Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Authors = Amir Reza Sadrolhosseini

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3723 KiB  
Article
Direct and Sensitive Detection of Dopamine Using Carbon Quantum Dots Based Refractive Index Surface Plasmon Resonance Sensor
by Faten Bashar Kamal Eddin, Yap Wing Fen, Nurul Illya Muhamad Fauzi, Wan Mohd Ebtisyam Mustaqim Mohd Daniyal, Nur Alia Sheh Omar, Muhammad Fahmi Anuar, Hazwani Suhaila Hashim, Amir Reza Sadrolhosseini and Huda Abdullah
Nanomaterials 2022, 12(11), 1799; https://doi.org/10.3390/nano12111799 - 25 May 2022
Cited by 16 | Viewed by 4425
Abstract
Abnormality of dopamine (DA), a vital neurotransmitter in the brain’s neuronal pathways, causes several neurological diseases. Rapid and sensitive sensors for DA detection are required for early diagnosis of such disorders. Herein, a carbon quantum dot (CQD)-based refractive index surface plasmon resonance (SPR) [...] Read more.
Abnormality of dopamine (DA), a vital neurotransmitter in the brain’s neuronal pathways, causes several neurological diseases. Rapid and sensitive sensors for DA detection are required for early diagnosis of such disorders. Herein, a carbon quantum dot (CQD)-based refractive index surface plasmon resonance (SPR) sensor was designed. The sensor performance was evaluated for various concentrations of DA. Increasing DA levels yielded blue-shifted SPR dips. The experimental findings revealed an excellent sensitivity response of 0.138°/pM in a linear range from 0.001 to 100 pM and a high binding affinity of 6.234 TM−1. The effects of varied concentrations of DA on the optical characteristics of CQD thin film were further proved theoretically. Increased DA levels decreased the thickness and real part of the refractive index of CQD film, according to fitting results. Furthermore, the observed reduction in surface roughness using AFM demonstrated that DA was bound to the sensor layer. This, in turn, explained the blue shift in SPR reflectance curves. This optical sensor offers great potential as a trustworthy solution for direct measurement due to its simple construction, high sensitivity, and other sensing features. Full article
Show Figures

Figure 1

19 pages, 3731 KiB  
Article
Polyaniline Synthesized by Different Dopants for Fluorene Detection via Photoluminescence Spectroscopy
by Mahnoush Beygisangchin, Suraya Abdul Rashid, Suhaidi Shafie and Amir Reza Sadrolhosseini
Materials 2021, 14(23), 7382; https://doi.org/10.3390/ma14237382 - 2 Dec 2021
Cited by 31 | Viewed by 3312
Abstract
The effects of different dopants on the synthesis, optical, electrical and thermal features of polyaniline were investigated. Polyaniline (PANI) doped with p-toluene sulfonic acid (PANI-PTSA), camphor sulphonic acid (PANI-CSA), acetic acid (PANI-acetic acid) and hydrochloric acid (PANI-HCl) was synthesized through the oxidative chemical [...] Read more.
The effects of different dopants on the synthesis, optical, electrical and thermal features of polyaniline were investigated. Polyaniline (PANI) doped with p-toluene sulfonic acid (PANI-PTSA), camphor sulphonic acid (PANI-CSA), acetic acid (PANI-acetic acid) and hydrochloric acid (PANI-HCl) was synthesized through the oxidative chemical polymerization of aniline under acidic conditions at ambient temperature. Fourier transform infrared light, X-ray diffraction, UV-visible spectroscopy, field emission scanning electron microscopy, photoluminescence spectroscopy and electrical analysis were used to define physical and structural features, bandgap values, electrical conductivity and type and degree of doping, respectively. Tauc calculation reveals the optical band gaps of PANI-PTSA, PANI-CSA, PANI-acetic acid and PANI-HCl at 3.1, 3.5, 3.6 and 3.9 eV, respectively. With the increase in dopant size, crystallinity is reduced, and interchain separations and d-spacing are strengthened. The estimated conductivity values of PANI-PTSA, PANI-CSA, PANI-acetic acid and PANI-HCl are 3.84 × 101, 2.92 × 101, 2.50 × 10−2, and 2.44 × 10−2 S·cm−1, respectively. Particularly, PANI-PTSA shows high PL intensity because of its orderly arranged benzenoid and quinoid units. Owing to its excellent synthesis, low bandgap, high photoluminescence intensity and high electrical features, PANI-PTSA is a suitable candidate to improve PANI properties and electron provider for fluorene-detecting sensors with a linear range of 0.001–10 μM and detection limit of 0.26 nM. Full article
Show Figures

Figure 1

18 pages, 5838 KiB  
Article
Design and Optimization of Surface Plasmon Resonance Spectroscopy for Optical Constant Characterization and Potential Sensing Application: Theoretical and Experimental Approaches
by Wan Mohd Ebtisyam Mustaqim Mohd Daniyal, Yap Wing Fen, Jaafar Abdullah, Amir Reza Sadrolhosseini and Mohd Adzir Mahdi
Photonics 2021, 8(9), 361; https://doi.org/10.3390/photonics8090361 - 29 Aug 2021
Cited by 18 | Viewed by 4235
Abstract
The best surface plasmon resonance (SPR) signal can be generated based on several factors that include the excitation wavelength, the type of metal used, and the thickness of the metal layer. In this study, the aforementioned factors have been investigated to obtain the [...] Read more.
The best surface plasmon resonance (SPR) signal can be generated based on several factors that include the excitation wavelength, the type of metal used, and the thickness of the metal layer. In this study, the aforementioned factors have been investigated to obtain the best SPR signal. The excitation wavelength of 633 nm and gold metal with thickness of 50 nm were required to generate the SPR signal before the SPR was used for optical constant characterization by fitting of experimental results to the theoretical data. The employed strategy has good agreement with the theoretical value where the real part refractive index, n value, of the gold thin film was 0.1245 while the value for the imaginary part, k, was 3.6812 with 47.7 nm thickness. Besides that, the optical characterization of nanocrystalline cellulose (NCC)-based thin film has also been demonstrated. The n and k values found for this thin film were 1.4240 and 0.2520, respectively, with optimal thickness of 9.5 nm. Interestingly when the NCC-based thin film was exposed to copper ion solution with n value of 1.3333 and k value of 0.0060 to 0.0070 with various concentrations (0.01–10 ppm), a clear change of the refractive index value was observed. This result suggests that the NCC-based thin film has high potential for copper ion sensing using SPR with a sensitivity of 8.0052°/RIU. Full article
Show Figures

Figure 1

46 pages, 10396 KiB  
Review
Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review
by Mahnoush Beygisangchin, Suraya Abdul Rashid, Suhaidi Shafie, Amir Reza Sadrolhosseini and Hong Ngee Lim
Polymers 2021, 13(12), 2003; https://doi.org/10.3390/polym13122003 - 18 Jun 2021
Cited by 420 | Viewed by 35528
Abstract
Polyaniline (PANI) is a famous conductive polymer, and it has received tremendous consideration from researchers in the field of nanotechnology for the improvement of sensors, optoelectronic devices, and photonic devices. PANI is doped easily by different acids and dopants because of its easy [...] Read more.
Polyaniline (PANI) is a famous conductive polymer, and it has received tremendous consideration from researchers in the field of nanotechnology for the improvement of sensors, optoelectronic devices, and photonic devices. PANI is doped easily by different acids and dopants because of its easy synthesis and remarkable environmental stability. This review focuses on different preparation processes of PANI thin film by chemical and physical methods. Several features of PANI thin films, such as their magnetic, redox, and antioxidant, anti-corrosion, and electrical and sensing properties, are discussed in this review. PANI is a highly conductive polymer. Given its unique properties, easy synthesis, low cost, and high environmental stability in various applications such as electronics, drugs, and anti-corrosion materials, it has attracted extensive attention. The most important PANI applications are briefly reviewed at the end of this review. Full article
(This article belongs to the Collection Progress in Polymer Applications)
Show Figures

Figure 1

14 pages, 1971 KiB  
Article
An Optical Sensor for Dengue Envelope Proteins Using Polyamidoamine Dendrimer Biopolymer-Based Nanocomposite Thin Film: Enhanced Sensitivity, Selectivity, and Recovery Studies
by Nur Alia Sheh Omar, Yap Wing Fen, Irmawati Ramli, Amir Reza Sadrolhosseini, Jaafar Abdullah, Nor Azah Yusof, Yasmin Mustapha Kamil and Mohd Adzir Mahdi
Polymers 2021, 13(5), 762; https://doi.org/10.3390/polym13050762 - 28 Feb 2021
Cited by 10 | Viewed by 2725
Abstract
This paper proposes a novel idea to enhance the sensitivity and selectivity of surface plasmon resonance (SPR) optical sensor for detection of dengue virus type-2 envelope proteins (DENV-2 E-proteins) using polyamidoamine (PAMAM) dendrimer biopolymer-based nanocomposite thin film. For this purpose, two ranges of [...] Read more.
This paper proposes a novel idea to enhance the sensitivity and selectivity of surface plasmon resonance (SPR) optical sensor for detection of dengue virus type-2 envelope proteins (DENV-2 E-proteins) using polyamidoamine (PAMAM) dendrimer biopolymer-based nanocomposite thin film. For this purpose, two ranges of DENV-2 E-protein concentrations, i.e., 0.000008–0.0001 nM and 0.00008–0.005 nM were evaluated, and the lowest detectable concentration was achieved at 0.00008 nM. The incorporation of PAMAM dendrimer-based nanocomposite thin film with an SPR sensor exhibited a significant increase in sensitivity and binding affinity to a lower range DENV-2 E-protein concentrations. Moreover, the proposed sensor displayed good selectivity towards DENV-2 E-proteins and have an average recovery of 80–120%. The findings of this study demonstrated that PAMAM dendrimer-based nanocomposite thin film combined with SPR sensor is a promising diagnostic tool for sensitive and selective detection of DENV-2 E-proteins. Full article
(This article belongs to the Special Issue Biopolymers: Recent Progress and New Perspectives)
Show Figures

Graphical abstract

17 pages, 5008 KiB  
Article
Optical and Photoacoustic Properties of Laser-Ablated Silver Nanoparticles in a Carbon Dots Solution
by Amir Reza Sadrolhosseini, Ganesan Krishnan, Suhaidi Shafie, Suraya Abdul Rashid and Sulaiman Wadi Harun
Molecules 2020, 25(24), 5798; https://doi.org/10.3390/molecules25245798 - 9 Dec 2020
Cited by 6 | Viewed by 2528
Abstract
This study used the carbon dots solution for the laser ablation technique to fabricate silver nanoparticles. The ablation time range was from 5 min to 20 min. Analytical methods, including Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy, transmission electron microscopy, and Raman spectroscopy [...] Read more.
This study used the carbon dots solution for the laser ablation technique to fabricate silver nanoparticles. The ablation time range was from 5 min to 20 min. Analytical methods, including Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy, transmission electron microscopy, and Raman spectroscopy were used to categorize the prepared samples. The UV-visible and z-scan techniques provided optical parameters such as linear and nonlinear refractive indices in the range of 1.56759 to 1.81288 and 7.3769 × 10−10 cm2 W−1 to 9.5269 × 10−10 cm2 W−1 and the nonlinear susceptibility was measured in the range of 5.46 × 10−8 to 6.97 × 10−8 esu. The thermal effusivity of prepared samples, which were measured using the photoacoustic technique, were in the range of 0.0941 W s1/2 cm−2 K−1 to 0.8491 W s1/2 cm−2 K−1. The interaction of the prepared sample with fluoride was investigated using a Raman spectrometer. Consequently, the intensity of the Raman signal decreased with the increasing concentration of fluoride, and the detection limit is about 0.1 ppm. Full article
(This article belongs to the Special Issue Optical Properties of Nanomaterials)
Show Figures

Figure 1

17 pages, 3733 KiB  
Article
Acetone Vapor-Sensing Properties of Chitosan-Polyethylene Glycol Using Surface Plasmon Resonance Technique
by Fahad Usman, John Ojur Dennis, E. M. Mkawi, Yas Al-Hadeethi, Fabrice Meriaudeau, Yap Wing Fen, Amir Reza Sadrolhosseini, Thomas L. Ferrell, Ahmed Alsadig and Abdelmoneim Sulieman
Polymers 2020, 12(11), 2586; https://doi.org/10.3390/polym12112586 - 4 Nov 2020
Cited by 9 | Viewed by 4065
Abstract
To non-invasively monitor and screen for diabetes in patients, there is need to detect low concentration of acetone vapor in the range from 1.8 ppm to 5 ppm, which is the concentration range of acetone vapor in diabetic patients. This work presents an [...] Read more.
To non-invasively monitor and screen for diabetes in patients, there is need to detect low concentration of acetone vapor in the range from 1.8 ppm to 5 ppm, which is the concentration range of acetone vapor in diabetic patients. This work presents an investigation for the utilization of chitosan-polyethylene glycol (PEG)-based surface plasmon resonance (SPR) sensor in the detection of trace concentration acetone vapor in the range of breath acetone in diabetic subjects. The structure, morphology, and elemental composition of the chitosan-PEG sensing layer were characterized using FTIR, UV-VIS, FESEM, EDX, AFM, and XPS methods. Response testing was conducted using low concentration of acetone vapor in the range of 0.5 ppm to 5 ppm using SPR technique. All the measurements were conducted at room temperature and 50 mL/min gas flow rate. The sensor showed good sensitivity, linearity, repeatability, reversibility, stability, and high affinity toward acetone vapor. The sensor also showed better selectivity to acetone compared to methanol, ethanol, and propanol vapors. More importantly, the lowest detection limit (LOD) of about 0.96 ppb confirmed the applicability of the sensor for the non-invasive monitoring and screening of diabetes. Full article
(This article belongs to the Special Issue Smart Polymers and Their Applications)
Show Figures

Figure 1

12 pages, 2170 KiB  
Article
Dependence of the Optical Constant Parameters of p-Toluene Sulfonic Acid-Doped Polyaniline and Its Composites on Dispersion Solvents
by Fahad Usman, John Ojur Dennis, Fabrice Meriaudeau, Abdelaziz Yousif Ahmed, Khe Cheng Seong, Yap Wing Fen, Amir Reza Sadrolhosseini, Bashir Abubakar Abdulkadir, Ridwan Tobi Ayinla, Wan Mohd Ebtisyam Mustaqim Mohd Daniyal, Nur Alia Sheh Omar, Nissren Tamam and Abdelmoneim Sulieman
Molecules 2020, 25(19), 4414; https://doi.org/10.3390/molecules25194414 - 25 Sep 2020
Cited by 7 | Viewed by 2978
Abstract
The optical constants of Para-Toluene sulfonic acid-doped polyaniline (PANI), PANIchitosan composites, PANI-reduced graphene-oxide composites and a ternary composite comprising of PANI, chitosan and reduced graphene-oxide dispersed in diluted p-toluene sulfonic acid (PTSA) solution and N-Methyl-2-Pyrrolidone (NMP) solvent have been evaluated and compared. [...] Read more.
The optical constants of Para-Toluene sulfonic acid-doped polyaniline (PANI), PANIchitosan composites, PANI-reduced graphene-oxide composites and a ternary composite comprising of PANI, chitosan and reduced graphene-oxide dispersed in diluted p-toluene sulfonic acid (PTSA) solution and N-Methyl-2-Pyrrolidone (NMP) solvent have been evaluated and compared. The optical constant values were extracted from the absorbance spectra of thin layers of the respective samples. The potential utilization of the materials as the active sensing materials of surface plasmon resonance biosensors has also been assessed in terms of the estimated value of the penetration depth through a dielectric medium. The results show a reasonable dependence of the optical constant parameters on the solvent type. Higher real part refractive index (n) and real part complex dielectric permittivity (ε’) values were observed for the samples prepared using PTSA solution, while higher optical conductivity values were observed for the NMP-based samples due to their relatively higher imaginary part refractive index (k) and imaginary part complex dielectric permittivity (ε″) values. In addition, NMP-based samples show improvement in terms of the penetration depth through a dielectric medium by around 9.5, 1.6, 4.4 and 2.9 times compared to PTSA-based samples for the PANI, PANI-chitosan, PANI-RGO and the ternary composites, respectively. Based on these, it is concluded that preparation of these materials using different dispersion solvents could produce materials of different optical properties. Thus, the variation of the dispersion solvent will allow the flexible utilization of the PANI and the composites for diverse applications. Full article
(This article belongs to the Special Issue Hybrid Materials for Advanced Applications)
Show Figures

Figure 1

22 pages, 5102 KiB  
Article
Acid-Free Hydrothermal-Extraction and Molecular Structure of Carbon Quantum Dots Derived from Empty Fruit Bunch Biochar
by Norhanisah Jamaludin, Tong Ling Tan, Alif Syafiq Kamarol Zaman, Amir Reza Sadrolhosseini and Suraya Abdul Rashid
Materials 2020, 13(15), 3356; https://doi.org/10.3390/ma13153356 - 29 Jul 2020
Cited by 45 | Viewed by 5661
Abstract
Carbon quantum dots (CQD) have great potential to be used in various applications due to their unique electrical and optical properties. Herein, a facile, green and eco-friendly hydrothermal method for the preparation of carbon quantum dots was achieved using empty fruit bunch (EFB) [...] Read more.
Carbon quantum dots (CQD) have great potential to be used in various applications due to their unique electrical and optical properties. Herein, a facile, green and eco-friendly hydrothermal method for the preparation of carbon quantum dots was achieved using empty fruit bunch (EFB) biochar as a renewable and abundant carbon source. In the current study, the role of the hydrothermal process was observed and studied by comparing the morphology and optical characteristics of CQD obtained from EFB biochar. Interestingly, based on the high-resolution transmission electron microscopy (HRTEM) result, a considerably similar carbon quantum dots structure can be observed for the EFB biochar sample, showing the similar size and distribution of CQD. To further discuss the extraction of CQD from EFB biochar, a mechanism based on hydrothermal-induced extraction of CQD is proposed. The optimal structure of CQD deduced by density functional theory (DFT) in energy and dipole momentum was about 2057.4905 Hatree and 18.1699 Debye, respectively. This study presents a practical experimental approach in elucidating the molecular structure of photoluminescence CQD based on the Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) results. Full article
Show Figures

Graphical abstract

11 pages, 2227 KiB  
Article
Surface Plasmon Resonance Sensor Based on Polypyrrole–Chitosan–BaFe2O4 Nanocomposite Layer to Detect the Sugar
by Amir Reza Sadrolhosseini, Pooria Moozarm Nia, Mahmoud Naseri, Ahmad Mohammadi, Yap Wing Fen, Suhidi Shafie and Halimah Mohamed Kamari
Appl. Sci. 2020, 10(8), 2855; https://doi.org/10.3390/app10082855 - 20 Apr 2020
Cited by 8 | Viewed by 3147
Abstract
The surface plasmon resonance sensor was used to detect and measure low concentrations of sugar. A polypyrrole–chitosan–BaFe2O4 nanocomposite layer was prepared to improve the surface of the gold layer for the detection of glucose, fructose, and sucrose using the surface [...] Read more.
The surface plasmon resonance sensor was used to detect and measure low concentrations of sugar. A polypyrrole–chitosan–BaFe2O4 nanocomposite layer was prepared to improve the surface of the gold layer for the detection of glucose, fructose, and sucrose using the surface plasmon resonance technique. The polypyrrole–chitosan–BaFe2O4 was synthesized using the electrodeposition method in different thicknesses. The functional group, crystal structure, and morphology of the layer were investigated with Fourier transform infrared spectroscopy, X-ray diffraction technique, and field emission electron microscopy. Consequently, the BaFe2O4 was scattered on the surface of the polymer, and the affinity of polypyrrole–chitosan–BaFe2O4 to bond with glucose is higher than that for the other sugars. The sensor limit was 0.005 ppm. Full article
Show Figures

Figure 1

14 pages, 2148 KiB  
Article
Quantitative and Selective Surface Plasmon Resonance Response Based on a Reduced Graphene Oxide–Polyamidoamine Nanocomposite for Detection of Dengue Virus E-Proteins
by Nur Alia Sheh Omar, Yap Wing Fen, Jaafar Abdullah, Amir Reza Sadrolhosseini, Yasmin Mustapha Kamil, Nurul ‘Illya Muhamad Fauzi, Hazwani Suhaila Hashim and Mohd Adzir Mahdi
Nanomaterials 2020, 10(3), 569; https://doi.org/10.3390/nano10030569 - 21 Mar 2020
Cited by 76 | Viewed by 5812
Abstract
Dengue viral infection is one of the most common deadliest diseases and has become a recurrent issue for public health in tropical countries. Although the spectrum of clinical diagnosis and treatment have recently been established, the efficient and rapid detection of dengue virus [...] Read more.
Dengue viral infection is one of the most common deadliest diseases and has become a recurrent issue for public health in tropical countries. Although the spectrum of clinical diagnosis and treatment have recently been established, the efficient and rapid detection of dengue virus (DENV) during viremia and the early febrile phase is still a great challenge. In this study, a dithiobis (succinimidyl undecanoate, DSU)/amine-functionalized reduced graphene oxide-–polyamidoamine dendrimer (DSU/amine-functionalized rGO–PAMAM) thin film-based surface plasmon resonance (SPR) sensor was developed for the detection of DENV 2 E-proteins. Different concentrations of DENV 2 E-proteins were successfully tested by the developed SPR sensor-based system. The performance of the developed sensor showed increased shift in the SPR angle, narrow full-width–half-maximum of the SPR curve, high detection accuracy, excellent figure of merit and signal-to-noise ratio, good sensitivity values in the range of 0.08–0.5 pM (S = 0.2576°/pM, R2 = 0.92), and a high equilibrium association constant (KA) of 7.6452 TM−1. The developed sensor also showed a sensitive and selective response towards DENV 2 E-proteins compared to DENV 1 E-proteins and ZIKV (Zika virus) E-proteins. Overall, it was concluded that the Au/DSU/amine-functionalized rGO–PAMAM thin film-based SPR sensor has potential to serve as a rapid clinical diagnostic tool for DENV infection. Full article
(This article belongs to the Special Issue Biosensors Based on Nanostructure Materials)
Show Figures

Figure 1

19 pages, 5756 KiB  
Article
Optical and Thermal Properties of Laser-Ablated Platinum Nanoparticles Graphene Oxide Composite
by Amir Reza Sadrolhosseini, Mina Habibiasr, Suhaidi Shafie, Hassan Solaimani and Hong Ngee Lim
Int. J. Mol. Sci. 2019, 20(24), 6153; https://doi.org/10.3390/ijms20246153 - 6 Dec 2019
Cited by 19 | Viewed by 3384
Abstract
Platinum nanoparticles were synthesized in graphene oxide aqueous solution using a laser ablation technique to investigate the effect of optical linear, nonlinear and thermal properties of platinum-graphene oxide nanocomposite solution. The samples were prepared with different ablation times. The platinum nanoparticles that formed [...] Read more.
Platinum nanoparticles were synthesized in graphene oxide aqueous solution using a laser ablation technique to investigate the effect of optical linear, nonlinear and thermal properties of platinum-graphene oxide nanocomposite solution. The samples were prepared with different ablation times. The platinum nanoparticles that formed a spherical shape on the surface of graphene oxide solution were authenticated using UV-visible spectrum and transmission electron microscopy patterns. The particle size decreased with increasing ablation time, and the concentration and volume fraction of samples were increased. To obtain the optical linear, nonlinear and thermal properties of platinum-graphene oxide nanocomposite solution, UV-visible spectroscopy, Z-scan, thermal lens and photoacoustic techniques were used. Consequently, the linear and nonlinear refractive indices increased with an increase in the volume fraction of platinum nanoparticles. It was observed from the spatial self-phase modulation patterns that, the optical nonlinear property of the graphene oxide was enhanced in the presence of platinum nanoparticles, and the nonlinearity increased with an increase in the volume fraction of platinum nanoparticles inside the graphene oxide solution. The thermal diffusivity and thermal effusivity of platinum nanoparticles graphene oxide were measured using a thermal lens and photoacoustic methods, respectively. The thermal diffusivity and thermal effusivity of samples were in the range of 0.0341 × 10−5 m2/s to 0.1223 × 10−5 m2/s and 0.163 W s1/2 cm−2 K−1 to 0.3192 W s1/2 cm−2 K−1, respectively. Consequently, the platinum enhanced the optical and thermal properties of graphene oxide. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

13 pages, 2049 KiB  
Review
Nanoplasmonic Sensor Based on Surface Plasmon-Coupled Emission: Review
by Amir Reza Sadrolhosseini, Suhaidi Shafie and Yap Wing Fen
Appl. Sci. 2019, 9(7), 1497; https://doi.org/10.3390/app9071497 - 10 Apr 2019
Cited by 17 | Viewed by 6139
Abstract
The surface plasmon resonance (SPR) technique is a powerful method to detect chemical molecules. Fluorescent spectroscopy is a subject of great interest in the field of material science and biology. Recently, some optical sensors, based on plasmonic properties of nanomaterial, were introduced to [...] Read more.
The surface plasmon resonance (SPR) technique is a powerful method to detect chemical molecules. Fluorescent spectroscopy is a subject of great interest in the field of material science and biology. Recently, some optical sensors, based on plasmonic properties of nanomaterial, were introduced to enhance the investigation of the interaction of molecular while detecting the low concentration of molecular. The surface plasmon-coupled emission (SPCE) technique is a merit and accurate method to evaluate the interaction of nanomaterials and molecular. SPCE is based on fluorescence properties of interest molecule, and the surface plasmon enhances the fluorescence signal. According to SPR theory, the condition of excitation of fluorophore could be used in obtaining the SPCE signal. SPCE can be used to detect toxic chemicals and investigate the human molecular. In this review, the theory, experimental setup, condition of SPCE, and role of metal nanoparticles in SPCE were reviewed. In the end, the application of SPCE was presented for detection and monitoring the chemical material, heavy metal, and biologic molecules. Full article
(This article belongs to the Special Issue Plasmonic Nanosensors)
Show Figures

Graphical abstract

12 pages, 292 KiB  
Article
Physical Properties of Normal Grade Biodiesel and Winter Grade Biodiesel
by Amir Reza Sadrolhosseini, Mohd Maarof Moksin, Harrison Lau Lik Nang, Monir Norozi, W. Mahmood Mat Yunus and Azmi Zakaria
Int. J. Mol. Sci. 2011, 12(4), 2100-2111; https://doi.org/10.3390/ijms12042100 - 25 Mar 2011
Cited by 23 | Viewed by 10797
Abstract
In this study, optical and thermal properties of normal grade and winter grade palm oil biodiesel were investigated. Surface Plasmon Resonance and Photopyroelectric technique were used to evaluate the samples. The dispersion curve and thermal diffusivity were obtained. Consequently, the variation of refractive [...] Read more.
In this study, optical and thermal properties of normal grade and winter grade palm oil biodiesel were investigated. Surface Plasmon Resonance and Photopyroelectric technique were used to evaluate the samples. The dispersion curve and thermal diffusivity were obtained. Consequently, the variation of refractive index, as a function of wavelength in normal grade biodiesel is faster than winter grade palm oil biodiesel, and the thermal diffusivity of winter grade biodiesel is higher than the thermal diffusivity of normal grade biodiesel. This is attributed to the higher palmitic acid C16:0 content in normal grade than in winter grade palm oil biodiesel. Full article
(This article belongs to the Section Materials Science)
Show Figures

7 pages, 300 KiB  
Article
Fabrication of Silver Nanoparticles Dispersed in Palm Oil Using Laser Ablation
by Reza Zamiri, Azmi Zakaria, Hossein Abbastabar Ahangar, Amir Reza Sadrolhosseini and Mohd Adzir Mahdi
Int. J. Mol. Sci. 2010, 11(11), 4764-4770; https://doi.org/10.3390/ijms11114764 - 22 Nov 2010
Cited by 56 | Viewed by 12081
Abstract
In this study we used a laser ablation technique for preparation of silver nanoparticles. The fabrication process was carried out by ablation of a silver plate immersed in palm oil. A pulsed Nd:YAG laser at a wavelength of 1064 nm was used for [...] Read more.
In this study we used a laser ablation technique for preparation of silver nanoparticles. The fabrication process was carried out by ablation of a silver plate immersed in palm oil. A pulsed Nd:YAG laser at a wavelength of 1064 nm was used for ablation of the plate at different times. The palm oil allowed formation of nanoparticles with very small and uniform particle size, which are dispersed very homogeneously within the solution. The obtained particle sizes for 15 and 30 minute ablation times were 2.5 and 2 nm, respectively. Stability study shows that all of the samples remained stable for a reasonable period of time. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

Back to TopTop