Biofilm Formation, Antibiotic Resistance, and Virulence Analysis of Human and Avian Origin Klebsiella pneumoniae from Jiangsu, China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Reagents
2.3. Isolation and Identification of K. pneumoniae
2.4. Multilocus Sequence Typing and Homology Analysis
2.5. String Test and Mucoviscosity Assay
2.6. Biofilm Formation Assay
2.7. Antibiotic Susceptibility Test
2.8. Virulence Gene Detection
2.9. Adhesion and Invasion Assay of K. pneumoniae to Calu-3 Cell
2.10. Phagocytosis and Clearance Assay
2.11. Pathogenicity of K. pneumoniae in Galleria Mellonella and Mice
2.12. Statistical Analysis
3. Results
3.1. Isolation and Identification of K. pneumoniae
3.2. Biofilm Formation Ability of K. pneumoniae Strains
3.3. Antibiotic Susceptibility Patterns and Virulence Factors Distribution of K. pneumoniae Isolates
3.4. Adhesion and Invasion of K. pneumoniae to Calu-3 Cells
3.5. Phagocytosis of K. pneumoniae by Macrophages and Proliferation of K. pneumoniae in Macrophages
3.6. The Results of K. pneumoniae Infection in Galleria Mellonella and Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, J.; Lin, S.; He, L. Formation ability and drug resistance mechanism of Klebsiella pneumoniae biofilm and capsule for multidrug-resistant. Cell. Mol. Biol. 2023, 69, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Riwu, K.H.P.; Effendi, M.H.; Rantam, F.A.; Khairullah, A.R.; Widodo, A. A review: Virulence factors of Klebsiella pneumonia as emerging infection on the food chain. Vet. World 2022, 15, 2172–2179. [Google Scholar] [CrossRef] [PubMed]
- Bina, X.R.; Weng, Y.; Budnick, J.; Van Allen, M.E.; Bina, J.E. Klebsiella pneumoniae TolC contributes to antimicrobial resistance, exopolysaccharide production, and virulence. Infect. Immun. 2023, 91, e0030323. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, Y.; Yuan, Y.; Xie, Y. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci. Total Environ. 2021, 798, 149205. [Google Scholar] [CrossRef]
- Mobasseri, G.; Teh, C.S.J.; Ooi, P.T.; Thong, K.L. The emergence of colistin-resistant Klebsiella pneumoniae strains from swine in Malaysia. J. Glob. Antimicrob. Resist. 2019, 17, 227–232. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, J.; Han, B.; Barkema, H.W.; Cobo, E.R.; Kastelic, J.P.; Zhou, M.; Shi, Y.; Wang, J.; Yang, R.; et al. Klebsiella pneumoniae isolated from bovine mastitis is cytopathogenic for bovine mammary epithelial cells. J. Dairy Sci. 2020, 103, 3493–3504. [Google Scholar] [CrossRef]
- Mahrous, S.H.; El-Balkemy, F.A.; Abo-Zeid, N.Z.; El-Mekkawy, M.F.; Damaty, H.M.E.; Elsohaby, I. Antibacterial and Anti-Biofilm Activities of Cinnamon Oil against Multidrug-Resistant Klebsiella pneumoniae Isolated from Pneumonic Sheep and Goats. Pathogens 2023, 12, 1138. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xin, L.; Peng, C.; Liu, C.; Wang, P.; Yu, L.; Liu, M.; Wang, F. Prevalence and antimicrobial susceptibility profiles of ESBL-producing Klebsiella pneumoniae from broiler chicken farms in Shandong Province, China. Poult. Sci. 2022, 101, 102002. [Google Scholar] [CrossRef]
- Russo, T.A.; Marr, C.M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev. 2019, 32, e00001-19. [Google Scholar] [CrossRef]
- Shon, A.S.; Bajwa, R.P.; Russo, T.A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: A new and dangerous breed. Virulence 2013, 4, 107–118. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, G.; Chao, X.; Xie, L.; Wang, H. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health 2020, 17, 6278. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Chen, Y.S.; Wu, C.Y.; Chang, H.Y.; Lai, Y.C.; Peng, H.L. RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J. Bacteriol. 2010, 192, 3144–3158. [Google Scholar] [CrossRef]
- Clegg, S.; Murphy, C.N. Epidemiology and virulence of Klebsiella pneumoniae. Urin. Tract Infect. Mol. Pathog. Clin. Manag. 2017, 435–457. [Google Scholar] [CrossRef]
- Lee, C.R.; Lee, J.H.; Park, K.S.; Jeon, J.H.; Kim, Y.B.; Cha, C.J.; Jeong, B.C.; Lee, S.H. Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae: Epidemiology, Hypervirulence-Associated Determinants, and Resistance Mechanisms. Front. Cell. Infect. Microbiol. 2017, 7, 483. [Google Scholar] [CrossRef] [PubMed]
- Hennequin, C.; Aumeran, C.; Robin, F.; Traore, O.; Forestier, C. Antibiotic resistance and plasmid transfer capacity in biofilm formed with a CTX-M-15-producing Klebsiella pneumoniae isolate. J. Antimicrob. Chemother. 2012, 67, 2123–2130. [Google Scholar] [CrossRef] [PubMed]
- Dereeper, A.; Gruel, G.; Pot, M.; Couvin, D.; Barbier, E.; Bastian, S.; Bambou, J.C.; Gelu-Simeon, M.; Ferdinand, S.; Guyomard-Rabenirina, S.; et al. Limited Transmission of Klebsiella pneumoniae among Humans, Animals, and the Environment in a Caribbean Island, Guadeloupe (French West Indies). Microbiol. Spectr. 2022, 10, e0124222. [Google Scholar] [CrossRef]
- Pulss, S.; Stolle, I.; Stamm, I.; Leidner, U.; Heydel, C.; Semmler, T.; Prenger-Berninghoff, E.; Ewers, C. Multispecies and Clonal Dissemination of OXA-48 Carbapenemase in Enterobacteriaceae from Companion Animals in Germany, 2009–2016. Front. Microbiol. 2018, 9, 1265. [Google Scholar] [CrossRef]
- Hong, J.S.; Song, W.; Park, H.-M.; Oh, J.-Y.; Chae, J.-C.; Shin, S.; Jeong, S.H. Clonal Spread of Extended-Spectrum Cephalosporin-Resistant Enterobacteriaceae Between Companion Animals and Humans in South Korea. Front. Microbiol. 2019, 10, 1371. [Google Scholar] [CrossRef]
- Yang, F.; Deng, B.; Liao, W.; Wang, P.; Chen, P.; Wei, J. High rate of multiresistant Klebsiella pneumoniae from human and animal origin. Infect. Drug Resist. 2019, 12, 2729–2737. [Google Scholar] [CrossRef]
- Leangapichart, T.; Lunha, K.; Jiwakanon, J.; Angkititrakul, S.; Järhult, J.D.; Magnusson, U.; Sunde, M. Characterization of Klebsiella pneumoniae complex isolates from pigs and humans in farms in Thailand: Population genomic structure, antibiotic resistance and virulence genes. J. Antimicrob. Chemother. 2021, 76, 2012–2016. [Google Scholar] [CrossRef]
- Davis, G.S.; Price, L.B. Recent Research Examining Links Among Klebsiella pneumoniae from Food, Food Animals, and Human Extraintestinal Infections. Curr. Environ. Health Rep. 2016, 3, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Overdevest, I.T.; Heck, M.; van der Zwaluw, K.; Huijsdens, X.; van Santen, M.; Rijnsburger, M.; Eustace, A.; Xu, L.; Hawkey, P.; Savelkoul, P.; et al. Extended-spectrum β-lactamase producing Klebsiella spp. in chicken meat and humans: A comparison of typing methods. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 251–255. [Google Scholar] [CrossRef]
- Hetland, M.A.K.; Winkler, M.A.; Kaspersen, H.; Håkonsholm, F.; Bakksjø, R.J.; Bernhoff, E.; Delgado-Blas, J.F.; Brisse, S.; Correia, A.; Fostervold, A.; et al. Complete genomes of 568 diverse Klebsiella pneumoniae species complex isolates from humans, animals, and marine sources in Norway from 2001 to 2020. Microbiol. Resour. Announc. 2025, 14, e0093124. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Wang, X.; Zou, Z.; Zhou, W.; Tan, C.; Cao, Y.; Fu, B.; Zhai, W.; Hu, F.; Wang, Y.; et al. Limited transmission of carbapenem-resistant Klebsiella pneumoniae between animals and humans: A study in Qingdao. Emerg. Microbes Infect. 2024, 13, 2387446. [Google Scholar] [CrossRef]
- Russo, T.A.; Olson, R.; Fang, C.T.; Stoesser, N.; Miller, M.; MacDonald, U.; Hutson, A.; Barker, J.H.; Hoz, R.M.L.; Johnson, J.R. Identification of Biomarkers for Differentiation of Hypervirulent Klebsiella pneumoniae from Classical K. pneumoniae. J. Clin. Microbiol. 2018, 56, e00776-18. [Google Scholar] [CrossRef]
- Russo, T.A.; MacDonald, U.; Hassan, S.; Camanzo, E.; LeBreton, F.; Corey, B.; McGann, P.; Young, V.B. An Assessment of Siderophore Production, Mucoviscosity, and Mouse Infection Models for Defining the Virulence Spectrum of Hypervirulent Klebsiella pneumoniae. mSphere 2021, 6, e00045-21. [Google Scholar] [CrossRef] [PubMed]
- Alghofaili, F. Use of bacterial culture supernatants as anti-biofilm agents against Pseudomonas aeruginosa and Klebsiella pneumoniae. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 1388–1397. [Google Scholar] [CrossRef]
- Khalil, M.A.F.; Ahmed, F.A.; Elkhateeb, A.F.; Mahmoud, E.E.; Ahmed, M.I.; Ahmed, R.I.; Hosni, A.; Alghamdi, S.; Kabrah, A.; Dablool, A.S.; et al. Virulence Characteristics of Biofilm-Forming Acinetobacter baumannii in Clinical Isolates Using a Galleria mellonella Model. Microorganisms 2021, 9, 2365. [Google Scholar] [CrossRef]
- Cimdins, A.; Simm, R. Semiquantitative Analysis of the Red, Dry, and Rough Colony Morphology of Salmonella enterica Serovar Typhimurium and Escherichia coli Using Congo Red. Methods Mol. Biol. 2017, 1657, 225–241. [Google Scholar] [CrossRef]
- Mosharaf, M.; Tanvir, M.; Haque, M.; Haque, M.; Khan, M.; Molla, A.; Alam, M.Z.; Islam, M.; Talukder, M.R. Metal-adapted bacteria isolated from wastewaters produce biofilms by expressing proteinaceous curli fimbriae and cellulose nanofibers. Front. Microbiol. 2018, 9, 1334. [Google Scholar] [CrossRef]
- Jain, S.; Chen, J. Antibiotic resistance profiles and cell surface components of Salmonellae. J. Food Prot. 2006, 69, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.; Bobenchik, A.M.; Hindler, J.A.; Schuetz, A.N. Overview of Changes to the Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st Edition. J. Clin. Microbiol. 2021, 59, e0021321. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Ahmad, S.; Li, Y.; Yan, D.; Yang, S.; Chen, S.; Qiu, Z.; Yu, X.; Li, N.; Li, Y.; et al. Epidemiological, Virulence, and Antibiotic Resistance Analysis of Klebsiella pneumoniae, a Major Source of Threat to Livestock and Poultry in Some Regions of Xinjiang, China. Animals 2024, 14, 1433. [Google Scholar] [CrossRef]
- Xu, M.; Fu, Y.; Fang, Y.; Xu, H.; Kong, H.; Liu, Y.; Chen, Y.; Li, L. High prevalence of KPC-2-producing hypervirulent Klebsiella pneumoniae causing meningitis in Eastern China. Infect. Drug Resist. 2019, 12, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Compain, F.; Babosan, A.; Brisse, S.; Genel, N.; Audo, J.; Ailloud, F.; Kassis-Chikhani, N.; Arlet, G.; Decré, D.; Doern, G.V. Multiplex PCR for Detection of Seven Virulence Factors and K1/K2 Capsular Serotypes of Klebsiella pneumoniae. J. Clin. Microbiol. 2014, 52, 4377–4380. [Google Scholar] [CrossRef]
- Harada, S.; Doi, Y.; Diekema, D.J. Hypervirulent Klebsiella pneumoniae: A Call for Consensus Definition and International Collaboration. J. Clin. Microbiol. 2018, 56, e00959-18. [Google Scholar] [CrossRef]
- Turton, J.F.; Perry, C.; Elgohari, S.; Hampton, C.V. PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. J. Med. Microbiol. 2010, 59, 541–547. [Google Scholar] [CrossRef]
- Ballén, V.; Gabasa, Y.; Ratia, C.; Ortega, R.; Tejero, M.; Soto, S. Antibiotic Resistance and Virulence Profiles of Klebsiella pneumoniae Strains Isolated From Different Clinical Sources. Front. Cell. Infect. Microbiol. 2021, 11, 738223. [Google Scholar] [CrossRef]
- Cheng, J.; Zhou, M.; Nobrega, D.B.; Cao, Z.; Yang, J.; Zhu, C.; Han, B.; Gao, J. Virulence profiles of Klebsiella pneumoniae isolated from 2 large dairy farms in China. J. Dairy Sci. 2021, 104, 9027–9036. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Xiao, W.; Tang, Y.; Guan, W.; Wang, J.; Shu, F.; Shen, J.; Gu, S.; Zhang, L.; et al. Inosine and D-Mannose Secreted by Drug-Resistant Klebsiella pneumoniae Affect Viability of Lung Epithelial Cells. Molecules 2022, 27, 2994. [Google Scholar] [CrossRef]
- Mai, D.; Wu, A.; Li, R.; Cai, D.; Tong, H.; Wang, N.; Tan, J. Identification of hypervirulent Klebsiella pneumoniae based on biomarkers and Galleria mellonella infection model. BMC Microbiol. 2023, 23, 369. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Sun, Y.; Wu, H.; Lu, J.; Lin, Y.; Zhu, J.; Lai, M.; Zhang, M.; Wang, J.; Zheng, J. Protective effect and mechanism of nanoantimicrobial peptide ND-C14 against Streptococcus pneumoniae infection. World J. Emerg. Med. 2024, 15, 28–34. [Google Scholar] [CrossRef]
- Maiden, M.C. Multilocus sequence typing of bacteria. Annu. Rev. Microbiol. 2006, 60, 561–588. [Google Scholar] [CrossRef]
- Guo, C.; Yang, X.; Wu, Y.; Yang, H.; Han, Y.; Yang, R.; Hu, L.; Cui, Y.; Zhou, D. MLST-based inference of genetic diversity and population structure of clinical Klebsiella pneumoniae, China. Sci. Rep. 2015, 5, 7612. [Google Scholar] [CrossRef] [PubMed]
- Ismail, D.A.; Campos-Madueno, E.I.; Donà, V.; Endimiani, A. Hypervirulent Klebsiella pneumoniae (hvKp): Overview, Epidemiology, and Laboratory Detection. Pathog. Immun. 2024, 10, 80–119. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, X.; Chan, E.W.C.; Chen, S. The hypermucoviscosity of hypervirulent K. pneumoniae confers the ability to evade neutrophil-mediated phagocytosis. Virulence 2021, 12, 2050–2059. [Google Scholar] [CrossRef] [PubMed]
- Bowen, K.; Shah, N.; Lewin, M. AL-Amyloidosis Presenting with Negative Congo Red Staining in the Setting of High Clinical Suspicion: A Case Report. Case Rep. Nephrol. 2012, 2012, 593460. [Google Scholar] [CrossRef]
- Surgers, L.; Boyd, A.; Girard, P.M.; Arlet, G.; Decré, D. Biofilm formation by ESBL-producing strains of Escherichia coli and Klebsiella pneumoniae. Int. J. Med. Microbiol. IJMM 2019, 309, 13–18. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Zhu, P.; Zhang, S.; Rong, Y.J.; Huang, Z.A.; Sun, L.W.; Cai, T. Hypervirulent Klebsiella pneumoniae detection methods: A minireview. Arch. Microbiol. 2023, 205, 326. [Google Scholar] [CrossRef]
- Hu, Y.; Anes, J.; Devineau, S.; Fanning, S. Klebsiella pneumoniae: Prevalence, Reservoirs, Antimicrobial Resistance, Pathogenicity, and Infection: A Hitherto Unrecognized Zoonotic Bacterium. Foodborne Pathog. Dis. 2021, 18, 63–84. [Google Scholar] [CrossRef]
- Almansour, A.M.; Alhadlaq, M.A.; Alzahrani, K.O.; Mukhtar, L.E.; Alharbi, A.L.; Alajel, S.M. The Silent Threat: Antimicrobial-Resistant Pathogens in Food-Producing Animals and Their Impact on Public Health. Microorganisms 2023, 11, 2127. [Google Scholar] [CrossRef]
- Hancock, V.; Ferrières, L.; Klemm, P. The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiology 2008, 154, 167–175. [Google Scholar] [CrossRef]
- Sanchez, C.J., Jr.; Mende, K.; Beckius, M.L.; Akers, K.S.; Romano, D.R.; Wenke, J.C.; Murray, C.K. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect. Dis. 2013, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Barnhart, M.M.; Chapman, M.R. Curli biogenesis and function. Annu. Rev. Microbiol. 2006, 60, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, J.; Chen, Y.P.; Qing, T.; Zhang, P.; Feng, B. Quantitative proteomics and phosphoproteomics elucidate the molecular mechanism of nanostructured TiO(2)-stimulated biofilm formation. J. Hazard. Mater. 2022, 432, 128709. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kumar, S.; Zhang, L.; Wu, H.; Wu, H. Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Med. 2023, 18, 20230707. [Google Scholar] [CrossRef]
- Bassetti, M.; Righi, E.; Carnelutti, A.; Graziano, E.; Russo, A. Multidrug-resistant Klebsiella pneumoniae: Challenges for treatment, prevention and infection control. Expert Rev. Anti-Infect. Ther. 2018, 16, 749–761. [Google Scholar] [CrossRef]
- Wyres, K.L.; Wick, R.R.; Judd, L.M.; Froumine, R.; Tokolyi, A.; Gorrie, C.L.; Lam, M.M.C.; Duchêne, S.; Jenney, A.; Holt, K.E. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet. 2019, 15, e1008114. [Google Scholar] [CrossRef]
- Kumar, H.; Chen, B.H.; Kuca, K.; Nepovimova, E.; Kaushal, A.; Nagraik, R.; Bhatia, S.K.; Dhanjal, D.S.; Kumar, V.; Kumar, A.; et al. Understanding of Colistin Usage in Food Animals and Available Detection Techniques: A Review. Animals 2020, 10, 1892. [Google Scholar] [CrossRef]
- Zhong, M.; Huang, X.; Liu, X.; Yu, H.; Long, S. Analysis of the Distribution Characteristics and Changes of Drug Resistance of Pathogens in Patients with Urinary Tract Infection Across Southwest China From 2019 to 2023. Infect. Drug Resist. 2025, 18, 1491–1502. [Google Scholar] [CrossRef]
- Wareth, G.; Neubauer, H. The Animal-foods-environment interface of Klebsiella pneumoniae in Germany: An observational study on pathogenicity, resistance development and the current situation. Vet. Res. 2021, 52, 16. [Google Scholar] [CrossRef] [PubMed]
- Heuer, H.; Schmitt, H.; Smalla, K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 2011, 14, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, J.; Ji, F.; Wang, M.; Wu, B.; Qin, J.; Dong, G.; Zhao, R.; Wang, C. Genomic Characteristics and Molecular Epidemiology of Multidrug-Resistant Klebsiella pneumoniae Strains Carried by Wild Birds. Microbiol. Spectr. 2023, 11, e0269122. [Google Scholar] [CrossRef]
- Davis, G.S.; Waits, K.; Nordstrom, L.; Weaver, B.; Aziz, M.; Gauld, L.; Grande, H.; Bigler, R.; Horwinski, J.; Porter, S.; et al. Intermingled Klebsiella pneumoniae Populations Between Retail Meats and Human Urinary Tract Infections. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2015, 61, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.L. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc. Biol. Sci. 2009, 276, 2521–2530. [Google Scholar] [CrossRef]
- Fittipaldi, N.; Segura, M.; Grenier, D.; Gottschalk, M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol. 2012, 7, 259–279. [Google Scholar] [CrossRef]
- Choby, J.E.; Howard-Anderson, J.; Weiss, D.S. Hypervirulent Klebsiella pneumoniae—Clinical and molecular perspectives. J. Intern. Med. 2020, 287, 283–300. [Google Scholar] [CrossRef]
- Khan, M.M.; Mushtaq, M.A.; Abbas, N.; Fatima, F.; Gibbon, M.J.; Schierack, P.; Mohsin, M. Occurrence, antimicrobial resistance and genomic features of Klebsiella pneumoniae from broiler chicken in Faisalabad, Pakistan. Front. Vet. Sci. 2024, 11, 1433124. [Google Scholar] [CrossRef]
- Li, B.; Zhao, Y.; Liu, C.; Chen, Z.; Zhou, D. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol. 2014, 9, 1071–1081. [Google Scholar] [CrossRef]
- Quinton, L.J.; Walkey, A.J.; Mizgerd, J.P. Integrative physiology of pneumonia. Physiol. Rev. 2018, 98, 1417–1464. [Google Scholar] [CrossRef]
- Hondalus, M.K. Pathogenesis and virulence of Rhodococcus equi. Vet. Microbiol. 1997, 56, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Wanford, J.J.; Hames, R.G.; Carreno, D.; Jasiunaite, Z.; Chung, W.Y.; Arena, F.; Pilato, V.D.; Straatman, K.; West, K.; Farzand, R. Interaction of Klebsiella pneumoniae with tissue macrophages in a mouse infection model and ex-vivo pig organ perfusions: An exploratory investigation. Lancet Microbe 2021, 2, e695–e703. [Google Scholar] [CrossRef]
- Ku, Y.H.; Chuang, Y.C.; Chen, C.C.; Lee, M.F.; Yang, Y.C.; Tang, H.J.; Yu, W.L. Klebsiella pneumoniae Isolates from Meningitis: Epidemiology, Virulence and Antibiotic Resistance. Sci. Rep. 2017, 7, 6634. [Google Scholar] [CrossRef] [PubMed]
- Kochan, T.J.; Nozick, S.H.; Valdes, A.; Mitra, S.D.; Cheung, B.H.; Lebrun-Corbin, M.; Medernach, R.L.; Vessely, M.B.; Mills, J.O.; Axline, C.M.R.; et al. Klebsiella pneumoniae clinical isolates with features of both multidrug-resistance and hypervirulence have unexpectedly low virulence. Nat. Commun. 2023, 14, 7962. [Google Scholar] [CrossRef] [PubMed]
- Mizgerd, J.P. Respiratory infection and the impact of pulmonary immunity on lung health and disease. Am. J. Respir. Crit. Care Med. 2012, 186, 824–829. [Google Scholar] [CrossRef]
- Jenne, C.N.; Kubes, P. Immune surveillance by the liver. Nat. Immunol. 2013, 14, 996–1006. [Google Scholar] [CrossRef]
- Sher, A.A.; VanAllen, M.E.; Ahmed, H.; Whitehead-Tillery, C.; Rafique, S.; Bell, J.A.; Zhang, L.; Mansfield, L.S. Conjugative RP4 Plasmid-Mediated Transfer of Antibiotic Resistance Genes to Commensal and Multidrug-Resistant Enteric Bacteria In Vitro. Microorganisms 2023, 11, 193. [Google Scholar] [CrossRef]
- Quintelas, M.; Silva, V.; Araújo, S.; Tejedor-Junco, M.T.; Pereira, J.E.; Igrejas, G.; Poeta, P. Klebsiella in Wildlife: Clonal Dynamics and Antibiotic Resistance Profiles, a Systematic Review. Pathogens 2024, 13, 945. [Google Scholar] [CrossRef]
- Bush, K. Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gram-negative infections. Crit. Care 2010, 14, 224. [Google Scholar] [CrossRef]
Strain | Host | Sample Type | Sample Source in Jiangsu |
---|---|---|---|
KP820 | Chicken | Liver | Dongtai |
KP826 | Grus japonensis | Feces | Sheyang |
KP911 | Duck | Liver | Jiangyin |
KP926 | Duck | Heart | Jiangyin |
KP1016 | Duck | Liver | Yancheng |
KP1103 | Grus japonensis | Feces | Sheyang |
KP1116 | Duck | Liver | Jiangyin |
KP33 | Human | Sputum | Xuzhou |
KP34 | Human | Sputum | Xuzhou |
KP35 | Human | Sputum | Xuzhou |
KP36 | Human | Blood | Xuzhou |
KP37 | Human | Blood | Xuzhou |
KP15 | Human | Sputum | Yangzhou |
KP20 | Human | Sputum | Yangzhou |
Strain | Allele Profile | ST | ||||||
---|---|---|---|---|---|---|---|---|
rpoB | gapA | mdh | pgi | phoE | infB | tonB | ||
KP820 | 1 | 1 | 1 | 1 | 1 | 1 | 16 | 5491 |
KP826 | 18 | 17 | 92 | 84 | 122 | 19 | 162 | 7640 * |
KP911 | 4 | 4 | 1 | 1 | 7 | 4 | 65 | 3410 |
KP926 | 1 | 1 | 1 | 1 | 1 | 1 | 16 | 5491 |
KP1016 | 1 | 2 | 2 | 1 | 13 | 9 | 16 | 37 |
KP1103 | 1 | 1 | 1 | 1 | 1 | 1 | 16 | 5491 |
KP1116 | 18 | 17 | 92 | 84 | 122 | 19 | 162 | 7640 * |
KP33 | 1 | 3 | 1 | 1 | 1 | 3 | 4 | 11 |
KP34 | 1 | 3 | 1 | 1 | 1 | 3 | 4 | 11 |
KP35 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 |
KP36 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 15 |
KP37 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 431 |
KP15 | 4 | 1 | 500 | 1 | 10 | 1 | 13 | 7641 * |
KP20 | 4 | 2 | 1 | 1 | 9 | 1 | 12 | 23 |
Strain | Result |
---|---|
KP820 | − |
KP826 | − |
KP911 | − |
KP926 | − |
KP1016 | − |
KP1103 | − |
KP1116 | − |
KP33 | − |
KP34 | − |
KP35 | − |
KP36 | − |
KP37 | − |
KP15 | + |
KP20 | + |
Antimicrobial Agents | Strain | Resistance Rate (%) | ||||||
---|---|---|---|---|---|---|---|---|
KP820 | KP826 | KP911 | KP926 | KP1016 | KP1103 | KP1116 | ||
SXT | R | R | R | R | R | R | R | 100 |
FFC | R | R | R | R | R | R | R | 100 |
C | R | R | R | R | R | R | R | 100 |
CIP | R | I | R | R | R | R | I | 71.43 |
NOR | R | I | R | R | R | R | I | 71.43 |
CL | R | S | R | R | R | R | I | 71.43 |
CTX | R | S | R | R | R | R | S | 71.43 |
FOX | R | S | I | R | R | R | S | 57.14 |
AK | R | S | R | R | R | R | I | 71.43 |
AMP | R | R | R | R | R | R | R | 100 |
CAR | R | R | R | R | R | R | R | 100 |
E | R | R | R | R | R | R | R | 100 |
TE | R | R | R | R | R | R | R | 100 |
DO | R | R | R | R | R | R | R | 100 |
F | R | R | R | R | R | R | R | 100 |
ATM | R | S | R | R | R | R | S | 71.43 |
MEM | S | S | S | S | S | S | S | 0 |
IPM | S | S | S | S | S | S | S | 0 |
PB | I | S | I | I | I | I | S | 0 |
RD | R | R | R | R | R | R | R | 100 |
Amount | 17 | 10 | 16 | 17 | 17 | 17 | 10 |
Antimicrobial Agents | Strain | Resistance Rate (%) | ||||||
---|---|---|---|---|---|---|---|---|
KP33 | KP34 | KP35 | KP36 | KP37 | KP15 | KP20 | ||
SXT | S | R | R | R | R | R | S | 71.43 |
FFC | S | S | I | I | S | R | S | 14.29 |
C | S | R | S | S | S | R | S | 28.57 |
CIP | R | R | R | R | R | R | I | 85.71 |
NOR | R | R | R | R | R | R | S | 85.71 |
CL | R | R | R | R | R | R | R | 100 |
CTX | R | R | R | R | R | I | S | 71.43 |
FOX | R | R | R | R | I | S | I | 57.14 |
AK | R | R | R | R | S | R | I | 71.43 |
AMP | R | R | R | R | R | R | R | 100 |
CAR | R | R | R | R | R | R | R | 100 |
E | R | R | R | R | R | R | R | 100 |
TE | R | R | R | R | R | R | R | 100 |
DO | R | R | R | R | R | R | R | 100 |
F | R | R | R | R | R | R | R | 100 |
ATM | R | R | R | R | R | R | I | 85.71 |
MEM | R | R | R | S | R | S | S | 57.14 |
IPM | R | R | R | R | R | S | S | 71.43 |
PB | R | S | R | I | I | I | I | 28.57 |
RD | R | R | R | R | R | R | R | 100 |
Amount | 17 | 18 | 18 | 16 | 15 | 15 | 8 |
Virulence Gene | Strain | ||||||
---|---|---|---|---|---|---|---|
KP820 | KP826 | KP911 | KP926 | KP1016 | KP1103 | KP1116 | |
uge | + | + | + | + | + | + | + |
wabG | + | + | + | + | + | + | + |
rmpA | − | − | − | − | − | − | − |
rmpA2 | − | − | − | − | − | − | − |
magA | − | − | − | − | − | − | − |
K2 | − | − | − | − | − | − | − |
wcaG | − | − | − | − | − | − | − |
fimH | + | + | + | + | + | + | + |
mrkD | + | + | + | + | + | + | + |
allS | − | − | − | − | − | − | − |
ureA | + | + | + | + | + | + | + |
entB | + | + | + | + | + | + | + |
iutA | − | − | − | − | − | − | − |
iucA | − | − | − | − | − | − | − |
iroB | − | − | − | − | − | − | − |
ybtS | − | − | − | − | − | − | − |
irp2 | − | − | − | − | − | − | − |
fyuA | − | − | − | − | − | − | − |
aerobactin | − | − | − | − | − | − | − |
kfu | + | − | − | + | − | + | − |
peg-344 | − | − | − | − | − | − | − |
Amount | 7 | 6 | 6 | 7 | 6 | 7 | 6 |
Virulence Gene | Strain | ||||||
---|---|---|---|---|---|---|---|
KP33 | KP34 | KP35 | KP36 | KP37 | KP15 | KP20 | |
uge | + | + | + | + | + | + | + |
wabG | + | + | + | + | + | + | + |
rmpA | + | − | − | − | − | − | + |
rmpA2 | + | + | − | − | − | − | + |
magA | − | − | − | − | − | − | + |
K2 | − | − | − | − | − | + | − |
wcaG | − | − | − | − | − | − | + |
fimH | + | + | + | + | + | + | + |
mrkD | + | + | + | + | + | + | + |
allS | − | − | − | − | − | − | + |
ureA | + | + | + | + | + | + | + |
entB | + | + | + | + | + | + | + |
iutA | + | + | − | − | − | − | + |
iucA | + | + | − | − | − | − | + |
iroB | − | − | − | − | − | + | + |
ybtS | + | + | + | + | + | + | + |
irp2 | + | + | + | + | + | + | + |
fyuA | + | + | + | + | + | + | + |
aerobactin | − | − | − | − | − | + | + |
kfu | − | − | + | + | + | − | + |
peg-344 | + | − | − | − | − | − | + |
Amount | 14 | 12 | 10 | 10 | 10 | 12 | 20 |
Variate | The Number of Virulence Genes | The LD50 of the Galleria mellonella | The LD50 of Mice |
---|---|---|---|
The number of virulence genes | 1 | ||
The LD50 of the Galleria mellonella | −0.799 ** | 1 | |
The LD50 of mice | −0.87 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Shi, F.; Zhou, B.; Shi, Y.; Luo, W.; Zhu, J.; Yang, Y.; Chen, S.; Qin, T.; Peng, D.; et al. Biofilm Formation, Antibiotic Resistance, and Virulence Analysis of Human and Avian Origin Klebsiella pneumoniae from Jiangsu, China. Vet. Sci. 2025, 12, 628. https://doi.org/10.3390/vetsci12070628
Xue Y, Shi F, Zhou B, Shi Y, Luo W, Zhu J, Yang Y, Chen S, Qin T, Peng D, et al. Biofilm Formation, Antibiotic Resistance, and Virulence Analysis of Human and Avian Origin Klebsiella pneumoniae from Jiangsu, China. Veterinary Sciences. 2025; 12(7):628. https://doi.org/10.3390/vetsci12070628
Chicago/Turabian StyleXue, Yulu, Fangyu Shi, Bangyue Zhou, Yi Shi, Wenqing Luo, Jing Zhu, Yang Yang, Sujuan Chen, Tao Qin, Daxin Peng, and et al. 2025. "Biofilm Formation, Antibiotic Resistance, and Virulence Analysis of Human and Avian Origin Klebsiella pneumoniae from Jiangsu, China" Veterinary Sciences 12, no. 7: 628. https://doi.org/10.3390/vetsci12070628
APA StyleXue, Y., Shi, F., Zhou, B., Shi, Y., Luo, W., Zhu, J., Yang, Y., Chen, S., Qin, T., Peng, D., & Yin, Y. (2025). Biofilm Formation, Antibiotic Resistance, and Virulence Analysis of Human and Avian Origin Klebsiella pneumoniae from Jiangsu, China. Veterinary Sciences, 12(7), 628. https://doi.org/10.3390/vetsci12070628