Optimizing Clinical Implementation of Hypofractionation: Comprehensive Evidence Synthesis and Practical Guidelines for Low- and Middle-Income Settings
Abstract
:Simple Summary
Abstract
1. Introduction
2. Required Minimum Infrastructure for Hypofractionated Radiotherapy Adoption in LMICs
3. Clinical Evidence for Hypofractionated Radiotherapy
3.1. Breast
3.1.1. Evidence Supporting Moderate Hypofractionation in Breast Cancer
3.1.2. Evidence Supporting Ultra-Hypofractionation in Breast Cancer
3.1.3. Current Guidelines and Consensus Recommendations
3.2. Prostate
3.2.1. Evidence Supporting Moderate Hypofractionation in Prostate Cancer
3.2.2. Evidence Supporting Ultra-Hypofractionation in Prostate Cancer
3.2.3. Current Guidelines and Consensus Recommendations
3.3. Non-Small Cell Lung Cancer (NSCLC)
3.3.1. Evidence Supporting Moderate Hypofractionation in NSCLC
3.3.2. Evidence Supporting Ultra-Hypofractionation/SBRT in NSCLC
3.3.3. Current Guidelines and Consensus Recommendations in NSCLC
3.4. Spine Metastasis
3.4.1. Evidence Supporting Moderate Hypofractionation in Spine Metastasis
3.4.2. Evidence Supporting Ultra-Hypofractionation/SBRT in Spine Metastasis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends--An Update. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2016, 25, 16–27. [Google Scholar] [CrossRef]
- Atun, R.; Jaffray, D.A.; Barton, M.B.; Bray, F.; Baumann, M.; Vikram, B.; Hanna, T.P.; Knaul, F.M.; Lievens, Y.; Lui, T.Y.M.; et al. Expanding global access to radiotherapy. Lancet Oncol. 2015, 16, 1153–1186. [Google Scholar] [CrossRef] [PubMed]
- Assessing National Capacity for the Prevention and Control of Noncommunicable Diseases: Report of the 2019 Global Survey. Available online: https://www.who.int/publications-detail-redirect/9789240002319 (accessed on 16 July 2023).
- Baumann, M.; Ebert, N.; Kurth, I.; Bacchus, C.; Overgaard, J. What will radiation oncology look like in 2050? A look at a changing professional landscape in Europe and beyond. Mol. Oncol. 2020, 14, 1577–1585. [Google Scholar] [CrossRef]
- Dad, L.; Royce, T.J.; Morris, Z.; Moran, M.; Pawlicki, T.; Khuntia, D.; Hardenbergh, P.; Cummings, B.; Mayr, N.; Hu, K. Bridging Innovation and Outreach to Overcome Global Gaps in Radiation Oncology Through Information and Communication Tools, Trainee Advancement, Engaging Industry, Attention to Ethical Challenges, and Political Advocacy. Semin. Radiat. Oncol. 2017, 27, 98–108. [Google Scholar] [CrossRef]
- Coleman, C.N. Bringing cancer care to the underserved globally: A challenging problem for which radiation oncology can pioneer novel solutions. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 443–445. [Google Scholar] [CrossRef] [PubMed]
- Jaffray, D.A.; Gospodarowicz, M. Bringing global access to radiation therapy: Time for a change in approach. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 446–447. [Google Scholar] [CrossRef]
- Agency, I.A.E. Radiotherapy in Cancer Care: Facing the Global Challenge; International Atomic Energy Agency: Wien, Austria, 2017; pp. 1–544. [Google Scholar]
- Irabor, O.C.; Swanson, W.; Shaukat, F.; Wirtz, J.; Mallum, A.A.; Ngoma, T.; Elzawawy, A.; Nguyen, P.; Incrocci, L.; Ngwa, W. Can the Adoption of Hypofractionation Guidelines Expand Global Radiotherapy Access? An Analysis for Breast and Prostate Radiotherapy. JCO Glob. Oncol. 2020, 6, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, E.; Acuña, O.; Abdel-Wahab, M. The challenge of global radiation therapy: An IAEA perspective. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 687–689. [Google Scholar] [CrossRef]
- Dad, L.; Shah, M.M.; Mutter, R.; Olsen, J.; Dominello, M.; Miller, S.M.; Fisher, B.; Lee, N.; Komaki, R. Why target the globe?: 4-year report (2009–2013) of the Association of Residents in Radiation Oncology Global Health Initiative. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 485–491. [Google Scholar] [CrossRef]
- Datta, N.R.; Samiei, M.; Bodis, S. Radiation therapy infrastructure and human resources in low- and middle-income countries: Present status and projections for 2020. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Aitken, K.; Mukherjee, S. When Less is More: The Rising Tide of Hypofractionation. Clin. Oncol. R. Coll. Radiol. G. B. 2022, 34, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Chavez-Nogueda, J.; Galvis, J.C.; Merino, T.; Oliveira e Silva, L.; Rico, M.; Sarria, G.; Sisamon, I.; Garay, O. Hypofractionation as a solution to radiotherapy access in latin america: Expert perspective. Rep. Pract. Oncol. Radiother. 2022, 27, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- Kraus, R.D.; Weil, C.R.; Abdel-Wahab, M. Benefits of Adopting Hypofractionated Radiotherapy as a Standard of Care in Low-and Middle-Income Countries. JCO Glob. Oncol. 2022, 8, e2200215. [Google Scholar] [CrossRef] [PubMed]
- Brand, D.H.; Kirby, A.M.; Yarnold, J.R.; Somaiah, N. How Low Can You Go? The Radiobiology of Hypofractionation. Clin. Oncol. 2022, 34, 280–287. [Google Scholar] [CrossRef]
- Nahum, A.E. The Radiobiology of Hypofractionation. Clin. Oncol. 2015, 27, 260–269. [Google Scholar] [CrossRef]
- Rodin, D.; Tawk, B.; Mohamad, O.; Grover, S.; Moraes, F.Y.; Yap, M.L.; Zubizarreta, E.; Lievens, Y. Hypofractionated radiotherapy in the real-world setting: An international ESTRO-GIRO survey. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2021, 157, 32–39. [Google Scholar] [CrossRef]
- Yan, M.; Gouveia, A.G.; Cury, F.L.; Moideen, N.; Bratti, V.F.; Patrocinio, H.; Berlin, A.; Mendez, L.C.; Moraes, F.Y. Practical considerations for prostate hypofractionation in the developing world. Nat. Rev. Urol. 2021, 18, 669–685. [Google Scholar] [CrossRef]
- Swanson, W.; Samba, R.N.; Lavelle, M.; Elzawawy, A.; Sajo, E.; Ngwa, W.; Incrocci, L. Practical Guidelines on Implementing Hypofractionated Radiotherapy for Prostate Cancer in Africa. Front. Oncol. 2021, 11, 725103. [Google Scholar] [CrossRef]
- Swanson, W.; Kamwa, F.; Samba, R.; Ige, T.; Lasebikan, N.; Mallum, A.; Ngoma, T.; Sajo, E.; Elzawawy, A.; Incrocci, L.; et al. Hypofractionated Radiotherapy in African Cancer Centers. Front. Oncol. 2021, 10, 618641. [Google Scholar] [CrossRef]
- Klein, E.E.; Hanley, J.; Bayouth, J.; Yin, F.-F.; Simon, W.; Dresser, S.; Serago, C.; Aguirre, F.; Ma, L.; Arjomandy, B.; et al. Task Group 142 report: Quality assurance of medical acceleratorsa). Med. Phys. 2009, 36, 4197–4212. [Google Scholar] [CrossRef]
- Yadav, B.S.; Dahiya, D.; Gupta, A.; Rana, D.; Robert, N.; Sharma, M.; Rao, B. Breast cancer hypofractionated radiotherapy in 2-weeks with 2D technique: 5-year clinical outcomes of a phase 2 trial. Rep. Pract. Oncol. Radiother. 2021, 26, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Das, I.J.; Dawes, S.L.; Dominello, M.M.; Kavanagh, B.; Miyamoto, C.T.; Pawlicki, T.; Santanam, L.; Vinogradskiy, Y.; Yeung, A.R. Quality and Safety Considerations in Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy: An ASTRO Safety White Paper Update. Pract. Radiat. Oncol. 2022, 12, e253–e268. [Google Scholar] [CrossRef] [PubMed]
- Potters, L.; Kavanagh, B.; Galvin, J.M.; Hevezi, J.M.; Janjan, N.A.; Larson, D.A.; Mehta, M.P.; Ryu, S.; Steinberg, M.; Timmerman, R.; et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the performance of stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 326–332. [Google Scholar] [CrossRef]
- Benedict, S.H.; Yenice, K.M.; Followill, D.; Galvin, J.M.; Hinson, W.; Kavanagh, B.; Keall, P.; Lovelock, M.; Meeks, S.; Papiez, L.; et al. Stereotactic body radiation therapy: The report of AAPM Task Group 101. Med. Phys. 2010, 37, 4078–4101. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Heer, E.; Harper, A.; Escandor, N.; Sung, H.; McCormack, V.; Fidler-Benaoudia, M.M. Global burden and trends in premenopausal and postmenopausal breast cancer: A population-based study. Lancet Glob. Health 2020, 8, e1027–e1037. [Google Scholar] [CrossRef]
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Ebctcg (Early Breast Cancer Trialists’ Collaborative Group). Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: Meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 2014, 383, 2127–2135. [Google Scholar] [CrossRef]
- Early Breast Cancer Trialists’ Collaborative Group. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10 801 women in 17 randomised trials. Lancet s 2011, 378, 1707–1716. [Google Scholar] [CrossRef]
- Yamada, Y.; Ackerman, I.; Franssen, E.; MacKenzie, R.G.; Thomas, G. Does the dose fractionation schedule influence local control of adjuvant radiotherapy for early stage breast cancer? Int. J. Radiat. Oncol. Biol. Phys. 1999, 44, 99–104. [Google Scholar] [CrossRef]
- Yarnold, J.; Ashton, A.; Bliss, J.; Homewood, J.; Harper, C.; Hanson, J.; Haviland, J.; Bentzen, S.; Owen, R. Fractionation sensitivity and dose response of late adverse effects in the breast after radiotherapy for early breast cancer: Long-term results of a randomised trial. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2005, 75, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Mushonga, M.; Weiss, J.; Liu, Z.A.; Nyakabau, A.-M.; Mohamad, O.; Tawk, B.; Moraes, F.Y.; Grover, S.; Yap, M.L.; Zubizarreta, E.; et al. Hypofractionation in Breast Cancer Radiotherapy Across World Bank Income Groups: Results of an International Survey. JCO Glob. Oncol. 2023, 9, e2200127. [Google Scholar] [CrossRef] [PubMed]
- Moran, M.S.; Truong, P.T. Hypofractionated radiation treatment for breast cancer: The time is now. Breast J. 2020, 26, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Kim, Y.B. Journey to hypofractionation in radiotherapy for breast cancer: Critical reviews for recent updates. Radiat. Oncol. J. 2022, 40, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Whelan, T.; Levine, M.; Sussman, J. Hypofractionated Breast Irradiation: What’s Next? J. Clin. Oncol. 2020, 38, 3245–3247. [Google Scholar] [CrossRef] [PubMed]
- Marta, G.N.; Coles, C.; Kaidar-Person, O.; Meattini, I.; Hijal, T.; Zissiadis, Y.; Pignol, J.-P.; Ramiah, D.; Ho, A.Y.; Cheng, S.H.-C.; et al. The use of moderately hypofractionated post-operative radiation therapy for breast cancer in clinical practice: A critical review. Crit. Rev. Oncol. Hematol. 2020, 156, 103090. [Google Scholar] [CrossRef] [PubMed]
- Meattini, I.; Becherini, C.; Boersma, L.; Kaidar-Person, O.; Marta, G.N.; Montero, A.; Offersen, B.V.; Aznar, M.C.; Belka, C.; Brunt, A.M.; et al. European Society for Radiotherapy and Oncology Advisory Committee in Radiation Oncology Practice consensus recommendations on patient selection and dose and fractionation for external beam radiotherapy in early breast cancer. Lancet Oncol. 2022, 23, e21–e31. [Google Scholar] [CrossRef] [PubMed]
- Marta, G.N.; Riera, R.; Pacheco, R.L.; Cabrera Martimbianco, A.L.; Meattini, I.; Kaidar-Person, O.; Poortmans, P. Moderately hypofractionated post-operative radiation therapy for breast cancer: Systematic review and meta-analysis of randomized clinical trials. Breast Edinb. Scotl. 2022, 62, 84–92. [Google Scholar] [CrossRef]
- Haviland, J.S.; Owen, J.R.; Dewar, J.A.; Agrawal, R.K.; Barrett, J.; Barrett-Lee, P.J.; Dobbs, H.J.; Hopwood, P.; Lawton, P.A.; Magee, B.J.; et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol. 2013, 14, 1086–1094. [Google Scholar] [CrossRef]
- Whelan, T.J.; Pignol, J.-P.; Levine, M.N.; Julian, J.A.; MacKenzie, R.; Parpia, S.; Shelley, W.; Grimard, L.; Bowen, J.; Lukka, H.; et al. Long-Term Results of Hypofractionated Radiation Therapy for Breast Cancer. N. Engl. J. Med. 2010, 362, 513–520. [Google Scholar] [CrossRef] [PubMed]
- START Trialists’ Group; Bentzen, S.M.; Agrawal, R.K.; Aird, E.G.A.; Barrett, J.M.; Barrett-Lee, P.J.; Bentzen, S.M.; Bliss, J.M.; Brown, J.; Dewar, J.A.; et al. The UK Standardisation of Breast Radiotherapy (START) Trial B of radiotherapy hypofractionation for treatment of early breast cancer: A randomised trial. Lancet 2008, 371, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Whelan, T. Randomized Trial of Breast Irradiation Schedules After Lumpectomy for Women With Lymph Node-Negative Breast Cancer. J. Natl. Cancer Inst. 2002, 94, 1143–1150. [Google Scholar] [CrossRef]
- Wang, S.-L.; Fang, H.; Song, Y.-W.; Wang, W.-H.; Hu, C.; Liu, Y.-P.; Jin, J.; Liu, X.-F.; Yu, Z.-H.; Ren, H.; et al. Hypofractionated versus conventional fractionated postmastectomy radiotherapy for patients with high-risk breast cancer: A randomised, non-inferiority, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Hickey, B.E.; James, M.L.; Lehman, M.; Hider, P.N.; Jeffery, M.; Francis, D.P.; See, A.M. Hypofractionated radiation therapy for early breast cancer. Cochrane Database Syst. Rev. 2016, 2017, CD003860. [Google Scholar] [CrossRef] [PubMed]
- Andrade, T.R.M.; Fonseca, M.C.M.; Segreto, H.R.C.; Segreto, R.A.; Martella, E.; Nazário, A.C.P. Meta-analysis of long-term efficacy and safety of hypofractionated radiotherapy in the treatment of early breast cancer. Breast 2019, 48, 24–31. [Google Scholar] [CrossRef]
- Gu, L.; Dai, W.; Fu, R.; Lu, H.; Shen, J.; Shi, Y.; Zhang, M.; Jiang, K.; Wu, F. Comparing Hypofractionated With Conventional Fractionated Radiotherapy After Breast-Conserving Surgery for Early Breast Cancer: A Meta-Analysis of Randomized Controlled Trials. Front. Oncol. 2021, 11, 753209. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Y.; Guo, Q.; Ren, B.; Peng, Q.; Zou, L.; Zhu, Y.; Tian, Y. Comparing hypofractionated to conventional fractionated radiotherapy in postmastectomy breast cancer: A meta-analysis and systematic review. Radiat. Oncol. 2020, 15, 17. [Google Scholar] [CrossRef]
- Owen, J.R.; Ashton, A.; Bliss, J.M.; Homewood, J.; Harper, C.; Hanson, J.; Haviland, J.; Bentzen, S.M.; Yarnold, J.R. Effect of radiotherapy fraction size on tumour control in patients with early-stage breast cancer after local tumour excision: Long-term results of a randomised trial. Lancet Oncol. 2006, 7, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Offersen, B.V.; Alsner, J.; Nielsen, H.M.; Jakobsen, E.H.; Nielsen, M.H.; Krause, M.; Stenbygaard, L.; Mjaaland, I.; Schreiber, A.; Kasti, U.-M.; et al. Hypofractionated Versus Standard Fractionated Radiotherapy in Patients With Early Breast Cancer or Ductal Carcinoma In Situ in a Randomized Phase III Trial: The DBCG HYPO Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 3615–3625. [Google Scholar] [CrossRef] [PubMed]
- START Trialists’ Group; Bentzen, S.M.; Agrawal, R.K.; Aird, E.G.A.; Barrett, J.M.; Barrett-Lee, P.J.; Bliss, J.M.; Brown, J.; Dewar, J.A.; Dobbs, H.J.; et al. The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: A randomised trial. Lancet Oncol. 2008, 9, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Chua, B.H.; Link, E.K.; Kunkler, I.H.; Whelan, T.J.; Westenberg, A.H.; Gruber, G.; Bryant, G.; Ahern, V.; Purohit, K.; Graham, P.H.; et al. Radiation doses and fractionation schedules in non-low-risk ductal carcinoma in situ in the breast (BIG 3–07/TROG 07.01): A randomised, factorial, multicentre, open-label, phase 3 study. Lancet 2022, 400, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.S.; Uno, H.; Tramontano, A.; Pellegrini, C.; Bellon, J.R.; Cheney, M.D.; Hardenbergh, P.H.; Ho, A.Y.; Horst, K.C.; Kim, J.N.; et al. Patient-Reported and Toxicity Results from the FABREC Study: A Multicenter Randomized Trial of Hypofractionated vs. Conventionally-Fractionated Postmastectomy Radiation Therapy after Implant-Based Reconstruction. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, e3–e4. [Google Scholar] [CrossRef]
- Brunt, A.M.; Haviland, J.S.; Sydenham, M.; Agrawal, R.K.; Algurafi, H.; Alhasso, A.; Barrett-Lee, P.; Bliss, P.; Bloomfield, D.; Bowen, J.; et al. Ten-Year Results of FAST: A Randomized Controlled Trial of 5-Fraction Whole-Breast Radiotherapy for Early Breast Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 3261–3272. [Google Scholar] [CrossRef] [PubMed]
- Murray Brunt, A.; Haviland, J.S.; Wheatley, D.A.; Sydenham, M.A.; Alhasso, A.; Bloomfield, D.J.; Chan, C.; Churn, M.; Cleator, S.; Coles, C.E.; et al. Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial. Lancet 2020, 395, 1613–1626. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.D.; Bellon, J.R.; Blitzblau, R.; Freedman, G.; Haffty, B.; Hahn, C.; Halberg, F.; Hoffman, K.; Horst, K.; Moran, J.; et al. Radiation therapy for the whole breast: Executive summary of an American Society for Radiation Oncology (ASTRO) evidence-based guideline. Pract. Radiat. Oncol. 2018, 8, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Burstein, H.J.; Curigliano, G.; Thürlimann, B.; Weber, W.P.; Poortmans, P.; Regan, M.M.; Senn, H.J.; Winer, E.P.; Gnant, M.; Panelists of the St Gallen Consensus Conference. Customizing local and systemic therapies for women with early breast cancer: The St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 1216–1235. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Chatterjee, S.; Backianathan, S.; Lal, P.; Gupta, S.; Ahmed, R.; Misra, S.; Solomon, P.; Balakrishan, R.; Bhushal, S.; et al. HYPORT adjuvant acute toxicity and patient dosimetry quality assurance results—Interim analysis. Radiother. Oncol. 2022, 174, 59–68. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA. Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Beckendorf, V.; Guerif, S.; Le Prisé, E.; Cosset, J.-M.; Bougnoux, A.; Chauvet, B.; Salem, N.; Chapet, O.; Bourdain, S.; Bachaud, J.-M.; et al. 70 Gy Versus 80 Gy in Localized Prostate Cancer: 5-Year Results of GETUG 06 Randomized Trial. Int. J. Radiat. Oncol. 2011, 80, 1056–1063. [Google Scholar] [CrossRef]
- Kuban, D.A.; Tucker, S.L.; Dong, L.; Starkschall, G.; Huang, E.H.; Cheung, M.R.; Lee, A.K.; Pollack, A. Long-Term Results of the M. D. Anderson Randomized Dose-Escalation Trial for Prostate Cancer. Int. J. Radiat. Oncol. 2008, 70, 67–74. [Google Scholar] [CrossRef]
- Dearnaley, D.P.; Jovic, G.; Syndikus, I.; Khoo, V.; Cowan, R.A.; Graham, J.D.; Aird, E.G.; Bottomley, D.; Huddart, R.A.; Jose, C.C.; et al. Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: Long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol. 2014, 15, 464–473. [Google Scholar] [CrossRef]
- Al-Mamgani, A.; van Putten, W.L.J.; Heemsbergen, W.D.; van Leenders, G.J.L.H.; Slot, A.; Dielwart, M.F.H.; Incrocci, L.; Lebesque, J.V. Update of Dutch Multicenter Dose-Escalation Trial of Radiotherapy for Localized Prostate Cancer. Int. J. Radiat. Oncol. 2008, 72, 980–988. [Google Scholar] [CrossRef]
- Zelefsky, M.J.; Pei, X.; Chou, J.F.; Schechter, M.; Kollmeier, M.; Cox, B.; Yamada, Y.; Fidaleo, A.; Sperling, D.; Happersett, L.; et al. Dose escalation for prostate cancer radiotherapy: Predictors of long-term biochemical tumor control and distant metastases-free survival outcomes. Eur. Urol. 2011, 60, 1133–1139. [Google Scholar] [CrossRef]
- Dasu, A.; Toma-Dasu, I. Prostate alpha/beta revisited -- an analysis of clinical results from 14 168 patients. Acta Oncol. Stockh. Swed. 2012, 51, 963–974. [Google Scholar] [CrossRef]
- Brenner, D.J. Fractionation and late rectal toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 1013–1015. [Google Scholar] [CrossRef]
- Royce, T.J.; Lee, D.H.; Keum, N.; Permpalung, N.; Chiew, C.J.; Epstein, S.; Pluchino, K.M.; D’Amico, A.V. Conventional Versus Hypofractionated Radiation Therapy for Localized Prostate Cancer: A Meta-analysis of Randomized Noninferiority Trials. Eur. Urol. Focus 2019, 5, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Morgan, S.C.; Hoffman, K.; Loblaw, D.A.; Buyyounouski, M.K.; Patton, C.; Barocas, D.; Bentzen, S.; Chang, M.; Efstathiou, J.; Greany, P.; et al. Hypofractionated Radiation Therapy for Localized Prostate Cancer: Executive Summary of an ASTRO, ASCO, and AUA Evidence-Based Guideline. Pract. Radiat. Oncol. 2018, 8, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Arcangeli, G.; Saracino, B.; Arcangeli, S.; Gomellini, S.; Petrongari, M.G.; Sanguineti, G.; Strigari, L. Moderate Hypofractionation in High-Risk, Organ-Confined Prostate Cancer: Final Results of a Phase III Randomized Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 1891–1897. [Google Scholar] [CrossRef] [PubMed]
- Pollack, A.; Walker, G.; Horwitz, E.M.; Price, R.; Feigenberg, S.; Konski, A.A.; Stoyanova, R.; Movsas, B.; Greenberg, R.E.; Uzzo, R.G.; et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 3860–3868. [Google Scholar] [CrossRef] [PubMed]
- Dearnaley, D.; Syndikus, I.; Mossop, H.; Khoo, V.; Birtle, A.; Bloomfield, D.; Graham, J.; Kirkbride, P.; Logue, J.; Malik, Z.; et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016, 17, 1047–1060. [Google Scholar] [CrossRef]
- Incrocci, L.; Wortel, R.C.; Alemayehu, W.G.; Aluwini, S.; Schimmel, E.; Krol, S.; van der Toorn, P.-P.; de Jager, H.; Heemsbergen, W.; Heijmen, B.; et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): Final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016, 17, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.R.; Dignam, J.J.; Amin, M.B.; Bruner, D.W.; Low, D.; Swanson, G.P.; Shah, A.B.; D’Souza, D.P.; Michalski, J.M.; Dayes, I.S.; et al. Randomized Phase III Noninferiority Study Comparing Two Radiotherapy Fractionation Schedules in Patients With Low-Risk Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Staffurth, J.; Haviland, J.; Wilkins, A.; Syndikus, I.; Khoo, V.; Bloomfield, D.; Parker, C.; Logue, J.; Scrase, C.; Birtle, A.; et al. Impact of Prostate Cancer Hypofractionation on Patient Reported Outcomes: Baseline to 5 Years Change in the CHHIP Trial. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, S1–S2. [Google Scholar] [CrossRef]
- Bruner, D.W.; Pugh, S.L.; Lee, W.R.; Hall, W.A.; Dignam, J.J.; Low, D.; Swanson, G.P.; Shah, A.B.; Malone, S.; Michalski, J.M.; et al. Quality of Life in Patients With Low-Risk Prostate Cancer Treated With Hypofractionated vs Conventional Radiotherapy: A Phase 3 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 664–670. [Google Scholar] [CrossRef]
- Staffurth, J.N.; Haviland, J.S.; Wilkins, A.; Syndikus, I.; Khoo, V.; Bloomfield, D.; Parker, C.; Logue, J.; Scrase, C.; Birtle, A.; et al. Impact of Hypofractionated Radiotherapy on Patient-reported Outcomes in Prostate Cancer: Results up to 5 yr in the CHHiP trial (CRUK/06/016). Eur. Urol. Oncol. 2021, 4, 980–992. [Google Scholar] [CrossRef]
- Catton, C.N.; Lukka, H.; Gu, C.-S.; Martin, J.M.; Supiot, S.; Chung, P.W.M.; Bauman, G.S.; Bahary, J.-P.; Ahmed, S.; Cheung, P.; et al. Randomized Trial of a Hypofractionated Radiation Regimen for the Treatment of Localized Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 1884–1890. [Google Scholar] [CrossRef]
- Datta, N.R.; Stutz, E.; Rogers, S.; Bodis, S. Conventional Versus Hypofractionated Radiation Therapy for Localized or Locally Advanced Prostate Cancer: A Systematic Review and Meta-analysis along with Therapeutic Implications. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 573–589. [Google Scholar] [CrossRef]
- Hickey, B.E.; James, M.L.; Daly, T.; Soh, F.-Y.; Jeffery, M. Hypofractionation for clinically localized prostate cancer. Cochrane Database Syst. Rev. 2019, 9, CD011462. [Google Scholar] [CrossRef]
- Jackson, W.C.; Silva, J.; Hartman, H.E.; Dess, R.T.; Kishan, A.U.; Beeler, W.H.; Gharzai, L.A.; Jaworski, E.M.; Mehra, R.; Hearn, J.W.D.; et al. Stereotactic Body Radiation Therapy for Localized Prostate Cancer: A Systematic Review and Meta-Analysis of Over 6,000 Patients Treated On Prospective Studies. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 778–789. [Google Scholar] [CrossRef]
- Widmark, A.; Gunnlaugsson, A.; Beckman, L.; Thellenberg-Karlsson, C.; Hoyer, M.; Lagerlund, M.; Kindblom, J.; Ginman, C.; Johansson, B.; Björnlinger, K.; et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet 2019, 394, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Fransson, P.; Nilsson, P.; Gunnlaugsson, A.; Beckman, L.; Tavelin, B.; Norman, D.; Thellenberg-Karlsson, C.; Hoyer, M.; Lagerlund, M.; Kindblom, J.; et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer (HYPO-RT-PC): Patient-reported quality-of-life outcomes of a randomised, controlled, non-inferiority, phase 3 trial. Lancet Oncol. 2021, 22, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Brand, D.H.; Tree, A.C.; Ostler, P.; Van Der Voet, H.; Loblaw, A.; Chu, W.; Ford, D.; Tolan, S.; Jain, S.; Martin, A.; et al. Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): Acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncol. 2019, 20, 1531–1543. [Google Scholar] [CrossRef] [PubMed]
- Van As, N.; Tree, A.; Patel, J.; Ostler, P.; Voet, H.V.D.; Loblaw, D.A.; Chu, W.; Ford, D.; Tolan, S.; Jain, S.; et al. 5-Year Outcomes from PACE B: An International Phase III Randomized Controlled Trial Comparing Stereotactic Body Radiotherapy (SBRT) vs. Conventionally Fractionated or Moderately Hypo Fractionated External Beam Radiotherapy for Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, e2–e3. [Google Scholar] [CrossRef]
- Guidelines Detail. Available online: https://www.nccn.org/guidelines/guidelines-detail (accessed on 22 July 2023).
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef]
- Vinod, S.K.; Hau, E. Radiotherapy treatment for lung cancer: Current status and future directions. Respirology 2020, 25, 61–71. [Google Scholar] [CrossRef]
- Delaney, G.P.; Barton, M.B. Evidence-based estimates of the demand for radiotherapy. Clin. Oncol. R. Coll. Radiol. G. B. 2015, 27, 70–76. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Zhou, Q.; Xu, Y.; Xia, W.; Xu, W.; Ma, Z.; Qiu, M.; You, R.; Xu, L.; et al. Stereotactic ablative radiotherapy versus lobectomy for stage I non-small cell lung cancer: A systematic review: SABR vs. lobectomy for stage I NSCLC. Thorac. Cancer 2018, 9, 337–347. [Google Scholar] [CrossRef]
- Chang, J.Y.; Mehran, R.J.; Feng, L.; Verma, V.; Liao, Z.; Welsh, J.W.; Lin, S.H.; O’Reilly, M.S.; Jeter, M.D.; Balter, P.A.; et al. Stereotactic ablative radiotherapy for operable stage I non-small-cell lung cancer (revised STARS): Long-term results of a single-arm, prospective trial with prespecified comparison to surgery. Lancet Oncol. 2021, 22, 1448–1457. [Google Scholar] [CrossRef]
- Ball, D.; Mai, G.T.; Vinod, S.; Babington, S.; Ruben, J.; Kron, T.; Chesson, B.; Herschtal, A.; Vanevski, M.; Rezo, A.; et al. Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): A phase 3, open-label, randomised controlled trial. Lancet Oncol. 2019, 20, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Swaminath, A.; Parpia, S.; Wierzbicki, M.; Kundapur, V.; Faria, S.L.; Okawara, G.; Tsakiridis, T.; Ahmed, N.; Bujold, A.; Hirmiz, K.J.; et al. LUSTRE: A Phase III Randomized Trial of Stereotactic Body Radiotherapy (SBRT) vs. Conventionally Hypofractionated Radiotherapy (CRT) for Medically Inoperable Stage I Non-Small Cell Lung Cancer (NSCLC). Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 1061–1062. [Google Scholar] [CrossRef]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes From the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Daly, M.E.; Singh, N.; Ismaila, N.; Antonoff, M.B.; Arenberg, D.A.; Bradley, J.; David, E.; Detterbeck, F.; Früh, M.; Gubens, M.A.; et al. Management of Stage III Non–Small-Cell Lung Cancer: ASCO Guideline. J. Clin. Oncol. 2022, 40, 1356–1384. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, P.; Zhang-Velten, E.; Court, L.; Westover, K.; Yan, Y.; Lin, M.-H.; Xiong, Z.; Patel, M.; Rivera, D.; Chang, J.; et al. Accelerated Hypofractionated Image-Guided vs Conventional Radiotherapy for Patients With Stage II/III Non-Small Cell Lung Cancer and Poor Performance Status: A Randomized Clinical Trial. JAMA Oncol. 2021, 7, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Maguire, J.; Khan, I.; McMenemin, R.; O’Rourke, N.; McNee, S.; Kelly, V.; Peedell, C.; Snee, M. SOCCAR: A randomised phase II trial comparing sequential versus concurrent chemotherapy and radical hypofractionated radiotherapy in patients with inoperable stage III Non-Small Cell Lung Cancer and good performance status. Eur. J. Cancer Oxf. Engl. 1990 2014, 50, 2939–2949. [Google Scholar] [CrossRef] [PubMed]
- Brada, M.; Forbes, H.; Ashley, S.; Fenwick, J. Improving Outcomes in NSCLC: Optimum Dose Fractionation in Radical Radiotherapy Matters. J. Thorac. Oncol. 2022, 17, 532–543. [Google Scholar] [CrossRef]
- Viani, G.A.; Gouveia, A.G.; Moraes, F.Y. Sequential or concomitant chemotherapy with hypofractionated radiotherapy for locally advanced non-small cell lung cancer: A meta-analysis of randomized trials. J. Thorac. Dis. 2021, 13, 6272–6282. [Google Scholar] [CrossRef]
- Onishi, H.; Shirato, H.; Nagata, Y.; Hiraoka, M.; Fujino, M.; Gomi, K.; Niibe, Y.; Karasawa, K.; Hayakawa, K.; Takai, Y.; et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: Updated results of 257 patients in a Japanese multi-institutional study. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2007, 2, S94–S100. [Google Scholar] [CrossRef]
- Nyman, J.; Hallqvist, A.; Lund, J.-Å.; Brustugun, O.-T.; Bergman, B.; Bergström, P.; Friesland, S.; Lewensohn, R.; Holmberg, E.; Lax, I. SPACE—A randomized study of SBRT vs conventional fractionated radiotherapy in medically inoperable stage I NSCLC. Radiother. Oncol. 2016, 121, 1–8. [Google Scholar] [CrossRef]
- Timmerman, R.; Paulus, R.; Galvin, J.; Michalski, J.; Straube, W.; Bradley, J.; Fakiris, A.; Bezjak, A.; Videtic, G.; Johnstone, D.; et al. Stereotactic Body Radiation Therapy for Inoperable Early Stage Lung Cancer. JAMA J. Am. Med. Assoc. 2010, 303, 1070–1076. [Google Scholar] [CrossRef]
- Timmerman, R.D.; Hu, C.; Michalski, J.M.; Bradley, J.C.; Galvin, J.; Johnstone, D.W.; Choy, H. Long-term Results of Stereotactic Body Radiation Therapy in Medically Inoperable Stage I Non–Small Cell Lung Cancer. JAMA Oncol. 2018, 4, 1287–1288. [Google Scholar] [CrossRef]
- Videtic, G.M.M.; Hu, C.; Singh, A.K.; Chang, J.Y.; Parker, W.; Olivier, K.R.; Schild, S.E.; Komaki, R.; Urbanic, J.J.; Choy, H. NRG Oncology RTOG 0915 (NCCTG N0927): A Randomized Phase II Study Comparing 2 Stereotactic Body Radiation Therapy (SBRT) Schedules for Medically Inoperable Patients with Stage I Peripheral Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 757–764. [Google Scholar] [CrossRef]
- Videtic, G.M.; Paulus, R.; Singh, A.K.; Chang, J.Y.; Parker, W.; Olivier, K.R.; Timmerman, R.D.; Komaki, R.R.; Urbanic, J.J.; Stephans, K.L.; et al. Long-term Follow-up on NRG Oncology RTOG 0915 (NCCTG N0927): A Randomized Phase 2 Study Comparing 2 Stereotactic Body Radiation Therapy Schedules for Medically Inoperable Patients With Stage I Peripheral Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 1077–1084. [Google Scholar] [CrossRef]
- Singh, A.K.; Gomez-Suescun, J.A.; Stephans, K.L.; Bogart, J.A.; Hermann, G.M.; Tian, L.; Groman, A.; Videtic, G.M. One Versus Three Fractions of Stereotactic Body Radiation Therapy for Peripheral Stage I to II Non-Small Cell Lung Cancer: A Randomized, Multi-Institution, Phase 2 Trial. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 752–759. [Google Scholar] [CrossRef]
- Bezjak, A.; Paulus, R.; Gaspar, L.E.; Timmerman, R.D.; Straube, W.L.; Ryan, W.F.; Garces, Y.I.; Pu, A.T.; Singh, A.K.; Videtic, G.M.; et al. Safety and Efficacy of a Five-Fraction Stereotactic Body Radiotherapy Schedule for Centrally Located Non–Small-Cell Lung Cancer: NRG Oncology/RTOG 0813 Trial. J. Clin. Oncol. 2019, 37, 1316–1325. [Google Scholar] [CrossRef]
- Viani, G.A.; Gouveia, A.G.; Yan, M.; Matsuura, F.K.; Moraes, F.Y. Stereotactic body radiotherapy versus surgery for early-stage non-small cell lung cancer: An updated meta-analysis involving 29,511 patients included in comparative studies. J. Bras. Pneumol. 2022, 48, e20210390. [Google Scholar] [CrossRef]
- Eberhardt, W.E.E.; De Ruysscher, D.; Weder, W.; Le Péchoux, C.; De Leyn, P.; Hoffmann, H.; Westeel, V.; Stahel, R.; Felip, E.; Peters, S.; et al. 2nd ESMO Consensus Conference in Lung Cancer: Locally advanced stage III non-small-cell lung cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2015, 26, 1573–1588. [Google Scholar] [CrossRef] [PubMed]
- Guckenberger, M.; Belka, C.; Bezjak, A.; Bradley, J.; Daly, M.E.; DeRuysscher, D.; Dziadziuszko, R.; Faivre-Finn, C.; Flentje, M.; Gore, E.; et al. Practice Recommendations for Lung Cancer Radiotherapy During the COVID-19 Pandemic: An ESTRO-ASTRO Consensus Statement. Int. J. Radiat. Oncol. 2020, 107, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.J.; Daly, M.E.; Kennedy, E.B.; Antonoff, M.B.; Broderick, S.; Feldman, J.; Jolly, S.; Meyers, B.; Rocco, G.; Rusthoven, C.; et al. Stereotactic Body Radiotherapy for Early-Stage Non–Small-Cell Lung Cancer: American Society of Clinical Oncology Endorsement of the American Society for Radiation Oncology Evidence-Based Guideline. J. Clin. Oncol. 2018, 36, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Videtic, G.M.M.; Donington, J.; Giuliani, M.; Heinzerling, J.; Karas, T.Z.; Kelsey, C.R.; Lally, B.E.; Latzka, K.; Lo, S.S.; Moghanaki, D.; et al. Stereotactic body radiation therapy for early-stage non-small cell lung cancer: Executive Summary of an ASTRO Evidence-Based Guideline. Pract. Radiat. Oncol. 2017, 7, 295–301. [Google Scholar] [CrossRef]
- Guckenberger, M.; Andratschke, N.; Dieckmann, K.; Hoogeman, M.S.; Hoyer, M.; Hurkmans, C.; Tanadini-Lang, S.; Lartigau, E.; Romero, A.M.; Senan, S.; et al. ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiother. Oncol. 2017, 124, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Ortiz Gómez, J.A. The incidence of vertebral body metastases. Int. Orthop. 1995, 19, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Spratt, D.E.; Beeler, W.H.; De Moraes, F.Y.; Rhines, L.D.; Gemmete, J.J.; Chaudhary, N.; Shultz, D.B.; Smith, S.R.; Berlin, A.; Dahele, M.; et al. An integrated multidisciplinary algorithm for the management of spinal metastases: An International Spine Oncology Consortium report. Lancet Oncol. 2017, 18, e720–e730. [Google Scholar] [CrossRef] [PubMed]
- Chow, E.; Zeng, L.; Salvo, N.; Dennis, K.; Tsao, M.; Lutz, S. Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin. Oncol. R. Coll. Radiol. G. B. 2012, 24, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Chow, E.; van der Linden, Y.M.; Roos, D.; Hartsell, W.F.; Hoskin, P.; Wu, J.S.Y.; Brundage, M.D.; Nabid, A.; Tissing-Tan, C.J.A.; Oei, B.; et al. Single versus multiple fractions of repeat radiation for painful bone metastases: A randomised, controlled, non-inferiority trial. Lancet Oncol. 2014, 15, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Chow, R.; Hoskin, P.; Schild, S.E.; Raman, S.; Im, J.; Zhang, D.; Chan, S.; Chiu, N.; Chiu, L.; Lam, H.; et al. Single vs multiple fraction palliative radiation therapy for bone metastases: Cumulative meta-analysis. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2019, 141, 56–61. [Google Scholar] [CrossRef]
- Santos, P.M.G.; Lapen, K.; Zhang, Z.; Lobaugh, S.; Tsai, C.J.; Yang, T.J.; Bekelman, J.E.; Gillespie, E.F. Trends in Radiation Therapy for Bone Metastases, 2015 to 2017: Choosing Wisely in the Era of Complex Radiation. Int. J. Radiat. Oncol. 2021, 109, 923–931. [Google Scholar] [CrossRef]
- Katagiri, H.; Takahashi, M.; Inagaki, J.; Kobayashi, H.; Sugiura, H.; Yamamura, S.; Iwata, H. Clinical results of nonsurgical treatment for spinal metastases. Int. J. Radiat. Oncol. Biol. Phys. 1998, 42, 1127–1132. [Google Scholar] [CrossRef]
- Rich, S.E.; Chow, R.; Raman, S.; Zeng, K.L.; Lutz, S.; Lam, H.; Silva, M.F.; Chow, E. Update of the systematic review of palliative radiation therapy fractionation for bone metastases. Radiother. Oncol. 2018, 126, 547–557. [Google Scholar] [CrossRef]
- Gouveia, A.G.; Chan, D.C.W.; Hoskin, P.J.; Marta, G.N.; Trippa, F.; Maranzano, E.; Chow, E.; Silva, M.F. Advances in radiotherapy in bone metastases in the context of new target therapies and ablative alternatives: A critical review. Radiother. Oncol. 2021, 163, 55–67. [Google Scholar] [CrossRef]
- Steenland, E.; Leer, J.W.; van Houwelingen, H.; Post, W.J.; van den Hout, W.B.; Kievit, J.; de Haes, H.; Martijn, H.; Oei, B.; Vonk, E.; et al. The effect of a single fraction compared to multiple fractions on painful bone metastases: A global analysis of the Dutch Bone Metastasis Study. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 1999, 52, 101–109. [Google Scholar] [CrossRef]
- Hartsell, W.F.; Scott, C.B.; Bruner, D.W.; Scarantino, C.W.; Ivker, R.A.; Roach, M.; Suh, J.H.; Demas, W.F.; Movsas, B.; Petersen, I.A.; et al. Randomized trial of short- versus long-course radiotherapy for palliation of painful bone metastases. J. Natl. Cancer Inst. 2005, 97, 798–804. [Google Scholar] [CrossRef]
- Wilke, L.; Andratschke, N.; Blanck, O.; Brunner, T.B.; Combs, S.E.; Grosu, A.-L.; Moustakis, C.; Schmitt, D.; Baus, W.W.; Guckenberger, M. ICRU report 91 on prescribing, recording, and reporting of stereotactic treatments with small photon beams: Statement from the DEGRO/DGMP working group stereotactic radiotherapy and radiosurgery. Strahlenther. Onkol. Organ Dtsch. Rontgengesellschaft Al. 2019, 195, 193–198. [Google Scholar] [CrossRef]
- Glicksman, R.M.; Tjong, M.C.; Neves-Junior, W.F.P.; Spratt, D.E.; Chua, K.L.M.; Mansouri, A.; Chua, M.L.K.; Berlin, A.; Winter, J.D.; Dahele, M.; et al. Stereotactic Ablative Radiotherapy for the Management of Spinal Metastases: A Review. JAMA Oncol. 2020, 6, 567. [Google Scholar] [CrossRef]
- Ryu, S.; Deshmukh, S.; Timmerman, R.D.; Movsas, B.; Gerszten, P.; Yin, F.-F.; Dicker, A.; Abraham, C.D.; Zhong, J.; Shiao, S.L.; et al. Stereotactic Radiosurgery vs Conventional Radiotherapy for Localized Vertebral Metastases of the Spine: Phase 3 Results of NRG Oncology/RTOG 0631 Randomized Clinical Trial. JAMA Oncol. 2023, 9, 800. [Google Scholar] [CrossRef]
- Sahgal, A.; Myrehaug, S.D.; Siva, S.; Masucci, G.L.; Maralani, P.J.; Brundage, M.; Butler, J.; Chow, E.; Fehlings, M.G.; Foote, M.; et al. Stereotactic body radiotherapy versus conventional external beam radiotherapy in patients with painful spinal metastases: An open-label, multicentre, randomised, controlled, phase 2/3 trial. Lancet Oncol. 2021, 22, 1023–1033. [Google Scholar] [CrossRef]
- Moore-Palhares, D.; Sahgal, A.; Zeng, K.L.; Myrehaug, S.; Tseng, C.-L.; Detsky, J.; Chen, H.; Ruschin, M.; Atenafu, E.G.; Wilson, J.; et al. 30 Gy in 4 Stereotactic Body Radiotherapy Fractions for Complex Spinal Metastases: Mature Outcomes Supporting This Novel Regimen. Neurosurgery 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Zelefsky, M.J.; Yamada, Y.; Greco, C.; Lis, E.; Schöder, H.; Lobaugh, S.; Zhang, Z.; Braunstein, S.; Bilsky, M.H.; Powell, S.N.; et al. Phase 3 Multi-Center, Prospective, Randomized Trial Comparing Single-Dose 24 Gy Radiation Therapy to a 3-Fraction SBRT Regimen in the Treatment of Oligometastatic Cancer. Int. J. Radiat. Oncol. 2021, 110, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.R.; Tang, C.; Zhang, J.; Blumenschein, G.R.; Hernandez, M.; Lee, J.J.; Ye, R.; Palma, D.A.; Louie, A.V.; Camidge, D.R.; et al. Local Consolidative Therapy Vs. Maintenance Therapy or Observation for Patients With Oligometastatic Non–Small-Cell Lung Cancer: Long-Term Results of a Multi-Institutional, Phase II, Randomized Study. J. Clin. Oncol. 2019, 37, 1558–1565. [Google Scholar] [CrossRef] [PubMed]
- Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P.; et al. Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers: Long-Term Results of the SABR-COMET Phase II Randomized Trial. J. Clin. Oncol. 2020, 38, 2830–2838. [Google Scholar] [CrossRef] [PubMed]
- Zietman, A. Bringing Radiation Therapy to Underserved Nations: An Increasingly Global Responsibility in an Ever-Shrinking World. Int. J. Radiat. Oncol. 2014, 89, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Zubizarreta, E.H.; Fidarova, E.; Healy, B.; Rosenblatt, E. Need for Radiotherapy in Low and Middle Income Countries—The Silent Crisis Continues. Clin. Oncol. 2015, 27, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Renouf, M.; Perrocheau, G.; Magné, N.; Latorzeff, I.; Pommier, P.; Créhange, G.; Paumier, A.; Bera, G.; Martin, J.; et al. Cost-effectiveness of hypofractionated versus conventional radiotherapy in patients with intermediate-risk prostate cancer: An ancillary study of the PROstate fractionated irradiation trial—ROFIT. Radiother. Oncol. 2022, 173, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.; Stav, I.; Den, R.B.; Gordon, N.; Sarfaty, M.; Neiman, V.; Rosenbaum, E.; Goldstein, D.A. The Financial Impact of Hypofractionated Radiation for Localized Prostate Cancer in the United States. J. Oncol. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Marta, G.N.; Moraes, F.Y.; de Oliveira Franco, R.C.; Carvalho, H.A.; Gouveia, A.G.; de Lima Gössling, G.C.; de Jesus, R.G.; Ferraris, G.; Schuffenegger, P.M.; Sarria, G. Moderately hypofractionated post-operative radiation therapy for breast cancer: Preferences amongst radiation oncologists from countries in Latin America and the Caribbean. Rep. Pract. Oncol. Radiother. 2023, 28, 340–351. [Google Scholar] [CrossRef]
Trial | Sample Size | Inclusion Criteria | RT Technique | Fractionation | Boost | Outcomes | Median Follow-Up | Results |
---|---|---|---|---|---|---|---|---|
BIG 3-07 TROG 07.01 [54] | 1608 | Non-low-risk DCIS with 1 mm margins | 2D or 3D | C-WBI: 50 Gy in 25 fx. H-WBI: 42.5 Gy in 16 fx | 16 Gy in 8 fx was given if allocated | LR | 6.6 years | 5 yr FFLR: 97.1% (Boost) vs. 92.7% (No Boost), HR: 0.47 (95% CI: 0.31–0.72, p < 0.001) Grade ≥ 2 Breast Pain: 14% (Boost) vs. 10% (No Boost) Grade ≥ 2 Induration: 14% (Boost) vs. 6% (No Boost) 5 yr IBTR: 6% (Both Arms, Non-inferior) |
Trial | Sample Size | Inclusion Criteria | RT Technique | Fractionation | Boost | Outcomes | Median Follow-Up | Results |
---|---|---|---|---|---|---|---|---|
OCOG [42,44] | 1234 | pT1-2 post lumpectomy | 2D (including cobalt) and 3D | 42.5 Gy in 16 fx 50 Gy in 25 fx | No | LRIC; DR, BC, LRT. | 5.9 years | 5 yr LRIC: 97.2% (Short Arm), 96.8% (Long Arm), Abs Difference: 0.4% (95% CI: −1.5% to 2.4%) 3 yr BC: 76.8% (Short Arm), 77.0% (Long Arm), Abs Difference: −0.6% (95% CI: −6.5% to 5.5%) |
START A [41] and B [43] | START-A 2236 START-B 2215 | pT1-3a pN0-1 M0) requiring radiotherapy after primary BCS or mastectomy, with clear tumor margins ≥1 mm | 2D (including cobalt) and 3D | START-A: f 50 Gy in 25 fx over 5 weeks with 41.6 Gy or 39 Gy in 13 fx START-B: 50 Gy in 25 fx with 40 Gy in 15 fx | Yes in 42.6% with 10Gy | LR and LRT | 9.3 years for START-A, and 9.9 years for START-B. | START-A: 10 yr LR: 6.3% (41.6 Gy), 7.4% (50 Gy, HR 0.91, p = 0.65), 8.8% (39 Gy, HR 1.18, p = 0.41) START-B: 10 yr LR: 4.3% (40 Gy), 5.5% (50 Gy, HR 0.77, p = 0.21) |
DBCG HYPO [52] | 1854 | >40 years of age after BCS for node-negative breast cancer or DCIS (13%) | 3D | 50 Gy in 25 fx 40 Gy in 15 fx | Yes, 23.1% received 10 Gy as boost | BI and LR | 7.26 years | 3 yr BI: 11.8% (50 Gy), 9.0% (40 Gy), risk difference: −2.7% (p = 0.07) 9 yr LRR: 3.3% (50 Gy), 3.0% (40 Gy) 9 yr OS: 93.4% (both 50 Gy and 40 Gy) |
Peking Union Medical College, Beijing, China [46] | 820 | Post-mastectomy pT3-4 N+ (at least 4 nodes) | 2D | 50 Gy in 25 fx 43.5 Gy in 15 fx Including chest wall and nodal irradiation | No | 5-year LRR | 5 years | 5-year LRR: 8.3% (hypofractionated) vs. 8.1% (conventional), HR 1.10, 90% CI 0.72 to 1.69, p < 0.0001 |
Trial | Sample Size | Inclusion Criteria | RT Technique | Fractionation | Boost | Outcomes | Median Follow-Up | Results |
---|---|---|---|---|---|---|---|---|
FAST Trial [56] | 915 | pT1–2 pN0 after BCS | 3D/IMRT | 50 Gy in 25 fx of 2.0 Gy 30 Gy in 5 once-weekly fx of 6.0 Gy 28.5 Gy in 5 once-weekly fx of 5.7 Gy. | No | Breast appearance at 2 and 5 years; physician assessments NTE and LR | 9.9 years | NTE 1.64 (95% CI, 1.08 to 2.49; p = 0.019) for 30 Gy and 1.10 (95% CI, 0.70 to 1.71; p = 0.686) for 28.5 Gy versus 50 Gy |
FAST FORWARD [57] | 4096 | Invasive carcinoma of the breast (pT1–3, pN0–1) | 3D/IMRT | 40 Gy/15 fx 27 Gy/5 fx daily 26 Gy/5 fx daily | Yes, 24.3% received 10–16 Gy in 2Gy/fx | 5y-IBTR, NTE, LRR and DM | 6 years | 40 Gy vs. 26 Gy 5 yr IBTR 2.3% vs. 2.0% vs. 1.5%, non-inferior 5 yr LRR 3.2% vs. 2.6% vs. 2.1%, non-inferior 5 yr DM 4.3% vs. 5.0% vs. 5.6%, non-inferior Patient and photographic assessments showed higher NTE risk for 27 Gy |
Trial | Sample Size | Inclusion Criteria | RT Technique | Fractionation | Outcomes | Median Follow-Up | Results |
---|---|---|---|---|---|---|---|
PROFIT [79] | 1206 | Intermediate-risk | 3D/IMRT | 78 Gy/39 fx 60 Gy/20 fx | BCF | 6 years | 5-year BCF DFS was 85% in both arms (HR [short v standard], 0.96; 90% CI, 0.77 to 1.2) |
CHHIP [76,78] | 3216 | Localized prostate cancer (pT1b–T3N0) Mostly intermediate 73% | 3D/IMRT | 74 Gy/37 fx 60 Gy/20 fx 57 Gy/19 fx ADT allowed | Time to biochemical or clinical failure | 5.2 years | 5 yr BCF 74 Gy: 88.3% failure-free at 5 years. 60 Gy: 90.6%, HR vs. 74 Gy: 0.84, pNI = 0.0018. 57 Gy: 85.9%, HR vs. 74 Gy: 1.20, pNI = 0.48. |
Trial | Sample Size | Inclusion Criteria | RT Technique | Fractionation | Outcomes | Median Follow-Up | Results |
---|---|---|---|---|---|---|---|
HYPO-RT-PC [83,84] | 1200 | Intermediate-to-high-risk prostate cancer: T1c–T3a with 1–2 factors: stage T3a, Gleason ≥7, PSA 10–20 ng/mL; no lymph node/metastases involvement | 3D/IMRT/VMAT Image-guided | 42.7 Gy/7 fx 78 Gy/39 fx | FFS and QOL | 4 years | 5 yr FFS 84% in both arms Urinary bother: conventional 33% (43/132) vs. ultra-hypofractionation 28% (33/120), p = 0.38. Bowel bother: conventional 33% (43/129) vs. ultra-hypofractionation 28% (34/123), p = 0.33. Sexual bother: conventional 60% (75/126) vs. ultra-hypofractionation 50% (59/117), p = 0.15. Global health/QOL: conventional 42% (56/134) vs. ultra-hypofractionation 37% (46/125), p = 0.41. |
PACE-B [85,86] | 874 | Low- and intermediate-risk (91% were intermediate-risk, 9% low) | 78 Gy/39 fx or 62 Gy/20 fx 36.25 Gy to PTV, 40 Gy to CTV | BCF | 6.1 years | 5-year BCF event-free rate: CRT 94.6% (91.9–96.4%) vs. SBRT 95.7% (93.2–97.3%). SBRT non-inferior to CRT: HR = 0.74 (0.47–1.17), p-value = 0.007. Absolute difference at 5 years: 1.36% (90% CI: 0.87–2.80%). Toxicity at 5 years: RTOG G2+ GU: CRT 3.2% (11/348) vs. SBRT 5.5% (20/363), p = 0.14. RTOG G2+ GI: both groups had 1 case (CRT 1/348, SBRT 1/363), p = 0.99. |
Trial | Sample Size | Inclusion Criteria | RT Technique | Fractionation | Outcomes | Median Follow-Up | Results |
---|---|---|---|---|---|---|---|
SOCCAR [98] | 130 | Stage III | 3D/IMRT 4D CT allowed | 55Gy/20 fx Concurrent vs. sequential chemo | TRTM | 2.93 years | TRTM 2.9% (CI 0.36–10.2%) concurrent vs. 1.7% (CI 0.043–9.1%) sequential; RR 1.25 (CI 0.55, 2.84) |
CHISEL [93] | 101 | Stage I/II, inoperable or refusing surgery | 3D | SBRT 54 Gy/3 fx 48 Gy/4 fx 66 Gy/33 fx, or 50 Gy/20 fx | Time to local treatment failure | 2.1 years | Local progression: 14% SABR vs. 31% standard radiotherapy; SABR had improved FFF (HR 0.32, p = 0.0077) |
RTOG 0915 [105,106] | 94 | Stage I/II peripheral inoperable | IMRT 4D CT allowed | 34 Gy/1 fraction 48 Gy/4 fx | Rate of grade 3 or higher | 4 years | Toxicity rates (Grade 3+): 34 Gy (Arm 1): 2.6% 48 Gy (Arm 2): 11.1% Primary tumor failure: 34 Gy: 10.6% (CI: 3.3–23.1%) vs. 48 Gy: 6.8% (CI: 1.7–16.9%) OS: 34 Gy: 29.6% (CI: 16.2–44.4%) vs. 48 Gy: 41.1% (CI: 26.6–55.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starling, M.T.M.; Thibodeau, S.; de Sousa, C.F.P.M.; Restini, F.C.F.; Viani, G.A.; Gouveia, A.G.; Mendez, L.C.; Marta, G.N.; Moraes, F.Y. Optimizing Clinical Implementation of Hypofractionation: Comprehensive Evidence Synthesis and Practical Guidelines for Low- and Middle-Income Settings. Cancers 2024, 16, 539. https://doi.org/10.3390/cancers16030539
Starling MTM, Thibodeau S, de Sousa CFPM, Restini FCF, Viani GA, Gouveia AG, Mendez LC, Marta GN, Moraes FY. Optimizing Clinical Implementation of Hypofractionation: Comprehensive Evidence Synthesis and Practical Guidelines for Low- and Middle-Income Settings. Cancers. 2024; 16(3):539. https://doi.org/10.3390/cancers16030539
Chicago/Turabian StyleStarling, Maria Thereza Mansur, Stephane Thibodeau, Cecília Félix Penido Mendes de Sousa, Felipe Cicci Farinha Restini, Gustavo A. Viani, Andre G. Gouveia, Lucas C. Mendez, Gustavo Nader Marta, and Fabio Ynoe Moraes. 2024. "Optimizing Clinical Implementation of Hypofractionation: Comprehensive Evidence Synthesis and Practical Guidelines for Low- and Middle-Income Settings" Cancers 16, no. 3: 539. https://doi.org/10.3390/cancers16030539
APA StyleStarling, M. T. M., Thibodeau, S., de Sousa, C. F. P. M., Restini, F. C. F., Viani, G. A., Gouveia, A. G., Mendez, L. C., Marta, G. N., & Moraes, F. Y. (2024). Optimizing Clinical Implementation of Hypofractionation: Comprehensive Evidence Synthesis and Practical Guidelines for Low- and Middle-Income Settings. Cancers, 16(3), 539. https://doi.org/10.3390/cancers16030539