Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Fabio A. Mendes ORCID = 0000-0003-1831-5193

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4900 KiB  
Article
Unveiling the RKIP and EGFR Inverse Relationship in Solid Tumors: A Case Study in Cervical Cancer
by Diana Cardoso-Carneiro, Joana Pinheiro, Patrícia Fontão, Rosete Nogueira, Maria Gabriela-Freitas, Ana Raquel-Cunha, Adriana Mendes, Adhemar Longatto-Filho, Fábio Marques, Marise A. R. Moreira, Rui M. Reis and Olga Martinho
Cancers 2024, 16(12), 2182; https://doi.org/10.3390/cancers16122182 - 10 Jun 2024
Cited by 1 | Viewed by 2155
Abstract
Raf Kinase Inhibitor Protein (RKIP) is recognized as a bona fide tumor suppressor gene, and its diminished expression or loss is associated with the progression and poor prognosis of various solid tumors. It exerts multifaceted roles in carcinogenesis by modulating diverse intracellular signaling [...] Read more.
Raf Kinase Inhibitor Protein (RKIP) is recognized as a bona fide tumor suppressor gene, and its diminished expression or loss is associated with the progression and poor prognosis of various solid tumors. It exerts multifaceted roles in carcinogenesis by modulating diverse intracellular signaling pathways, including those governed by HER receptors such as MAPK. Given the significance of HER receptor overexpression in numerous tumor types, we investigated the potential oncogenic relationship between RKIP and HER receptors in solid tumors. Through a comprehensive in silico analysis of 30 TCGA PanCancer Atlas studies encompassing solid tumors (10,719 samples), we uncovered compelling evidence of an inverse correlation between RKIP and EGFR expression in solid tumors observed in 25 out of 30 studies. Conversely, a predominantly positive association was noted for the other HER receptors (ERBB2, ERBB3, and ERBB4). In particular, cervical cancer (CC) emerged as a tumor type exhibiting a robust inverse association between RKIP and EGFR expression, a finding that was further validated in a cohort of 202 patient samples. Subsequent in vitro experiments involving pharmacological and genetic modulation of EGFR and RKIP showed that RKIP depletion led to significant upregulation of EGFR mRNA levels and induction of EGFR phosphorylation. Conversely, EGFR overactivation decreased RKIP expression in CC cell lines. Additionally, we identified a common molecular signature among patients depicting low RKIP and high EGFR expression and demonstrated the prognostic value of this inverse correlation in CC patients. In conclusion, our findings reveal an inverse association between RKIP and EGFR expression across various solid tumors, shedding new light on the underlying molecular mechanisms contributing to the aggressive phenotype associated with RKIP and EGFR in cervical cancer. Full article
Show Figures

Figure 1

26 pages, 401 KiB  
Review
Optimizing Clinical Implementation of Hypofractionation: Comprehensive Evidence Synthesis and Practical Guidelines for Low- and Middle-Income Settings
by Maria Thereza Mansur Starling, Stephane Thibodeau, Cecília Félix Penido Mendes de Sousa, Felipe Cicci Farinha Restini, Gustavo A. Viani, Andre G. Gouveia, Lucas C. Mendez, Gustavo Nader Marta and Fabio Ynoe Moraes
Cancers 2024, 16(3), 539; https://doi.org/10.3390/cancers16030539 - 26 Jan 2024
Cited by 6 | Viewed by 3228
Abstract
The global cancer burden, especially in low- and middle-income countries (LMICs), worsens existing disparities, amplified by the rising costs of advanced treatments. The shortage of radiation therapy (RT) services is a significant issue in LMICs. Extended conventional treatment regimens pose significant challenges, especially [...] Read more.
The global cancer burden, especially in low- and middle-income countries (LMICs), worsens existing disparities, amplified by the rising costs of advanced treatments. The shortage of radiation therapy (RT) services is a significant issue in LMICs. Extended conventional treatment regimens pose significant challenges, especially in resource-limited settings. Hypofractionated radiotherapy (HRT) and ultra-hypofractionated/stereotactic body radiation therapy (SBRT) offer promising alternatives by shortening treatment durations. This approach optimizes the utilization of radiotherapy machines, making them more effective in meeting the growing demand for cancer care. Adopting HRT/SBRT holds significant potential, especially in LMICs. This review provides the latest clinical evidence and guideline recommendations for the application of HRT/SBRT in the treatment of breast, prostate, and lung cancers. It emphasizes the critical importance of rigorous training, technology, stringent quality assurance, and safety protocols to ensure precise and secure treatments. Additionally, it addresses practical considerations for implementing these treatments in LMICs, highlighting the need for comprehensive support and collaboration to enhance patient access to advanced cancer care. Full article
(This article belongs to the Special Issue Hypofractionated Radiotherapy in Cancer Treatments)
13 pages, 736 KiB  
Review
The Role of Astrocytes and Blood–Brain Barrier Disruption in Alzheimer’s Disease
by João Victor R. Cruz, Carolina Batista, Luan Pereira Diniz and Fabio A. Mendes
Neuroglia 2023, 4(3), 209-221; https://doi.org/10.3390/neuroglia4030015 - 20 Aug 2023
Cited by 7 | Viewed by 4981
Abstract
The blood–brain barrier (BBB) is a highly intricate neurovascular structure that plays a crucial role in maintaining neural homeostasis by selectively allowing certain molecules to enter the central nervous system (CNS). However, in the context of Alzheimer’s Disease (AD), a progressive neurodegenerative disorder [...] Read more.
The blood–brain barrier (BBB) is a highly intricate neurovascular structure that plays a crucial role in maintaining neural homeostasis by selectively allowing certain molecules to enter the central nervous system (CNS). However, in the context of Alzheimer’s Disease (AD), a progressive neurodegenerative disorder characterized by a gradual decline in cognitive function, the BBB’s functionality becomes impaired. This impairment leads to the breakdown of the barrier and disrupts its ability to regulate molecular transport effectively. Consequently, cellular infiltration into the CNS occurs, along with aberrant signaling and clearance of molecules, ultimately contributing to neurological deficits. One of the key factors implicated in the failure of amyloid-beta (Aβ) transport, a hallmark of AD, is the decreased expression of low-density lipoprotein receptor-related protein 1 (LRP1). LRP1 plays a crucial role in facilitating the transport of Aβ across the BBB. Additionally, the increased levels of the receptor for advanced glycation end products (RAGE) further contribute to the deregulation of the BBB in AD. These molecular imbalances significantly impact Aβ clearance and contribute to the development and progression of AD. In this review, we aimed to summarize the critical aspects of Aβ transporters in the BBB that become dysfunctional during the pathogenesis of AD. Full article
Show Figures

Figure 1

14 pages, 864 KiB  
Review
Mechanical Properties of Glioblastoma: Perspectives for YAP/TAZ Signaling Pathway and Beyond
by Bruno Pontes and Fabio A. Mendes
Diseases 2023, 11(2), 86; https://doi.org/10.3390/diseases11020086 - 14 Jun 2023
Cited by 7 | Viewed by 4057
Abstract
Glioblastoma is a highly aggressive brain tumor with a poor prognosis. Recent studies have suggested that mechanobiology, the study of how physical forces influence cellular behavior, plays an important role in glioblastoma progression. Several signaling pathways, molecules, and effectors, such as focal adhesions, [...] Read more.
Glioblastoma is a highly aggressive brain tumor with a poor prognosis. Recent studies have suggested that mechanobiology, the study of how physical forces influence cellular behavior, plays an important role in glioblastoma progression. Several signaling pathways, molecules, and effectors, such as focal adhesions, stretch-activated ion channels, or membrane tension variations, have been studied in this regard. Also investigated are YAP/TAZ, downstream effectors of the Hippo pathway, which is a key regulator of cell proliferation and differentiation. In glioblastoma, YAP/TAZ have been shown to promote tumor growth and invasion by regulating genes involved in cell adhesion, migration, and extracellular matrix remodeling. YAP/TAZ can be activated by mechanical cues such as cell stiffness, matrix rigidity, and cell shape changes, which are all altered in the tumor microenvironment. Furthermore, YAP/TAZ have been shown to crosstalk with other signaling pathways, such as AKT, mTOR, and WNT, which are dysregulated in glioblastoma. Thus, understanding the role of mechanobiology and YAP/TAZ in glioblastoma progression could provide new insights into the development of novel therapeutic strategies. Targeting YAP/TAZ and mechanotransduction pathways in glioblastoma may offer a promising approach to treating this deadly disease. Full article
(This article belongs to the Special Issue Recent Advances in Diseases: Featured Reviews)
Show Figures

Figure 1

20 pages, 3902 KiB  
Article
The Flavonol Quercitrin Hinders GSK3 Activity and Potentiates the Wnt/β-Catenin Signaling Pathway
by Danilo Predes, Lorena A. Maia, Isadora Matias, Hannah Paola Mota Araujo, Carolina Soares, Fernanda G. Q. Barros-Aragão, Luiz F. S. Oliveira, Renata R. Reis, Nathalia G. Amado, Alessandro B. C. Simas, Fabio A. Mendes, Flávia C. A. Gomes, Claudia P. Figueiredo and Jose G. Abreu
Int. J. Mol. Sci. 2022, 23(20), 12078; https://doi.org/10.3390/ijms232012078 - 11 Oct 2022
Cited by 15 | Viewed by 3453
Abstract
The Wnt/β-catenin signaling pathway dictates cell proliferation and differentiation during embryonic development and tissue homeostasis. Its deregulation is associated with many pathological conditions, including neurodegenerative disease, frequently downregulated. The lack of efficient treatment for these diseases, including Alzheimer’s disease (AD), makes Wnt signaling [...] Read more.
The Wnt/β-catenin signaling pathway dictates cell proliferation and differentiation during embryonic development and tissue homeostasis. Its deregulation is associated with many pathological conditions, including neurodegenerative disease, frequently downregulated. The lack of efficient treatment for these diseases, including Alzheimer’s disease (AD), makes Wnt signaling an attractive target for therapies. Interestingly, novel Wnt signaling activating compounds are less frequently described than inhibitors, turning the quest for novel positive modulators even more appealing. In that sense, natural compounds are an outstanding source of potential drug leads. Here, we combine different experimental models, cell-based approaches, neuronal culture assays, and rodent behavior tests with Xenopus laevis phenotypic analysis to characterize quercitrin, a natural compound, as a novel Wnt signaling potentiator. We find that quercitrin potentiates the signaling in a concentration-dependent manner and increases the occurrence of the Xenopus secondary axis phenotype mediated by Xwnt8 injection. Using a GSK3 biosensor, we describe that quercitrin impairs GSK3 activity and increases phosphorylated GSK3β S9 levels. Treatment with XAV939, an inhibitor downstream of GSK3, impairs the quercitrin-mediated effect. Next, we show that quercitrin potentiates the Wnt3a-synaptogenic effect in hippocampal neurons in culture, which is blocked by XAV939. Quercitrin treatment also rescues the hippocampal synapse loss induced by intracerebroventricular injection of amyloid-β oligomers (AβO) in mice. Finally, quercitrin rescues AβO-mediated memory impairment, which is prevented by XAV939. Thus, our study uncovers a novel function for quercitrin as a Wnt/β-catenin signaling potentiator, describes its mechanism of action, and opens new avenues for AD treatments. Full article
(This article belongs to the Special Issue Wnt/β-Catenin Signaling in Health and Disease)
Show Figures

Figure 1

17 pages, 8823 KiB  
Article
A New Dermal Substitute Containing Polyvinyl Alcohol with Silver Nanoparticles and Collagen with Hyaluronic Acid: In Vitro and In Vivo Approaches
by Dario Mendes Júnior, Moema A. Hausen, Jéssica Asami, Akemi M. Higa, Fabio L. Leite, Giovanni P. Mambrini, Andre L. Rossi, Daniel Komatsu and Eliana A. de Rezende Duek
Antibiotics 2021, 10(6), 742; https://doi.org/10.3390/antibiotics10060742 - 19 Jun 2021
Cited by 19 | Viewed by 4109
Abstract
The experimental use of poly (alcohol-vinyl) (PVA) as a skin curative is increasing widely. However, the use of this hydrogel is challenging due to its favorable properties for microbiota growth. The association with silver nanoparticles (AgNPs) as an antimicrobial agent turns the match [...] Read more.
The experimental use of poly (alcohol-vinyl) (PVA) as a skin curative is increasing widely. However, the use of this hydrogel is challenging due to its favorable properties for microbiota growth. The association with silver nanoparticles (AgNPs) as an antimicrobial agent turns the match for PVA as a dressing, as it focuses on creating a physical barrier to avoid wound dehydration. When associated with extracellular components, such as the collagen matrix, the device obtained can create the desired biological conditions to act as a skin substitute. This study aimed to analyze the anti-microbiological activity and the in vitro and in vivo responses of a bilaminar device of PVA containing AgNPs associated with a membrane of collagen–hyaluronic acid (col-HA). Additionally, mesenchymal stem cells were cultured in the device to evaluate in vitro responses and in vivo immunomodulatory and healing behavior. The device morphology revealed a porous pattern that favored water retention and in vitro cell adhesion. Controlled wounds in the dorsal back of rat skins revealed a striking skin remodeling with new epidermis fulfilling all previously injured areas after 14 and 28 days. No infections or significant inflammations were observed, despite increased angiogenesis, and no fibrosis-markers were identified as compared to controls. Although few antibacterial activities were obtained, the addition of AgNPs prevented fungal growth. All results demonstrated that the combination of the components used here as a dermal device, chosen according to previous miscellany studies of low/mid-cost biomaterials, can promote skin protection avoiding infections and dehydration, minimize the typical wound inflammatory responses, and favor the cellular healing responses, features that give rise to further clinical trials of the device here developed Full article
Show Figures

Figure 1

17 pages, 1483 KiB  
Review
Potential Therapeutic Significance of Laminin in Head and Neck Squamous Carcinomas
by Nathalia Meireles Da Costa, Fábio A. Mendes, Bruno Pontes, Luiz Eurico Nasciutti, Luis Felipe Ribeiro Pinto and Antonio Palumbo Júnior
Cancers 2021, 13(8), 1890; https://doi.org/10.3390/cancers13081890 - 15 Apr 2021
Cited by 25 | Viewed by 4005
Abstract
Head and neck squamous cell carcinomas (HNSCC) are among the most common and lethal tumors worldwide, occurring mostly in oral cavity, pharynx, and larynx tissues. The squamous epithelia homeostasis is supported by the extracellular matrix (ECM), and alterations in this compartment are crucial [...] Read more.
Head and neck squamous cell carcinomas (HNSCC) are among the most common and lethal tumors worldwide, occurring mostly in oral cavity, pharynx, and larynx tissues. The squamous epithelia homeostasis is supported by the extracellular matrix (ECM), and alterations in this compartment are crucial for cancer development and progression. Laminin is a fundamental component of ECM, where it represents one of the main components of basement membrane (BM), and data supporting its contribution to HNSCC genesis and progression has been vastly explored in oral cavity squamous cell carcinoma. Laminin subtypes 111 (LN-111) and 332 (LN-332) are the main isoforms associated with malignant transformation, contributing to proliferation, adhesion, migration, invasion, and metastasis, due to its involvement in the regulation of several pathways associated with HNSCC carcinogenesis, including the activation of the EGFR/MAPK signaling pathway. Therefore, it draws attention to the possibility that laminin may represent a convergence point in HNSCC natural history, and an attractive potential therapeutic target for these tumors. Full article
Show Figures

Figure 1

20 pages, 2334 KiB  
Article
Impact of Aging on the 6-OHDA-Induced Rat Model of Parkinson’s Disease
by Sandra Barata-Antunes, Fábio G. Teixeira, Bárbara Mendes-Pinheiro, Ana V. Domingues, Helena Vilaça-Faria, Ana Marote, Deolinda Silva, Rui A. Sousa and António J. Salgado
Int. J. Mol. Sci. 2020, 21(10), 3459; https://doi.org/10.3390/ijms21103459 - 14 May 2020
Cited by 37 | Viewed by 8925
Abstract
Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder. The neurodegeneration leading to incapacitating motor abnormalities mainly occurs in the nigrostriatal pathway due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Several animal models have been [...] Read more.
Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder. The neurodegeneration leading to incapacitating motor abnormalities mainly occurs in the nigrostriatal pathway due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Several animal models have been developed not only to better understand the mechanisms underlying neurodegeneration but also to test the potential of emerging disease-modifying therapies. However, despite aging being the main risk factor for developing idiopathic PD, most of the studies do not use aged animals. Therefore, this study aimed at assessing the effect of aging in the unilateral 6-hydroxydopamine (6-OHDA)-induced animal model of PD. For this, female young adult and aged rats received a unilateral injection of 6-OHDA into the medial forebrain bundle. Subsequently, the impact of aging on 6-OHDA-induced effects on animal welfare, motor performance, and nigrostriatal integrity were assessed. The results showed that aging had a negative impact on animal welfare after surgery. Furthermore, 6-OHDA-induced impairments on skilled motor function were significantly higher in aged rats when compared with their younger counterparts. Nigrostriatal histological analysis further revealed an increased 6-OHDA-induced dopaminergic cell loss in the SNpc of aged animals when compared to young animals. Overall, our results demonstrate a higher susceptibility of aged animals to 6-OHDA toxic insult. Full article
(This article belongs to the Special Issue Animal Models of Parkinson's Disease and Related Disorders)
Show Figures

Figure 1

19 pages, 3315 KiB  
Article
The Chalcone Lonchocarpin Inhibits Wnt/β-Catenin Signaling and Suppresses Colorectal Cancer Proliferation
by Danilo Predes, Luiz F. S. Oliveira, Laís S. S. Ferreira, Lorena A. Maia, João M. A. Delou, Anderson Faletti, Igor Oliveira, Nathalia G. Amado, Alice H. Reis, Carlos A. M. Fraga, Ricardo Kuster, Fabio A. Mendes, Helena L. Borges and Jose G. Abreu
Cancers 2019, 11(12), 1968; https://doi.org/10.3390/cancers11121968 - 7 Dec 2019
Cited by 40 | Viewed by 5442
Abstract
The deregulation of the Wnt/β-catenin signaling pathway is a central event in colorectal cancer progression, thus a promising target for drug development. Many natural compounds, such as flavonoids, have been described as Wnt/β-catenin inhibitors and consequently modulate important biological processes like inflammation, redox [...] Read more.
The deregulation of the Wnt/β-catenin signaling pathway is a central event in colorectal cancer progression, thus a promising target for drug development. Many natural compounds, such as flavonoids, have been described as Wnt/β-catenin inhibitors and consequently modulate important biological processes like inflammation, redox balance, cancer promotion and progress, as well as cancer cell death. In this context, we identified the chalcone lonchocarpin isolated from Lonchocarpus sericeus as a Wnt/β-catenin pathway inhibitor, both in vitro and in vivo. Lonchocarpin impairs β-catenin nuclear localization and also inhibits the constitutively active form of TCF4, dnTCF4-VP16. Xenopus laevis embryology assays suggest that lonchocarpin acts at the transcriptional level. Additionally, we described lonchocarpin inhibitory effects on cell migration and cell proliferation on HCT116, SW480, and DLD-1 colorectal cancer cell lines, without any detectable effects on the non-tumoral intestinal cell line IEC-6. Moreover, lonchocarpin reduces tumor proliferation on the colorectal cancer AOM/DSS mice model. Taken together, our results support lonchocarpin as a novel Wnt/β-catenin inhibitor compound that impairs colorectal cancer cell growth in vitro and in vivo. Full article
(This article belongs to the Special Issue Role of Natural Bioactive Compounds in the Rise and Fall of Cancers)
Show Figures

Figure 1

13 pages, 1431 KiB  
Review
Flavonoids and Wnt/β-Catenin Signaling: Potential Role in Colorectal Cancer Therapies
by Nathália G. Amado, Danilo Predes, Marcela M. Moreno, Igor O. Carvalho, Fábio A. Mendes and José G. Abreu
Int. J. Mol. Sci. 2014, 15(7), 12094-12106; https://doi.org/10.3390/ijms150712094 - 8 Jul 2014
Cited by 75 | Viewed by 14576
Abstract
It is now well documented that natural products have played an important role in anticancer therapy. Many studies focus on the ability of these natural compounds to modulate tumor-related signaling pathways and the relationship of these properties to an anticancer effect. According to [...] Read more.
It is now well documented that natural products have played an important role in anticancer therapy. Many studies focus on the ability of these natural compounds to modulate tumor-related signaling pathways and the relationship of these properties to an anticancer effect. According to the World Health Organization (WHO), colorectal cancer (CRC) is the third most common cancer and the fourth leading cause of cancer death among men and women. Therefore, finding strategies to fight against CRC is an emergent health problem. CRC has a strong association with deregulation of Wnt/β-catenin signaling pathway. As some types of natural compounds are capable of modulating the Wnt/β-catenin signaling, one important question is whether they could counteract CRC. In this review, we discuss the role of flavonoids, a class of natural compounds, on Wnt/β-catenin regulation and its possible potential for therapeutic usage on colorectal cancer. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

16 pages, 240 KiB  
Article
Essential Oils from Different Plant Parts of Eucalyptus cinerea F. Muell. ex Benth. (Myrtaceae) as a Source of 1,8-Cineole and Their Bioactivities
by Sayonara Mendes Silva, Simone Yae Abe, Fábio Seigi Murakami, Gustavo Frensch, Francisco A. Marques and Tomoe Nakashima
Pharmaceuticals 2011, 4(12), 1535-1550; https://doi.org/10.3390/ph4121535 - 25 Nov 2011
Cited by 62 | Viewed by 10449
Abstract
Eucalyptus cinerea, known as silver dollar tree, has few descriptions in traditional medicine. Chemical composition and antimicrobial properties of the essential oils of leaves, flowers and fruits, collected seasonally, were determined by GC/MS and disk diffusion/MIC, respectively. 1,8-Cineole was the main compound, [...] Read more.
Eucalyptus cinerea, known as silver dollar tree, has few descriptions in traditional medicine. Chemical composition and antimicrobial properties of the essential oils of leaves, flowers and fruits, collected seasonally, were determined by GC/MS and disk diffusion/MIC, respectively. 1,8-Cineole was the main compound, particularly in fresh leaves—Spring (74.98%), dried leaves—Spring (85.32%), flowers—Winter (78.76%) and fruits—Winter (80.97%). Other compounds were found in the aerial parts in all seasons: α-pinene (2.41% to 10.13%), limonene (1.46% to 4.43%), α-terpineol (1.73% to 11.72%), and α-terpinyl acetate (3.04% to 20.44%). The essential oils showed antimicrobial activities against bacteria and yeasts, with the best results being found for the dried autumn and winter leaves oils (MIC < 0.39 mg/mL) against Streptococcus pyogenes. For the other tested microorganisms the following MIC results were found: Staphylococcus aureus—Dried leaves oil from summer (0.78 mg/mL), Pseudomonas aeruginosa—Flowers oil from autumn and fruits oil from winter (1.56 mg/mL) and Candida albicans—Flowers oil from autumn and fruits oils from winter and spring (0.78 mg/mL). Full article
Show Figures

Back to TopTop