Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Authors = Daxin Yang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 782 KiB  
Review
Immune Responses of Dendritic Cells to Zoonotic DNA and RNA Viruses
by Xinyu Miao, Yixuan Han, Yinyan Yin, Yang Yang, Sujuan Chen, Xinan Jiao, Tao Qin and Daxin Peng
Vet. Sci. 2025, 12(8), 692; https://doi.org/10.3390/vetsci12080692 - 24 Jul 2025
Viewed by 462
Abstract
Viral infections persistently challenge global health through immune evasion and zoonotic transmission. Dendritic cells (DCs) play a central role in antiviral immunity by detecting viral nucleic acids via conserved pattern recognition receptors, triggering interferon-driven innate responses and cross-presentation-mediated activation of cytotoxic CD8+ [...] Read more.
Viral infections persistently challenge global health through immune evasion and zoonotic transmission. Dendritic cells (DCs) play a central role in antiviral immunity by detecting viral nucleic acids via conserved pattern recognition receptors, triggering interferon-driven innate responses and cross-presentation-mediated activation of cytotoxic CD8+ T cells. This study synthesizes DC-centric defense mechanisms against viral subversion, encompassing divergent nucleic acid sensing pathways for zoonotic DNA and RNA viruses, viral counterstrategies targeting DC maturation and interferon signaling, and functional specialization of DC subsets in immune coordination. Despite advances in DC-based vaccine platforms, clinical translation is hindered by cellular heterogeneity, immunosuppressive microenvironments, and limitations in antigen delivery. Future research should aim to enhance the efficiency of DC-mediated immunity, thereby establishing a robust scientific foundation for the development of next-generation vaccines and antiviral therapies. A more in-depth exploration of DC functions and regulatory mechanisms may unlock novel strategies for antiviral intervention, ultimately paving the way for improved prevention and treatment of viral infections. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

24 pages, 4187 KiB  
Article
Biofilm Formation, Antibiotic Resistance, and Virulence Analysis of Human and Avian Origin Klebsiella pneumoniae from Jiangsu, China
by Yulu Xue, Fangyu Shi, Bangyue Zhou, Yi Shi, Wenqing Luo, Jing Zhu, Yang Yang, Sujuan Chen, Tao Qin, Daxin Peng and Yinyan Yin
Vet. Sci. 2025, 12(7), 628; https://doi.org/10.3390/vetsci12070628 - 30 Jun 2025
Viewed by 567
Abstract
Klebsiella pneumoniae, a zoonotic pathogen of global concern, poses significant threats to both veterinary and public health. Here, a comparative study characterized 14 clinical isolates (7 avian-derived, 7 human-derived) from Jiangsu, China, through integrated genomic and phenotypic analyses. Firstly, multilocus sequence typing [...] Read more.
Klebsiella pneumoniae, a zoonotic pathogen of global concern, poses significant threats to both veterinary and public health. Here, a comparative study characterized 14 clinical isolates (7 avian-derived, 7 human-derived) from Jiangsu, China, through integrated genomic and phenotypic analyses. Firstly, multilocus sequence typing (MLST) revealed distinct epidemiological patterns: the same ST type in avian isolates was circulating between different species and different regions, whereas it was not found in human isolates. In addition, hypervirulent Klebsiella pneumoniae (hvKP) phenotypes confirmed by string test were exclusive to two human isolates (KP15, KP20). Secondly, biofilm detection demonstrated 78.6% (11/14) of isolates possessed biofilm-forming capacity, with cellulose but not curli as the predominant matrix component. Human-derived KP15 and KP20 had the strongest biofilm formation ability in all isolates. Antimicrobial susceptibility profiling identified serious multidrug resistance in both avian and human isolates. Virulence gene analysis revealed striking disparities, with human isolates harboring 10–20 virulence factors (median 15) versus 6–7 (median 6.5) in avian counterparts. Finally, functional pathogenesis assessments demonstrated human-derived strains exhibited stronger epithelial cell adhesion (2-fold higher) and invasion (1.97-fold higher) in Calu-3 cell models and paradoxically showed reduced macrophage phagocytosis (2.85-fold lower at 2 h) for immune escape. In vivo models confirmed dose-dependent mortality, with human isolates demonstrating higher lethality in both Galleria mellonella and mice. Virulence gene burden positively correlated with mortality outcomes. These findings delineate critical host adaptation differences in Klebsiella pneumoniae populations and provide empirical evidence for pathogen transmission dynamics at the human-animal interface. Full article
(This article belongs to the Special Issue Emerging Insights into Animal Pathogens and Mucosal Immunology)
Show Figures

Figure 1

19 pages, 12177 KiB  
Article
Comparison of Microstructure and Hardening Ability of DCI with Different Pearlite Contents by Laser Surface Treatment
by Zile Wang, Xianmin Zhou, Daxin Zeng, Wei Yang, Jianyong Liu and Qiuyue Shi
Metals 2025, 15(7), 734; https://doi.org/10.3390/met15070734 - 30 Jun 2025
Viewed by 241
Abstract
Laser surface treatment (LST) has been employed on ductile cast iron (DCI) parts to obtain a good performance and a long service life. There is a need to understand the laser surface-treated microstructure and hardening ability of DCIs with different matrix structures to [...] Read more.
Laser surface treatment (LST) has been employed on ductile cast iron (DCI) parts to obtain a good performance and a long service life. There is a need to understand the laser surface-treated microstructure and hardening ability of DCIs with different matrix structures to facilitate the scientific selection of DCI for specific applications. In this study, a Laserline-LDF3000 fiber-coupled semiconductor laser with a rectangular spot was used to harden the surface of ductile cast irons (DCIs) with different pearlite contents. The hardened surface layer having been solid state transformed (SST) and with or without being melted–solidified (MS) was obtained under various process parameters. The microstructure, hardened layer depth, hardness and hardening ability were analyzed and compared as functions of pearlite contents and laser processing parameters. The results show that the MS layers on the DCIs with varied pearlite contents have similar microstructures consisting of fine transformed ledeburite, martensite and residual austenite. The microstructure of the SST layer includes martensite, residual austenite and ferrite, whose contents vary with the pearlite content of DCI. In the pearlite DCI, martensite and residual austenite are found, while in ferrite DCI, there is only a small amount of martensite around the graphite nodule, with a large amount of unaltered ferrite remaining. There exists no significant difference in the hardness of MS layers among DCIs with different pearlite contents. Within the SST layer, the variation in the hardness value in the pearlite DCI is relatively small, but it gradually decreases along the depth in the ferrite DCI. In the transition region between the SST layer and the base metal (BM), there is a steep decrease in hardness in the pearlite DCI, but it decreases gently in the ferrite DCI. The depth of the hardened layer increases slightly with the increase in the pearlite content in the DCI; however, the effective hardened depth and the hardening ability increase significantly. When the pearlite content of DCI increases from 10% to 95%, its hardening ability increases by 1.1 times. Full article
Show Figures

Figure 1

24 pages, 1779 KiB  
Article
A Time-Domain Calculation Method for Gust Aerodynamics in Flight Simulation
by Zexuan Yang, Chao Yang, Daxin Wen, Wenbo Zhou and Zhigang Wu
Aerospace 2024, 11(7), 583; https://doi.org/10.3390/aerospace11070583 - 16 Jul 2024
Cited by 1 | Viewed by 1315
Abstract
Gusts have a significant impact on aircraft and need to be analyzed through flight simulations. The solution for time-domain gust aerodynamic forces stands as a pivotal stage in this process. With the increasing demand for flight simulations within gusty environments, traditional methods related [...] Read more.
Gusts have a significant impact on aircraft and need to be analyzed through flight simulations. The solution for time-domain gust aerodynamic forces stands as a pivotal stage in this process. With the increasing demand for flight simulations within gusty environments, traditional methods related to gust aerodynamics cannot fail to balance computational accuracy and efficiency. A method that can be used to quickly and accurately calculate the time-domain gust aerodynamic force is needed. This study proposes the fitting strip method, a gust aerodynamic force solution method that is suitable for real-time flight simulations. It only requires the current and previous gust information to calculate the aerodynamic force and is suitable for different configurations of aircraft and different kinds of gusts. Firstly, the fitting strip method requires the division of fitting strips and the calculation of the aerodynamic force under calibration conditions. In this study, the double-lattice method and computational fluid dynamics are used to calculate the aerodynamic force of the strips. Then, the amplitude coefficients and time-delay coefficients are obtained through a fitting calculation. Finally, the coefficients and gust information are put into the formula to calculate the gust aerodynamic force. An example of a swept wing is used for validation, demonstrating congruence between the computational results and experimental data across subsonic and transonic speeds, which proves the accuracy of the fitting strip method in both discrete gusts and continuous gusts. Compared with other methods, the fitting strip method uses the shortest time. Furthermore, the results of a calculation for normal-layout aircraft show that this method avoids the shortcomings of the rational function approximation method and is more accurate than the gust grouping method. Concurrently, gust aerodynamic force calculations were performed on aircraft with large aspect ratios and used in a real-time flight simulation. Full article
(This article belongs to the Special Issue Gust Influences on Aerospace)
Show Figures

Figure 1

14 pages, 6961 KiB  
Article
Oxide Scale Microstructure and Scale Growth Kinetics of the Hot-Pressed SiBCN-Ti Ceramics Oxidized at 1500 °C
by Hao Peng, Haobo Jiang, Daxin Li, Zhihua Yang, Wenjiu Duan, Dechang Jia and Yu Zhou
Materials 2024, 17(13), 3118; https://doi.org/10.3390/ma17133118 - 25 Jun 2024
Viewed by 1355
Abstract
In this study, the SiBCN-Ti series ceramics with different Ti contents were fabricated, and the oxidation resistance and microstructural evolution of the ceramics at 1500 °C for different times were explored. The results show that with the increase in oxidation time, pores and [...] Read more.
In this study, the SiBCN-Ti series ceramics with different Ti contents were fabricated, and the oxidation resistance and microstructural evolution of the ceramics at 1500 °C for different times were explored. The results show that with the increase in oxidation time, pores and bubbles are gradually formed in the oxide layer. When the oxidation time is less than or more than 4 h, the Ti(C, N) in the ceramics will maintain its initial structure or mostly transform to TiN. The introduction of Ti content can promote the formation of rutile silicate glass, thus healing the cracks and improving the oxidation resistance of the ceramics effectively. Full article
Show Figures

Figure 1

14 pages, 2314 KiB  
Article
Development and Application of Potentially Universal Microsatellite Markers for Pheasant Species
by Daxin Xie, Nan Yang, Wencai Xu, Xue Jiang, Lijun Luo, Yusen Hou, Guangqing Zhao, Fujun Shen and Xiuyue Zhang
Animals 2023, 13(23), 3601; https://doi.org/10.3390/ani13233601 - 21 Nov 2023
Cited by 4 | Viewed by 1721
Abstract
Pheasants are widely distributed in the southwest of China, but many of them are endangered due to habitat fragmentation and environmental changes. Genetic diversity is crucial for species to maintain their evolutionary potential, and thus it is important to develop universal genetic markers [...] Read more.
Pheasants are widely distributed in the southwest of China, but many of them are endangered due to habitat fragmentation and environmental changes. Genetic diversity is crucial for species to maintain their evolutionary potential, and thus it is important to develop universal genetic markers for facilitating the assessment of genetic diversity and planning effective conservation actions in these endangered species. In this study, 471 microsatellite loci which are common among eight pheasant species were screened based on genome data, and 119 loci were selected to develop microsatellite markers. After PCR amplifications and reaction condition optimizations, and validation of microsatellite loci in 14 species of 11 genera within Phasianidae. Finally, 49 potentially universal microsatellite markers in pheasant species were obtained. These microsatellite markers were successfully applied to assess the genetic diversity of 3 pheasant species. The Sichuan hill partridge (Arborophila rufipectus), blood pheasant (Ithaginis cruentus), buff-throated partridge (Tetraophasis szechenyii) and Sichuan hill partridge had a relatively low genetic diversity level. These 49 microsatellite loci are potentially universal microsatellite loci for pheasants and are of great significance to establish a shared platform in population genetics study of pheasants. Full article
(This article belongs to the Section Birds)
Show Figures

Graphical abstract

14 pages, 6180 KiB  
Article
Effects of Ti on the Microstructural Evolution and Mechanical Property of the SiBCN-Ti Composite Ceramics
by Hao Peng, Daxin Li, Zhihua Yang, Wenjiu Duan, Dechang Jia and Yu Zhou
Materials 2023, 16(9), 3560; https://doi.org/10.3390/ma16093560 - 6 May 2023
Cited by 5 | Viewed by 2206
Abstract
In this study, amorphous + nanocrystalline Ti-BN mixed powders were obtained through first-step mechanical alloying; subsequently, almost completely amorphous SiBCN-Ti mixed powders were achieved in the second-step milling. The SiBCN-Ti bulk ceramics were consolidated through hot pressing sintering at 1900 °C/60 MPa/30 min, [...] Read more.
In this study, amorphous + nanocrystalline Ti-BN mixed powders were obtained through first-step mechanical alloying; subsequently, almost completely amorphous SiBCN-Ti mixed powders were achieved in the second-step milling. The SiBCN-Ti bulk ceramics were consolidated through hot pressing sintering at 1900 °C/60 MPa/30 min, and the microstructural evolution and mechanical properties of the as-sintered composite ceramics were investigated using SEM, XRD, and TEM techniques. The as-sintered SiBCN-Ti bulk ceramics consisted of substantial nanosized BN(C), SiC, and Ti(C, N) with a small amount of Si2N2O and TiB2. The crystallized BN(C) enwrapped both SiC and Ti(C, N), thus effectively inhibiting the rapid growth of SiC and Ti(C, N). The sizes of SiC were ~70 nm, while the sizes of Ti(C, N) were below 30 nm, and the sizes of Si2N2O were over 100 nm. The SiBCN-20 wt.% Ti bulk ceramics obtained the highest flexural strength of 394.0 ± 19.0 MPa; however, the SiBCN-30 wt.% Ti bulk ceramics exhibited the optimized fracture toughness of 3.95 ± 0.21 GPa·cm1/2, Vickers hardness of 4.7 ± 0.27 GPa, Young’s modulus of 184.2 ± 8.2 GPa, and a bulk density of 2.85 g/cm3. The addition of metal Ti into a SiBCN ceramic matrix seems to be an effective strategy for microstructure optimization and the tuning of mechanical properties, thus providing design ideas for further research regarding this family of ceramic materials. Full article
(This article belongs to the Special Issue Advanced Ceramics Composites and Its Applications)
Show Figures

Figure 1

17 pages, 2605 KiB  
Review
Transmissible Gastroenteritis Virus: An Update Review and Perspective
by Yiwu Chen, Yuanzhu Zhang, Xi Wang, Jian Zhou, Lerong Ma, Jianing Li, Lin Yang, Hongsheng Ouyang, Hongming Yuan and Daxin Pang
Viruses 2023, 15(2), 359; https://doi.org/10.3390/v15020359 - 27 Jan 2023
Cited by 32 | Viewed by 8050
Abstract
Transmissible gastroenteritis virus (TGEV) is a member of the alphacoronavirus genus, which has caused huge threats and losses to pig husbandry with a 100% mortality in infected piglets. TGEV is observed to be recombining and evolving unstoppably in recent years, with some of [...] Read more.
Transmissible gastroenteritis virus (TGEV) is a member of the alphacoronavirus genus, which has caused huge threats and losses to pig husbandry with a 100% mortality in infected piglets. TGEV is observed to be recombining and evolving unstoppably in recent years, with some of these recombinant strains spreading across species, which makes the detection and prevention of TGEV more complex. This paper reviews and discusses the basic biological properties of TGEV, factors affecting virulence, viral receptors, and the latest research advances in TGEV infection-induced apoptosis and autophagy to improve understanding of the current status of TGEV and related research processes. We also highlight a possible risk of TGEV being zoonotic, which could be evidenced by the detection of CCoV-HuPn-2018 in humans. Full article
(This article belongs to the Special Issue Porcine Viruses 2023)
Show Figures

Figure 1

32 pages, 2001 KiB  
Review
Porcine Epidemic Diarrhea Virus: An Updated Overview of Virus Epidemiology, Virulence Variation Patterns and Virus–Host Interactions
by Yuanzhu Zhang, Yiwu Chen, Jian Zhou, Xi Wang, Lerong Ma, Jianing Li, Lin Yang, Hongming Yuan, Daxin Pang and Hongsheng Ouyang
Viruses 2022, 14(11), 2434; https://doi.org/10.3390/v14112434 - 2 Nov 2022
Cited by 77 | Viewed by 10506
Abstract
The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and [...] Read more.
The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and drugs are only effective against the classic GI strains that were prevalent before 2010, while there is no effective control against the GII variant strains that are currently a global pandemic. In this review, we summarize the latest progress in the biology of PEDV, including its transmission and origin, structure and function, evolution, and virus–host interaction, in an attempt to find the potential virulence factors influencing PEDV pathogenesis. We conclude with the mechanism by which PEDV components antagonize the immune responses of the virus, and the role of host factors in virus infection. Essentially, this review serves as a valuable reference for the development of attenuated virus vaccines and the potential of host factors as antiviral targets for the prevention and control of PEDV infection. Full article
(This article belongs to the Special Issue State-of-the-Art Porcine Virus Research in China)
Show Figures

Figure 1

12 pages, 2731 KiB  
Article
Cholesterol Biosynthesis Modulates CSFV Replication
by Xiaodong Zou, Feng Lin, Yang Yang, Jiahuan Chen, Huanyu Zhang, Linquan Li, Hongsheng Ouyang, Daxin Pang and Xiaochun Tang
Viruses 2022, 14(7), 1450; https://doi.org/10.3390/v14071450 - 30 Jun 2022
Cited by 10 | Viewed by 2928
Abstract
Classical swine fever (CSF) caused by the classical swine fever virus (CSFV) has resulted in severe losses to the pig industry worldwide. It has been proposed that lipid synthesis is essential for viral replication, and lipids are involved in viral protein maturation and [...] Read more.
Classical swine fever (CSF) caused by the classical swine fever virus (CSFV) has resulted in severe losses to the pig industry worldwide. It has been proposed that lipid synthesis is essential for viral replication, and lipids are involved in viral protein maturation and envelope production. However, the specific crosstalk between CSFV and host cell lipid metabolism is still unknown. In this study, we found that CSFV infection increased intracellular cholesterol levels in PK-15 cells. Further analysis demonstrated that CSFV infection upregulated PCSK9 expression to block the uptake of exogenous cholesterol by LDLR and enhanced the cholesterol biosynthesis pathway, which disrupted the type I IFN response in PK-15 cells. Our findings provide new insight into the mechanisms underpinning the pathogenesis of CSFV and hint at methods for controlling the disease. Full article
(This article belongs to the Special Issue State-of-the-Art Porcine Virus Research in China)
Show Figures

Figure 1

13 pages, 2578 KiB  
Review
Current Status of Genetically Modified Pigs That Are Resistant to Virus Infection
by Hongming Yuan, Lin Yang, Yuanzhu Zhang, Wenyu Xiao, Ziru Wang, Xiaochun Tang, Hongsheng Ouyang and Daxin Pang
Viruses 2022, 14(2), 417; https://doi.org/10.3390/v14020417 - 17 Feb 2022
Cited by 10 | Viewed by 5886
Abstract
Pigs play an important role in agriculture and biomedicine. The globally developing swine industry must address the challenges presented by swine-origin viruses, including ASFV (African swine fever virus), PRRSV (porcine reproductive and respiratory syndrome virus), PEDV (porcine epidemic diarrhea virus), PRV (pseudorabies virus), [...] Read more.
Pigs play an important role in agriculture and biomedicine. The globally developing swine industry must address the challenges presented by swine-origin viruses, including ASFV (African swine fever virus), PRRSV (porcine reproductive and respiratory syndrome virus), PEDV (porcine epidemic diarrhea virus), PRV (pseudorabies virus), CSFV (classical swine fever virus), TGEV (transmissible gastroenteritis virus), et al. Despite sustained efforts by many government authorities, these viruses are still widespread. Currently, gene-editing technology has been successfully used to generate antiviral pigs, which offers the possibility for increasing animal disease tolerance and improving animal economic traits in the future. Here, we summarized the current advance in knowledge regarding the host factors in virus infection and the current status of genetically modified pigs that are resistant to virus infection in the world. There has not been any report on PEDV-resistant pigs, ASFV-resistant pigs, and PRV-resistant pigs owing to the poor understanding of the key host factors in virus infection. Furthermore, we summarized the remaining problems in producing virus-resistant pigs, and proposed several potential methods to solve them. Using genome-wide CRISPR/Cas9 library screening to explore the key host receptors in virus infection may be a feasible method. At the same time, exploring the key amino acids of host factors in virus infection with library screening based on ABEs and CBEs (Bes) may provide creative insight into producing antiviral pigs in the future. Full article
(This article belongs to the Special Issue State-of-the-Art Porcine Virus Research in China)
Show Figures

Figure 1

13 pages, 25329 KiB  
Article
Identification and Functional Analysis of the Regulatory Elements in the pHSPA6 Promoter
by Shuyu Jiao, Chunyan Bai, Chunyun Qi, Heyong Wu, Lanxin Hu, Feng Li, Kang Yang, Chuheng Zhao, Hongsheng Ouyang, Daxin Pang, Xiaochun Tang and Zicong Xie
Genes 2022, 13(2), 189; https://doi.org/10.3390/genes13020189 - 21 Jan 2022
Cited by 2 | Viewed by 3332
Abstract
Functional and expressional research of heat shock protein A6 (HSPA6) suggests that the gene is of great value for neurodegenerative diseases, biosensors, cancer, etc. Based on the important value of pigs in agriculture and biomedicine and to advance knowledge of this little-studied HSPA [...] Read more.
Functional and expressional research of heat shock protein A6 (HSPA6) suggests that the gene is of great value for neurodegenerative diseases, biosensors, cancer, etc. Based on the important value of pigs in agriculture and biomedicine and to advance knowledge of this little-studied HSPA member, the stress-sensitive sites in porcine HSPA6 (pHSPA6) were investigated following different stresses. Here, two heat shock elements (HSEs) and a conserved region (CR) were identified in the pHSPA6 promoter by a CRISPR/Cas9-mediated precise gene editing strategy. Gene expression data showed that sequence disruption of these regions could significantly reduce the expression of pHSPA6 under heat stress. Stimulation studies indicated that these regions responded not only to heat stress but also to copper sulfate, MG132, and curcumin. Further mechanism studies showed that downregulated pHSPA6 could significantly affect some important members of the HSP family that are involved in HSP40, HSP70, and HSP90. Overall, our results provide a new approach for investigating gene expression and regulation that may contribute to gene regulatory mechanisms, drug target selection, and breeding stock selection. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1719 KiB  
Article
Drought-Induced Mortality Is Related to Hydraulic Vulnerability Segmentation of Tree Species in a Savanna Ecosystem
by Shubin Zhang, Guojing Wen and Daxin Yang
Forests 2019, 10(8), 697; https://doi.org/10.3390/f10080697 - 17 Aug 2019
Cited by 12 | Viewed by 3685
Abstract
Vulnerability segmentation (VS) has been widely suggested to protect stems and trunks from hydraulic failure during drought events. In many ecosystems, some species have been shown to be non-segmented (NS species). However, it is unclear whether drought-induced mortality is related to VS. To [...] Read more.
Vulnerability segmentation (VS) has been widely suggested to protect stems and trunks from hydraulic failure during drought events. In many ecosystems, some species have been shown to be non-segmented (NS species). However, it is unclear whether drought-induced mortality is related to VS. To understand this, we surveyed the mortality and recruitment rate and measured the hydraulic traits of leaves and stems as well as the photosynthesis of six tree species over five years (2012–2017) in a savanna ecosystem in Southwest China. Our results showed that the NS species exhibited a higher mortality rate than the co-occurring VS species. Across species, the mortality rate was not correlated with xylem tension at 50% loss of stem hydraulic conductivity (P50stem), but was rather significantly correlated with leaf water potential at 50% loss of leaf hydraulic conductance (P50leaf) and the difference in water potential at 50% loss of hydraulic conductance between the leaves and terminal stems (P50leaf-stem). The NS species had higher Huber values and maximum net photosynthetic rates based on leaf area, which compensated for a higher mortality rate and promoted rapid regeneration under the conditions of dry–wet cycles. To our knowledge, this study is the first to identify the difference in drought-induced mortality between NS species and VS species. Our results emphasize the importance of VS in maintaining hydraulic safety in VS species. Furthermore, the high mortality rate and fast regeneration in NS species may be another hydraulic strategy in regions where severe seasonal droughts are frequent. Full article
(This article belongs to the Special Issue Tree Hydraulic Functioning)
Show Figures

Figure 1

15 pages, 1061 KiB  
Article
A Novel Anti-Inflammatory Role for Ginkgolide B in Asthma via Inhibition of the ERK/MAPK Signaling Pathway
by Xiao Chu, Xinxin Ci, Jiakang He, Miaomiao Wei, Xiaofeng Yang, Qingjun Cao, Hongyu Li, Shuang Guan, Yanhong Deng, Daxin Pang and Xuming Deng
Molecules 2011, 16(9), 7634-7648; https://doi.org/10.3390/molecules16097634 - 6 Sep 2011
Cited by 67 | Viewed by 9796
Abstract
Ginkgolide B is an anti-inflammatory extract of Ginkgo biloba and has been used therapeutically. It is a known inhibitor of platelet activating factor (PAF), which is important in the pathogenesis of asthma. Here, a non-infectious mouse model of asthma is used to evaluate [...] Read more.
Ginkgolide B is an anti-inflammatory extract of Ginkgo biloba and has been used therapeutically. It is a known inhibitor of platelet activating factor (PAF), which is important in the pathogenesis of asthma. Here, a non-infectious mouse model of asthma is used to evaluate the anti-inflammatory capacity of ginkgolide B (GKB) and characterize the interaction of GKB with the mitogen activated protein kinase (MAPK) pathway. BALB/c mice that were sensitized and challenged to ovalbumin (OVA) were treated with GKB (40 mg/kg) one hour before they were challenged with OVA. Our study demonstrated that GKB may effectively inhibit the increase of T-helper 2 cytokines, such as interleukin (IL)-5 and IL-13 in bronchoalveolar lavage fluid (BALF). Furthermore, the eosinophil count in BALF significantly decreased after treatment of GKB when compared with the OVA-challenged group. Histological studies demonstrated that GKB substantially inhibited OVA-induced eosinophilia in lung tissue and mucus hyper-secretion by goblet cells in the airway. These results suggest that ginkgolide B may be useful for the treatment of asthma and its efficacy is related to suppression of extracellular regulating kinase/MAPK pathway. Full article
Show Figures

Figure 1

Back to TopTop