.; Jiang, T.; Xu, H.; Lei, H. Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity and flavor volatiles of apple juice. LWT 2020, 122, 109064. [Google Scholar] [CrossRef]
- Gentile, C.; Reig, C.; Corona, O.; Todaro, A.; Mazzaglia, A.; Perrone, A.; Gianguzzi, G.; Agusti, M.; Farina, V. Pomological Traits, Sensory Profile and Nutraceutical Properties of Nine Cultivars of Loquat (Eriobotrya japonica Lindl.) Fruits Grown in Mediterranean Area. Plant Foods Hum. Nutr. 2016, 71, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Plessas, S.; Nouska, C.; Karapetsas, A.; Kazakos, S.; Alexopoulos, A.; Mantzourani, I.; Chondrou, P.; Fournomiti, M.; Galanis, A.; Bezirtzoglou, E. Isolation, characterization and evaluation of the probiotic potential of a novel Lactobacillus strain isolated from Feta-type cheese. Food Chem. 2017, 226, 102–108. [Google Scholar] [CrossRef]
- Mantzourani, I.; Terpou, A.; Alexopoulos, A.; Kimbaris, A.; Bezirtzoglou, E.; Koutinas, A.A.; Plessas, S. Production of a Potentially Synbiotic Pomegranate Beverage by Fermentation with Lactobacillus plantarum ATCC 14917 Adsorbed on a Prebiotic Carrier. Appl. Biochem. Biotechnol. 2019, 188, 1096–1107. [Google Scholar] [CrossRef]
- Terpou, A.; Mantzourani, I.; Galanis, A.; Kanellaki, M.; Bezirtzoglou, E.; Bekatorou, A.; Koutinas, A.A.; Plessas, S. Employment of L. paracasei K5 as a Novel Potentially Probiotic Freeze-Dried Starter for Feta-Type Cheese Production. Microorganisms 2018, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Sun, H.; He, S.; Lou, Q.; Yu, M.; Tang, M.; Tu, L. Metabolism and prebiotics activity of anthocyanins from black rice (Oryza sativa L.) in vitro. PLos ONE 2018, 13, e0195754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; de Felipe, F.L.; Gómez-Cordovés, C.; Mancheño, J.M.; Muñoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)-A review on the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef] [Green Version]
- Bolling, B.W.; Taheri, R.; Pei, R.; Kranz, S.; Yu, M.; Durocher, S.N.; Brand, M.H. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability. Food Chem. 2015, 187, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Nualkaekul, S.; Salmeron, I.; Charalampopoulos, D. Investigation of the factors influencing the survival of Bifidobacterium longum in model acidic solutions and fruit juices. Food Chem. 2011, 129, 1037–1044. [Google Scholar] [CrossRef]
- Mohammad, G.A.; Andres, D.H.; Klaus, D.K. Isolation of polysaccharides from pineapple fruit pulp and their enzymatic liquifaction. Int. Food Res. J. 2010, 17, 193–203. [Google Scholar]
- Filannino, P.; Gobbetti, M.; De Angelis, M.; Di Cagno, R. Hydroxycinnamic Acids Used as External Acceptors of Electrons:An Energetic Advantage for Strictly Heterofermentative Lactic Acid Bacteria. Appl. Environ. Microbiol. 2014, 80, 7574–7582. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Jiang, T.; Liu, N.; Wu, C.; Xu, H.; Lei, H. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chem. 2021, 339, 127859. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Shah, N.P. Effect of tea extract on lactic acid bacterial growth, their cell surface characteristics and isoflavone bioconversion during soymilk fermentation. Food Res. Int. 2014, 62, 877–885. [Google Scholar] [CrossRef]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef]
- Kwaw, E.; Ma, Y.; Tchabo, W.; Sackey, A.S.; Apaliya, M.T.; Xiao, L.; Wu, M.; Sarpong, F. Ultrasonication effects on the phytochemical, volatile and sensorial characteristics of lactic acid fermented mulberry juice. Food Biosci. 2018, 24, 17–25. [Google Scholar] [CrossRef]
- Romani, A.; Vignolini, P.; Ieri, F.; Heimler, D. Polyphenols and Volatile Compounds in Commercial Chokeberry (Aronia melanocarpa) Products. Nat. Prod. Commun. 2016, 11, 99–102. [Google Scholar] [CrossRef]
- Pozderović, A.; Popović, K.; Pichler, A.; Jakobek, L. Influence of processing parameters on permeate flow and retention of aroma and phenolic compounds in chokeberry juice concentrated by reverse osmosis. Cyta-J. Food 2016, 14, 382–390. [Google Scholar] [CrossRef]
- Burdějová, L.; Vitova, E.; Polovka, M. Comparison of volatiles identified in Aronia melanocarpa and Amelanchier alnifolia using solid-phase microextraction coupled to gas chromatography-mass spectrometry. J. Food Nutr. Res. 2016, 55, 57–68. [Google Scholar]
- Kraujalytė, V.; Leitner, E.; Venskutonis, P.R. Characterization of Aronia melanocarpa Volatiles by Headspace-Solid-Phase Microextraction (HS-SPME), Simultaneous Distillation/Extraction (SDE), and Gas Chromatography-Olfactometry (GC-O) Methods. J. Agric. Food Chem. 2013, 61, 4728–4736. [Google Scholar] [CrossRef] [PubMed]
- Terpou, A.; Gialleli, A.I.; Bosnea, L.; Kanellaki, M.; Koutinas, A.A.; Castro, G.R. Novel cheese production by incorporation of sea buckthorn berries (Hippophae rhamnoides L.) supported probiotic cells. Lwt-Food Sci. Technol. 2017, 79, 616–624. [Google Scholar] [CrossRef]
- Švarc-Gajić, J.; Cerdà, V.; Clavijo, S.; Suárez, R.; Zengin, G.; Cvetanović, A. Chemical and bioactivity screening of subcritical water extracts of chokeberry (Aronia melanocarpa) stems. J. Pharm. Biomed. Anal. 2019, 164, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.; Shalom, Y.; Rosenberger, I. Postharvest Ethanol Buildup and Off-flavor in ‘Murcott’ Tangerine Fruits. J. Am. Soc. Hortic. Sci. Jashs 1990, 115, 775. [Google Scholar] [CrossRef] [Green Version]
- Bustillo Trueba, P.; Jaskula-Goiris, B.; Ditrych, M.; Filipowska, W.; De Brabanter, J.; De Rouck, G.; Aerts, G.; De Cooman, L.; De Clippeleer, J. Monitoring the evolution of free and cysteinylated aldehydes from malt to fresh and forced aged beer. Food Res. Int. 2021, 140, 110049. [Google Scholar] [CrossRef] [PubMed]
- Schoina, V.; Terpou, A.; Papadaki, A.; Bosnea, L.; Kopsahelis, N.; Kanellaki, M. Enhanced Aromatic Profile and Functionality of Cheese Whey Beverages by Incorporation of Probiotic Cells Immobilized on Pistacia terebinthus Resin. Foods 2020, 9, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terpou, A.; Nigam, P.S.; Bosnea, L.; Kanellaki, M. Evaluation of Chios mastic gum as antimicrobial agent and matrix forming material targeting probiotic cell encapsulation for functional fermented milk production. LWT 2018, 97, 109–116. [Google Scholar] [CrossRef]
- Gismondi, A.; Di Marco, G.; Canini, A. Helichrysum italicum (Roth) G. Don essential oil: Composition and potential antineoplastic effect. S. Afr. J. Bot. 2020, 133, 222–226. [Google Scholar] [CrossRef]
- Memariani, Z.; Sharifzadeh, M.; Bozorgi, M.; Hajimahmoodi, M.; Farzaei, M.H.; Gholami, M.; Siavoshi, F.; Saniee, P. Protective effect of essential oil of Pistacia atlantica Desf. on peptic ulcer: Role of α-pinene. J. Tradit. Chin. Med. 2017, 37, 57–63. [Google Scholar] [CrossRef]
ISC | Time | Cell Counts | ||
---|---|---|---|---|
L. paracasei SP5 | Yeasts and Fungi | Coliforms | ||
g/L | Log cfu/mL | |||
61.0 | 48 h | 7.2 ± 0.11 c | nd | nd |
1st week | 9.1 ± 0.08 a | nd | nd | |
2nd week | 9.3 ± 0.13 a | nd | nd | |
3rd week | 8.2 ± 0.12 b | nd | nd | |
4th week | 6.5 ± 0.12 d | nd | nd | |
40.3 | nd | nd | ||
48 h | 9.5 ± 0.07 b | nd | nd | |
1st week | 10.1 ± 0.05 a | nd | nd | |
2nd week | 10.1 ± 0.12 a | nd | nd | |
3rd week | 9.1 ± 0.05 c | nd | nd | |
4th week | 7.9 ± 0.05 d | nd | nd | |
28.8 | nd | nd | ||
48 h | 7.4 ± 0.11 c | nd | nd | |
1st week | 8.5 ± 0.12 b | nd | nd | |
2nd week | 9,5 ± 0.10 a | nd | nd | |
3rd week | 7.5 ± 0.11 c | nd | nd | |
4th week | 5.1 ± 0.12 d | nd | nd |
Time | Μalic Acid | Lactic Acid | Acetic Acid | Glucose | Fructose | Sorbitol | Ethanol | |
---|---|---|---|---|---|---|---|---|
g/L | (% v/v) | |||||||
0 h | 4.9 ± 0.18 | nd | nd | 11.2 ± 0.19 | 9.1 ± 0.39 | 20.1 ± 0.20 | nd | |
48 h | UF | 4.6 ± 0.19 a | nd | nd | 18.3 ± 0.07 a | 13.4 ± 0.06 a | 24.4 ± 0.15 a | nd |
F | 4.1 ± 0.35 b | 0.2 ± 0.05 | nd | 16.1 ± 0.15 b | 12.1 ± 0.21 b | 24.3 ± 0.18 a | nd | |
1st week | UF | 4.6 ± 0.21 | nd | nd | 19.1 ± 0.11 a | 16.9 ± 0.09 a | 22.9 ± 0.05 a | nd |
F | nd | 8.9 ± 0.15 | nd | 15.6 ± 0.19 b | 11.8 ± 0.12 b | 22.6 ± 0.35 a | nd | |
2nd week | UF | 4.6 ± 0.12 | nd | nd | 19.9 ± 0.23 a | 17.4 ± 0.15 a | 21.2 ± 0.41 a | nd |
F | nd | 9.1 ± 0.21 | 0.1 ± 0.02 | 13.8 ± 0.21 b | 10.9 ± 0.08 b | 21.1 ± 0.19 a | nd | |
3rd week | UF | 4.5 ± 0.27 | nd | nd | 22.4 ± 0.31 a | 18.3 ± 0.11 a | 21.5 ± 0.15 a | nd |
F | nd | 9.3 ± 0.39 | 0.1 ± 0.04 | 14.0 ± 0.18 b | 10.9 ± 0.11 d | 21.3 ± 0.24 a | nd | |
4th week | UF | 4.6 ± 0.11 | nd | nd | 22.9 ± 0.15 a | 20.0 ± 0.04 a | 22.5 ± 0.45 a | nd |
F | nd | 9.4 ± 0.48 | 0.1 ± 0.05 | 14.4 ± 0.11 b | 11.4 ± 0.15 b | 22.2 ± 0.17 a | nd |
Time | Chokeberry Juice Samples | TPC GAE g/L |
---|---|---|
0 h | Unfermented | 8.5 ± 0.1 |
Fermented | ||
48 h | Unfermented | 8.6 ± 0.2 b |
Fermented | 9.8 ± 0.2 a | |
1st week | Unfermented | 8.9 ± 0.3 b |
Fermented | 11.2 ± 0.3 a | |
2nd week | Unfermented | 9.0 ± 0.1 b |
Fermented | 11.9 ± 0.1 a | |
3rd week | Unfermented | 9.0 ± 0.3 b |
Fermented | 12.0 ± 0.2 a | |
4th week | Unfermented | 8.1 ± 0.2 b |
Fermented | 12.1 ± 0.2 a |
Compound | Identification 1 | RI | Content (μg/g) 2 | Reference | |||
---|---|---|---|---|---|---|---|
0 h | 48 h | 1st Week | 4th Week | ||||
Alcohols | |||||||
Ethanol | A | 932 | 10.0 ± 2.23 d | 55.0 ± 3.47 c | 69.0 ± 4.71 b | 99.0 ± 5.35 a | [45] |
3-Methyl-1-butanol | A | 1213 | 6.3 ± 1.33 a | 2.5 ± 0.77 b | 1.7 ± 1.05 b | 1.6 ± 0.93 b | [45] |
2-Ethyl-1-hexanol | A | 1494 | 0.4 ± 0.05 b | 0.2 ± 0.05 c | 0.4 ± 0.08 b | 0.6 ± 0.03 a | [45] |
1-Penten-3-ol | B | 1165 | 0.2 ± 0.04 | tr | tr | tr | [45] |
1-Hexanol | A | 1358 | 18.8 ± 3.14 a | 1.7 ± 0.05 c | 2.0 ± 0.10 b | 1.9 ± 0.05 b | [45] |
(3E)-3-Hexen-1-ol | B | 1367 | 0.1 ± 0.03 a | 0.1 ± 0.04 a | 0.1 ± 0.04 a | 0.1 ± 0.03 a | [46] |
(3Z)-3-Hexen-1-ol | B | 1387 | 0.7 ± 0.14 | tr | tr | tr | [46] |
(2E)-2-Hexen-1-ol | B | 1409 | 3.7 ± 0.39 a | 0.1 ± 0.04 d | 0.3 ± 0.04 b | 0.2 ± 0.03 c | [46] |
(2Z)-2-Penten-1-ol | B | 1316 | 0.1 ± 0.04 a | 0.1 ± 0.03 a | tr | tr | [45] |
Benzyl alcohol | B | 1875 | 35.3 ± 4.81 a | 0.3 ± 0.05 a | 0.1 ± 0.04 c | 0.1 ± 0.04 c | [45] |
Phenylethyl Alcohol | A | 1912 | 1.2 ± 0.16 a | 0.2 ± 0.05 b | 0.1 ± 0.02 c | 0.1 ± 0.03 c | [45] |
2-Methylpropan-2-ol | B | 907 | 10.1 ± 2.09 a | 4.1 ± 0.89 b | 4.8 ± 1.34 b | 4.8 ± 1.07 b | |
2-Methylbutan-2-ol | B | 1018 | 3.9 ± 0.63 a | 1.7 ± 0.35 c | 1.9 ± 0.27 c | 2.8 ± 0.34 b | |
1-Propanol | A | 1043 | 0.3 ± 0.05 | tr | tr | tr | |
2-Methyl-3-buten-2-ol | B | 1045 | tr | tr | 0.1 ± 0.02 a | 0.1 ± 0.06 a | |
2-Methyl-1-propanol | A | 1103 | 5.4 ± 1.23 a | 1.9 ± 0.47 b | 1.4 ± 0.38 b | 1.6 ± 0.34 b | [47] |
2-Methylpentan-2-ol | B | 1113 | 0.8 ± 0.02 a | 0.4 ± 0.03 c | 0.5 ± 0.02 b | 0.5 ± 0.01 b | [47] |
3-Pentanol | A | 1117 | 0.1 ± 0.04 | tr | tr | tr | |
2-Pentanol | A | 1129 | 3.3 ± 0.04 a | 0.6 ± 0.05 b | 0.3 ± 0.04 c | 0.3 ± 0.07 c | [48] |
1-Butanol | A | 1151 | 0.4 ± 0.07 a | 0.1 ± 0.04 b | 0.1 ± 0.03 b | tr | [48] |
4-Methyl-2-pentanol | B | 1174 | 0.2 ± 0.04 a | 0.1 ± 0.03 b | 0.1 ± 0.03 b | 0.2 ± 0.05 a | |
3-Methyl-3-buten-1-ol | B | 1251 | 1.5 ± 0.05 b | 0.6 ± 0.02 c | 1.8 ± 0.08 a | 2.0 ± 0.14 a | |
1-Pentanol | A | 1255 | 1.5 ± 0.05 a | 0.3 ± 0.03 b | 0.3 ± 0.04 b | 0.3 ± 0.04 b | [48] |
3-Methyl-2-buten-1-ol | C | 1324 | 0.7 ± 0.05 b | 0.1 ± 0.04 c | 0.9 ± 0.10 a | 0.6 ± 0.10 b | |
1-Octen-3-ol | A | 1454 | 0.3 ± 0.05 a | 0.1 ± 0.04 b | 0.1 ± 0.03 b | 0.1 ± 0.04 b | [48] |
(2E)-2-Hepten-1-ol | C | 1514 | 0.1 ± 0.02 | tr | tr | tr | |
1-Octanol | A | 1562 | 0.4 ± 0.05 a | 0.1 ± 0.01 c | 0.3 ± 0.03 b | 0.4 ± 0.05 a | [48] |
(2E)-2-Octen-1-ol | C | 1619 | tr | tr | 0.1 ± 0.04 b | 0.2 ± 0.05 a | |
1-Nonanol | B | 1665 | 0.1 ± 0.05 a | tr | tr | 0.1 ± 0.03 a | |
2-Nonanol | B | 1525 | tr | tr | 0.4 ± 0.05 a | 0.2 ± 0.04 b | |
4-Methyl-benzenemethanol | B | 1961 | 3.8 ± 1.29 a | 0.4 ± 0.05 b | tr | 0.1 ± 0.04 c | |
1-Dodecanol | B | 1972 | tr | 0.2 ± 0.05 c | 0.4 ± 0.07 b | 0.7 ± 0.05 a | |
4-Methyl-2-heptanol | C | 1366 | tr | tr | 0.1 ± 0.05 a | 0.1 ± 0.04 a | |
Aldehydes | |||||||
Acetaldehyde | A | 704 | 1.8 ± 0.72 a | 0.3 ± 0.05 b | tr | tr | [45] |
Hexanal | A | 1077 | 0.4 ± 0.08 | tr | tr | tr | [45] |
Nonanal | B | 1391 | 0.1 ± 0.03 | tr | tr | tr | [46] |
(2E)-2-Octenal | C | 1419 | 0.1 ± 0.03 | tr | tr | tr | [48] |
Benzaldehyde | A | 1517 | 11.2 ± 0.63 a | 7.6 ± 0.95 b | 0.5 ± 0.05 d | 0.9 ± 0.10 c | [46] |
4-Methylbenzaldehyde | B | 1643 | 14.9 ± 1.92 a | 5.8 ± 1.04 b | 6.4 ± 1.36 b | 6.8 ± 1.47 b | |
3-Methylbenzaldehyde | B | 1612 | 0.2 ± 0.07 a | 0.3 ± 0.10 a | 0.2 ± 0.04 a | 0.2 ± 0.05 a | |
Ketones | |||||||
2-Butanone | B | 901 | 4.1 ± 0.76 a | 1.8 ± 0.17 c | 2.2 ± 0.14 b | 2.2 ± 0.17 b | [48] |
2,3-Butanedione | A | 970 | 14.2 ± 3.71 a | 5.0 ± 0.97 c | 6.3 ± 0.86 c | 9.3 ± 1.09 b | [48] |
4-Methyl-2-pentanone | B | 1005 | 0.8 ± 0.05 a | 0.5 ± 0.03 c | 0.6 ± 0.04 b | 0.6 ± 0.04 b | |
3-Hexanone | B | 1048 | 0.1 ± 0.04 a | 0.1 ± 0.03 a | 0.1 ± 0.04 a | 0.1 ± 0.02 a | |
2-Hexanone | B | 1076 | 0.5 ± 0.14 a | 0.3 ± 0.11 a | 0.3 ± 0.13 a | 0.3 ± 0.15 a | |
3-Penten-2-one | B | 1123 | 28.3 ± 3.08 a | 6.5 ± 1.83 c | 10.7 ± 1.73 b | 10.1 ± 1.95 b | [45] |
4-Methyl-3-penten-2-one | B | 1128 | 0.2 ± 0.05 b | 0.7 ± 0.09 a | 0.1 ± 0.07 b | 0.2 ± 0.04 b | [45] |
5-Methyl-3-hexanone | C | 1149 | 0.1 ± 0.03 a | tr | tr | 0.1 ± 0.03 a | |
2-Heptanone | B | 1178 | 0.2 ± 0.04 b | 0.1 ± 0.02 c | 0.5 ± 0.05 a | 0.3 ± 0.10 b | [48] |
4-Methyl-2-heptanone | B | 1203 | 1.3 ± 0.17 b | 0.6 ± 0.13 c | 1.7 ± 0.11 a | 1.7 ± 0.14 a | |
1-Hydroxy-2-propanone | B | 1294 | tr | tr | 0.1 ± 0.03 a | 0.1 ± 0.04 a | |
5-Methyl-3-hexen-2-one | C | 1230 | 0.1 ± 0.03 a | tr | 0.1 ± 0.03 a | 0.1 ± 0.02 a | |
4,6-Dimethyl-2-heptanone | C | 1241 | 0.1 ± 0.04 b | 0.1 ± 0.02 b | 0.2 ± 0.03 a | 0.2 ± 0.03 a | |
6-Methyl-5-hepten-2-one | C | 1335 | 0.4 ± 0.11 a | 0.1 ± 0.09 b | tr | tr | [46] |
2,7-Octanedione | C | 1342 | 0.1 ± 0.02 b | tr | 0.2 ± 0.05 a | 0.2 ± 0.05 a | |
2-Nonanone | B | 1387 | tr | tr | 0.1 ± 0.03 | tr | [48] |
2,5-Hexanedione | B | 1500 | 0.4 ± 0.05 a | 0.1 ± 0.03 b | 0.1 ± 0.04 b | 0.1 ± 0.04 b | |
2,3-Butanediol isomer 1 | C | 1544 | 0.2 ± 0.03 | tr | tr | tr | |
4-Ethyl-1,3-benzenediol | C | 1572 | 0.5 ± 0.03 a | 0.2 ± 0.02 c | 0.3 ± 0.04 b | 0.3 ± 0.05 b | |
(5E)-6,10-Dimethyl-5,9-undecadien-2-one | C | 1854 | 0.1 ± 0.03 a | tr | 0.1 ± 0.02 a | 0.1 ± 0.04 a | |
Esters | |||||||
Ethyl Acetate | A | 884 | 5.9 ± 1.19 a | 0.3 ± 0.04 b | 0.2 ± 0.03 c | 0.4 ± 0.08 b | [45] |
2-Methylpropyl formate | B | 959 | 0.2 ± 0.10 a | 0.3 ± 0.10 a | 0.3 ± 0.14 a | 0.3 ± 0.11 a | |
Isobutyl acetate | A | 1012 | 0.1 ± 0.02 b | 0.2 ± 0.04 a | 0.2 ± 0.04 a | 0.2 ± 0.05 a | |
Ethyl 2-hydroxypropanoate | A | 1344 | tr | tr | 0.1 ± 0.03 b | 0.3 ± 0.04 a | |
Octyl octanoate | B | 2013 | 0.5 ± 0.17 a | tr | 0.1 ± 0.03 b | 0.1 ± 0.04 b | |
Methyl benzoate | B | 1618 | 1.6 ± 0.14 a | 1.0 ± 0.10 b | 1.5 ± 0.21 a | 1.7 ± 0.15 a | [48] |
Ethyl benzoate | B | 1664 | 0.3 ± 0.05 | tr | tr | tr | [48] |
2-Phenethyl acetate | A | 1811 | 0.2 ± 0.04 | tr | tr | tr | [49] |
Organic acids | |||||||
Acetic acid | A | 1446 | 0.8 ± 0.31 c | 1.0 ± 0.27 c | 4.6 ± 0.15 a | 4.2 ± 0.13 b | [45,50] |
2-Methylpropanoic acid | C | 1568 | 0.1 ± 0.03 a | 0.1 ± 0.02 a | 0.1 ± 0.04 a | 0.1 ± 0.03 a | |
Butanoic acid | B | 1628 | tr | tr | 0.1 ± 0.03 a | 0.1 ± 0.03 a | [50] |
3-Methyl-butanoic acid | B | 1670 | tr | 0.2 ± 0.05 a | 0.2 ± 0.05 a | 0.2 ± 0.04 a | |
2-Methyl-butanoic acid | C | 1672 | 0.5 ± 0.12 a | 0.2 ± 0.04 b | 0.2 ± 0.06 b | 0.2 ± 0.04 b | [45] |
Heptanoic acid | B | 1954 | 0.1 ± 0.04 a | tr | 0.1 ± 0.03 a | 0.1 ± 0.04 a | [49] |
Hexanoic acid | A | 1844 | 0.6 ± 0.04 a | 0.3 ± 0.09 b | 0.4 ± 0.08 b | 0.5 ± 0.04 b | [46] |
Octanoic acid | A | 2062 | tr | tr | tr | 0.6 ± 0.10 | [46] |
Nonanoic acid | C | 2174 | 0.1 ± 0.04 b | tr | tr | 0.3 ± 0.05 a | [46] |
2-Hydroxy-2-methylmalonic acid | C | 2183 | tr | tr | 3.6 ± 1.02 a | 1.0 ± 0.47 b | |
n-Decanoic acid | Β | 2250 | tr | tr | tr | 0.1 ± 0.02 | [46] |
Others | |||||||
D-Limonene | A | 1186 | 0.1 ± 0.04 | tr | tr | tr | [46] |
Eucalyptol | B | 1200 | 1.8 ± 0.22 a | 0.2 ± 0.07 c | 0.6 ± 0.05 b | 0.7 ± 0.09 b | [45] |
p-Cymene | B | 1263 | 0.1 ± 0.03 | tr | tr | tr | [46] |
Acetoin | A | 1281 | 0.4 ± 0.05 c | 0.2 ± 0.05 d | 0.7 ± 0.08 b | 1.1 ± 0.19 a | [48] |
cis-Linalool oxide | B | 1445 | 0.1 ± 0.04 | tr | tr | tr | [46] |
Linalool | A | 1551 | 0.1 ± 0.04 b | tr | 0.1 ± 0.03 b | 0.2 ± 0.05 a | [48] |
Terpinen-4-ol | B | 1604 | 2.7 ± 0.61 a | 0.4 ± 0.09 b | tr | tr | [48,49] |
Menthol | B | 1644 | 0.1 ± 0.03 b | tr | 0.2 ± 0.05 a | 0.2 ± 0.05 a | [48] |
α-Terpineol | A | 1699 | 0.1 ± 0.03 | tr | tr | tr | [45] |
β-Damascenone | C | 1818 | 0.2 ± 0.05 a | 0.2 ± 0.05 a | 0.2 ± 0.05 a | 0.2 ± 0.07 a | [46] |
5-Methyl-3-methylenedihydro-2(3H)-furanone | C | 1827 | 1.2 ± 0.14 a | 0.5 ± 0.05 d | 0.7 ± 0.04 c | 0.9 ± 0.08 b | [50] |
Geraniol | A | 1849 | 0.2 ± 0.07 a | 0.3 ± 0.05 a | 0.2 ± 0.05 a | 0.2 ± 0.03 a | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bontsidis, C.; Mallouchos, A.; Terpou, A.; Nikolaou, A.; Batra, G.; Mantzourani, I.; Alexopoulos, A.; Plessas, S. Microbiological and Chemical Properties of Chokeberry Juice Fermented by Novel Lactic Acid Bacteria with Potential Probiotic Properties during Fermentation at 4 °C for 4 Weeks. Foods 2021, 10, 768. https://doi.org/10.3390/foods10040768
Bontsidis C, Mallouchos A, Terpou A, Nikolaou A, Batra G, Mantzourani I, Alexopoulos A, Plessas S. Microbiological and Chemical Properties of Chokeberry Juice Fermented by Novel Lactic Acid Bacteria with Potential Probiotic Properties during Fermentation at 4 °C for 4 Weeks. Foods. 2021; 10(4):768. https://doi.org/10.3390/foods10040768
Chicago/Turabian StyleBontsidis, Christos, Athanasios Mallouchos, Antonia Terpou, Anastasios Nikolaou, Georgia Batra, Ioanna Mantzourani, Athanasios Alexopoulos, and Stavros Plessas. 2021. "Microbiological and Chemical Properties of Chokeberry Juice Fermented by Novel Lactic Acid Bacteria with Potential Probiotic Properties during Fermentation at 4 °C for 4 Weeks" Foods 10, no. 4: 768. https://doi.org/10.3390/foods10040768
APA StyleBontsidis, C., Mallouchos, A., Terpou, A., Nikolaou, A., Batra, G., Mantzourani, I., Alexopoulos, A., & Plessas, S. (2021). Microbiological and Chemical Properties of Chokeberry Juice Fermented by Novel Lactic Acid Bacteria with Potential Probiotic Properties during Fermentation at 4 °C for 4 Weeks. Foods, 10(4), 768. https://doi.org/10.3390/foods10040768