Dengue Severity Prediction in a Hyperendemic Region in Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Case Classification
2.3. Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SD | Severe dengue |
Non-SD | No severe dengue |
DENV | Dengue virus |
DWS | Dengue with warning signs |
DWOS | Dengue without warning signs |
NS1 | Non-structural protein 1 |
IgM | Immunoglobulin M |
IgG | Immunoglobulin G |
RT-PCR | Reverse transcription polymerase chain reaction |
RNA | Ribonucleic acid |
ELISA | Enzyme-linked immunosorbent assay |
WBC | White blood cells |
AST | Aspartate aminotransferase |
ALT | Alanine aminotransferase |
AKI | Acute kidney injury |
ADE | Antibody-dependent enhancement |
mm/Hg | Millimeters of mercury |
gr/dL | Grams per deciliter |
References
- Huang, C.; Tsai, Y.; Wang, S.; Wang, W.; Chen, Y. Dengue vaccine: An update. Expert. Rev. Anti Infect. Ther. 2021, 19, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Salles, T.S.; da Encarnacao Sa-Guimaraes, T.; de Alvarenga, E.S.L.; Guimaraes-Ribeiro, V.; de Meneses, M.D.F.; de Castro-Salles, P.F.; Dos Santos, C.R.; do Amaral Melo, A.C.; Soares, M.R.; Ferreira, D.F.; et al. History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: A review. Parasit. Vectors 2018, 11, 264. [Google Scholar] [CrossRef] [PubMed]
- Munoz Mde, L.; Limon-Camacho, G.; Tovar, R.; Diaz-Badillo, A.; Mendoza-Hernandez, G.; Black, W.C.t. Proteomic identification of dengue virus binding proteins in Aedes aegypti mosquitoes and Aedes albopictus cells. Biomed. Res. Int. 2013, 2013, 875958. [Google Scholar] [CrossRef]
- Rafi, A.; Mousumi, A.N.; Ahmed, R.; Chowdhury, R.H.; Wadood, A.; Hossain, G. Dengue epidemic in a non-endemic zone of Bangladesh: Clinical and laboratory profiles of patients. PLoS Negl. Trop. Dis. 2020, 14, e0008567. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Dengue Guildelines for Diagnosis, Treatment, Prevention and Control: New Edition; WHO: Geneva, Switzerland, 2009; Available online: https://apps.who.int/iris/handle/10665/44188 (accessed on 10 March 2024).
- Hair, J.; Black, W.; Babin, B.; Anderson, R. Chapter 3: Exploratory Factor Analysis. In Multivariate Data Analysis, 7th ed.; Hair, J., Black, B., Anderson, R., Eds.; Pearson: London, UK, 2009; pp. 90–151. [Google Scholar]
- Organización Panamericana de la Salud (OPS); Organización Mundial de la Salud (OMS). DENGUE: Guías para la Atención de Enfermos en la Región de las Américas, 2nd ed.; OPS: Washington, DC, USA, 2015; Volume 2. [Google Scholar]
- Lee, L.K.; Earnest, A.; Carrasco, L.R.; Thein, T.L.; Gan, V.C.; Lee, V.J.; Lye, D.C.; Leo, Y.S. Safety and cost savings of reducing adult dengue hospitalization in a tertiary care hospital in Singapore. Trans. R. Soc. Trop. Med. Hyg. 2013, 107, 37–42. [Google Scholar] [CrossRef]
- Lee, H.; Hyun, S.; Park, S. Comprehensive analysis of multivariable models for predicting severe dengue prognosis: Systematic review and meta analysis. Trans. R. Soc. Trop. Med. Hyg. 2023, 117, 149–160. [Google Scholar] [CrossRef]
- Bhatt, P.; Sabeena, S.P.; Varma, M.; Arunkumar, G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr. Microbiol. 2021, 78, 17–32. [Google Scholar] [CrossRef]
- de Almeida, M.; Merighi, D.; Visnardi, A.; Boneto, C.; Amorim, A.; Ferrari, A.; de Souza, A.; Guzzo, C. Latin America’s Dengue Outbreak Poses a Global Health Threat. Viruses 2025, 17, 57. [Google Scholar] [CrossRef]
- Pan American Health Organization (PAHO). Reported Cases of Dengue Fever in Americas; PAHO: Washington, DC, USA, 2022. [Google Scholar]
- Rodríguez-Reyes, A.; González-Ruge, D.; Pardo-Herrera, L. Informe de Evento Dengue, Colombia; Instituto Nacional de Salud (INS): Bogotá, DC, USA, 2019. [Google Scholar]
- Instituto Nacional de Salud (INS). Dengue Situación Epidemiológica Colombia. Available online: https://app.powerbi.com/view?r=eyJrIjoiOTIxMzE4MGItNjg4MC00ZmUyLWIwMzctODhlOWFjNzMyZmViIiwidCI6ImE2MmQ2YzdiLTlmNTktNDQ2OS05MzU5LTM1MzcxNDc1OTRiYiIsImMiOjR9 (accessed on 21 April 2024).
- Secretaría Seccional de Salud y Protección Social de Antioquia (SSSPSA). Eventos de salud pública por municipios 2007–2022. Available online: https://dssa.gov.co/index.php/vigilancia-en-salud-publica (accessed on 31 January 2024).
- Sangkaew, S.; Ming, D.; Boonyasiri, A.; Honeyford, K.; Kalayanarooj, S.; Yacoub, S.; Dorigatti, I.; Holmes, A. Risk predictors of progression to severe disease during the febrile phase of dengue: A systematic review and meta-analysis. Lancet Infect. Dis. 2021, 21, 1014–1026. [Google Scholar] [CrossRef]
- Carras, M.; Maillard, O.; Cousty, J.; Gerardin, P.; Boukerrou, M.; Raffray, L.; Mavingui, P.; Poubeau, P.; Cabie, A.; Bertolotti, A. Associated risk factors of severe dengue in Reunion Island: A prospective cohort study. PLoS Negl. Trop. Dis. 2023, 17, e0011260. [Google Scholar] [CrossRef]
- Huang, S.W.; Tsai, H.P.; Hung, S.J.; Ko, W.C.; Wang, J.R. Assessing the risk of dengue severity using demographic information and laboratory test results with machine learning. PLoS Negl. Trop. Dis. 2020, 14, e0008960. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.T.; Ho, T.N.; Nguyen, V.V.; Nguyen, T.H.; Ha, M.T.; Ta, V.T.; Nguyen, L.D.; Phan, L.; Han, K.Q.; Duong, T.H.; et al. An Evidence-Based Algorithm for Early Prognosis of Severe Dengue in the Outpatient Setting. Clin. Infect. Dis. 2017, 64, 656–663. [Google Scholar] [CrossRef]
- Chathurangika, P.; Premadasa, L.S.; Perera, S.S.N.; De Silva, K. Determining dengue infection risk in the Colombo district of Sri Lanka by inferencing the genetic parameters of Aedes mosquitoes. BMC Infect. Dis. 2024, 24, 944. [Google Scholar] [CrossRef]
- Polo-Triana, S.; Ramírez-Sierra, Y.; Arias-Osorio, J.; Martínez-Vega, R.A.; Lamos-Díaz, H. Métodos de aprendizaje automático para predecir el comportamiento epidemiológico de enfermedades arbovirales: Revisión estructurada de literatura. Salud UIS 2023, 55, e23017. [Google Scholar] [CrossRef]
- Mora-Pineda, J. Modelos predictivos en salud basados en aprendizaje de maquina (machine learning). Rev. Méd Clínica Las. Condes 2022, 33, 583–590. [Google Scholar] [CrossRef]
- Leandro, A.S.; Ayala, M.J.C.; Lopes, R.D.; Martins, C.A.; Maciel-de-Freitas, R.; Villela, D.A.M. Entomo-Virological Aedes aegypti Surveillance Applied for Prediction of Dengue Transmission: A Spatio-Temporal Modeling Study. Pathogens 2022, 12, 4. [Google Scholar] [CrossRef]
- Jaya, I.; Folmer, H. Spatiotemporal high-resolution prediction and mapping: Methodology and application to dengue disease. J. Geogr. Syst. 2022, 24, 527–581. [Google Scholar] [CrossRef] [PubMed]
- Consejo Territorial de Planeación de Antioquia (CTPA). Subregión de Urabá. 2020. Available online: https://ctpantioquia.co/subregion-de-uraba/ (accessed on 20 June 2024).
- Asociación Médica Mundial. Declaración de Helsinki de la AMM-Principios éticos Para Las Investigaciones Médicas en Seres Humanos. 64ª Asamblea General. Fortaleza, Brasil: AMM 2013. 2019. Available online: https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/ (accessed on 12 May 2024).
- República de Colombia; Ministerio de Salud. Resolución 8430 de 1993, “Por la Cuál se Establecen Las Normas Científicas, Técnicas y Administrativas Para La Investigación en Salud”. 1993. Available online: https://minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/ride/de/dij/resolucion-8430-DE-1993.pdf (accessed on 15 June 2024).
- Secretaría Seccional de Salud y Protección Social de Antioquia. Eventos en salud pública. 2020. Available online: https://dssa.gov.co/ (accessed on 12 April 2024).
- Zweig, M.H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39, 561–577. [Google Scholar] [CrossRef]
- Pan American Health Organization (PAHO). Dengue: Country Analysis; OPS: Oshawa, UK, 2022; Available online: https://ais.paho.org/ha_viz/arbo/pdf/PAHO%20Arbo%20Bulletin%202022.pdf (accessed on 1 November 2023).
- Velandia-Romero, M.L.; Coronel-Ruiz, C.; Castro-Bonilla, L.; Camacho-Ortega, S.; Calderon-Pelaez, M.A.; Castellanos, A.; Olano, V.A.; Porras, A.; Arevalo-Herrera, M.; Villamil-Gomez, W.; et al. Prevalence of dengue antibodies in healthy children and adults in different Colombian endemic areas. Int. J. Infect. Dis. 2020, 91, 9–16. [Google Scholar] [CrossRef]
- Fonseca, S.N.S. Changing epidemiology of dengue fever in children in South America. Curr. Opin. Pediatr. 2023, 35, 147–154. [Google Scholar] [CrossRef]
- Ricardo-Rivera, S.M.; Aldana-Carrasco, L.M.; Lozada-Martinez, I.D.; Bolano-Romero, M.P.; Acevedo-Lopez, N.; Sajona-Leguia, W.A.; Bula-Garcia, D.L.; Zaghab-Zgieb, F.F.; Farak, J.C.P.; Lopez Ordonez, J. Mapping Dengue in children in a Colombian Caribbean Region: Clinical and epidemiological analysis of more than 3500 cases. Infez. Med. 2022, 30, 602–609. [Google Scholar] [CrossRef] [PubMed]
- AbuBakar, S.; Puteh, S.E.W.; Kastner, R.; Oliver, L.; Lim, S.H.; Hanley, R.; Gallagher, E. Epidemiology (2012–2019) and costs (2009-2019) of dengue in Malaysia: A systematic literature review. Int. J. Infect. Dis. 2022, 124, 240–247. [Google Scholar] [CrossRef]
- Thach, T.Q.; Eisa, H.G.; Hmeda, A.B.; Faraj, H.; Thuan, T.M.; Abdelrahman, M.M.; Awadallah, M.G.; Ha, N.X.; Noeske, M.; Abdul Aziz, J.M.; et al. Predictive markers for the early prognosis of dengue severity: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2021, 15, e0009808. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.E.; Saul, S.; Rao, A.M.; Robinson, M.L.; Agudelo Rojas, O.L.; Sanz, A.M.; Verghese, M.; Solis, D.; Sibai, M.; Huang, C.H.; et al. An 8-gene machine learning model improves clinical prediction of severe dengue progression. Genome Med. 2022, 14, 33. [Google Scholar] [CrossRef]
- Daz-Celis, C.; Gutiérrez-Lesmes, O.; Cruz-Roa, A. Plataforma TI de vigilancia entomológica del Aedes aegypti con colaboración colectiva, Web GIS y mHealth. Entramado 2022, 18, e8639. [Google Scholar] [CrossRef]
- Caicedo, D.M.; Mendez, A.C.; Tovar, J.R.; Osorio, L. Development of clinical algorithms for the diagnosis of dengue in Colombia. Biomedica 2019, 39, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Corzo-Gomez, J.; Guzman-Aquino, S.; Vargas-De-Leon, C.; Megchun-Hernandez, M.; Briones-Aranda, A. Bayesian Analysis Used to Identify Clinical and Laboratory Variables Capable of Predicting Progression to Severe Dengue among Infected Pediatric Patients. Children 2023, 10, 1508. [Google Scholar] [CrossRef]
- Gayathri, V.; Lakshmi, S.V.; Murugan, S.S.; Poovazhagi, V.; Kalpana, S. Development and Validation of a Bedside Dengue Severity Score for Predicting Severe Dengue in Children. Indian. Pediatr. 2023, 60, 359–363. [Google Scholar] [CrossRef]
- Pérez-Castro, R.; Castellanos, J.E.; Olano, V.A.; Matiz, M.I.; Jaramillo, J.F.; Vargas, S.L.; Sarmiento, D.M.; Stenström, T.A.; Overgaard, H.J. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia. Mem. Inst. Oswaldo Cruz 2016, 111, 233–240. [Google Scholar] [CrossRef]
- Salazar Florez, J.E.; Marin Velasquez, K.; Segura Cardona, A.M.; Restrepo Jaramillo, B.N.; Ortega Diaz, Y.E.; Giraldo Cardona, L.S.; Arboleda Naranjo, M. Clinical Manifestations of Dengue in Children and Adults in a Hyperendemic Region of Colombia. Am. J. Trop. Med. Hyg. 2024, 110, 971–978. [Google Scholar] [CrossRef]
- Chia, P.Y.; Teo, A.; Yeo, T.W. Association of Neutrophil Mediators With Dengue Disease Severity and Cardiac Impairment in Adults. J. Infect. Dis. 2022, 226, 1974–1984. [Google Scholar] [CrossRef]
- Yuan, K.; Chen, Y.; Zhong, M.; Lin, Y.; Liu, L. Risk and predictive factors for severe dengue infection: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0267186. [Google Scholar] [CrossRef]
- Robinson, M.; Sweeney, T.E.; Barouch-Bentov, R.; Sahoo, M.K.; Kalesinskas, L.; Vallania, F.; Sanz, A.M.; Ortiz-Lasso, E.; Albornoz, L.L.; Rosso, F.; et al. A 20-Gene Set Predictive of Progression to Severe Dengue. Cell Rep. 2019, 26, 1104–1111.e1104. [Google Scholar] [CrossRef]
- Huy, B.V.; Toan, N.V. Prognostic indicators associated with progresses of severe dengue. PLoS ONE 2022, 17, e0262096. [Google Scholar] [CrossRef] [PubMed]
- Huong, N.T.C.; Hai, N.P.; Van Khanh, C.; Kamel, M.G.; Vinh Chau, N.V.; Truong, N.T.; Vinh, N.T.; Elsheikh, R.; Makram, A.M.; Elsheikh, A.; et al. New biomarkers for liver involvement by dengue infection in adult Vietnamese patients: A case-control study. BMC Infect. Dis. 2024, 24, 800. [Google Scholar] [CrossRef]
- Rothman, A.L. Immunology and immunopathogenesis of dengue disease. Adv. Virus Res. 2003, 60, 397–419. [Google Scholar] [CrossRef]
- Halstead, S. Recent advances in understanding dengue. F1000Res 2019, 8, 1279. [Google Scholar] [CrossRef]
- Grange, L.; Simon-Loriere, E.; Sakuntabhai, A.; Gresh, L.; Paul, R.; Harris, E. Epidemiological risk factors associated with high global frequency of inapparent dengue virus infections. Front. Immunol. 2014, 5, 280. [Google Scholar] [CrossRef]
- Thai, K.T.; Phuong, H.L.; Thanh Nga, T.T.; Giao, P.T.; Hung, L.Q.; Van Nam, N.; Binh, T.Q.; Simmons, C.; Farrar, J.; Hien, T.T.; et al. Clinical, epidemiological and virological features of Dengue virus infections in Vietnamese patients presenting to primary care facilities with acute undifferentiated fever. J. Infect. 2010, 60, 229–237. [Google Scholar] [CrossRef]
- Bos, S.; Zambrana, J.V.; Duarte, E.; Graber, A.L.; Huffaker, J.; Montenegro, C.; Premkumar, L.; Gordon, A.; Kuan, G.; Balmaseda, A.; et al. Serotype-specific epidemiological patterns of inapparent versus symptomatic primary dengue virus infections: A 17-year cohort study in Nicaragua. Lancet Infect. Dis. 2024, 25, 346–356. [Google Scholar] [CrossRef]
- Luo, R.; Fongwen, N.; Kelly-Cirino, C.; Harris, E.; Wilder-Smith, A.; Peeling, R.W. Rapid diagnostic tests for determining dengue serostatus: A systematic review and key informant interviews. Clin. Microbiol. Infect. 2019, 25, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Zheng, J.X.; Guo, Z.Y.; Li, L.H.; Xia, S.; Lv, S.; Zhou, X.N. Dengue Incidence Trends and Its Burden in Major Endemic Regions from 1990 to 2019. Trop. Med. Infect. Dis. 2022, 7, 180. [Google Scholar] [CrossRef] [PubMed]
- Harapan, H.; Michie, A.; Sasmono, R.T.; Imrie, A. Dengue: A Minireview. Viruses 2020, 12, 829. [Google Scholar] [CrossRef]
- Lee, J.S.; Carabali, M.; Lim, J.K.; Herrera, V.M.; Park, I.Y.; Villar, L.; Farlow, A. Early warning signal for dengue outbreaks and identification of high risk areas for dengue fever in Colombia using climate and non-climate datasets. BMC Infect. Dis. 2017, 17, 480. [Google Scholar] [CrossRef]
- Rigau-Pérez, J.G. Severe dengue: The need for new case definitions. Lancet Infect. Dis. 2006, 6, 297–302. [Google Scholar] [CrossRef]
- Rahman, M.S.; Ekalaksananan, T.; Zafar, S.; Poolphol, P.; Shipin, O.; Haque, U.; Paul, R.; Rocklöv, J.; Pientong, C.; Overgaard, H.J. Ecological, Social, and Other Environmental Determinants of Dengue Vector Abundance in Urban and Rural Areas of Northeastern Thailand. Int. J. Environ. Res. Public. Health 2021, 18, 5971. [Google Scholar] [CrossRef]
- de Lima, T.F.; Lana, R.M.; de Senna Carneiro, T.G.; Codeco, C.T.; Machado, G.S.; Ferreira, L.S.; de Castro Medeiros, L.C.; Davis Junior, C.A. DengueME: A Tool for the Modeling and Simulation of Dengue Spatiotemporal Dynamics. Int. J. Environ. Res. Public. Health 2016, 13, 920. [Google Scholar] [CrossRef]
- Kukkar, A.; Kumar, Y.; Sandhu, J.K.; Kaur, M.; Walia, T.S.; Amoon, M. DengueFog: A Fog Computing-Enabled Weighted Random Forest-Based Smart Health Monitoring System for Automatic Dengue Prediction. Diagnostics 2024, 14, 624. [Google Scholar] [CrossRef]
- Babu, A.N.; Niehaus, E.; Shah, S.; Unnithan, C.; Ramkumar, P.S.; Shah, J.; Binoy, V.V.; Soman, B.; Arunan, M.C.; Jose, C.P. Smartphone geospatial apps for dengue control, prevention, prediction, and education: MOSapp, DISapp, and the mosquito perception index (MPI). Environ. Monit. Assess. 2019, 191, 393. [Google Scholar] [CrossRef]
- Kroeger, K.M.; Steer, J.H.; Joyce, D.A.; Abraham, L.J. Effects of stimulus and cell type on the expression of the -308 tumour necrosis factor promoter polymorphism. Cytokine 2000, 12, 110–119. [Google Scholar] [CrossRef]
- Alqahtani, A.; Alsubai, S.; Bhatia, M. IoT-Edge-Cloud-Assisted intelligent framework for Controlling Dengue. IEEE Internet Things J. 2023, 11, 15682–15689. [Google Scholar] [CrossRef]
- Tian, N.; Zheng, J.X.; Li, L.H.; Xue, J.B.; Xia, S.; Lv, S.; Zhou, X.N. Precision Prediction for Dengue Fever in Singapore: A Machine Learning Approach Incorporating Meteorological Data. Trop. Med. Infect. Dis. 2024, 9, 72. [Google Scholar] [CrossRef] [PubMed]
Variable | SD | No SD | OR | p-Value a | ||
---|---|---|---|---|---|---|
n = 47 | % | n = 186 | % | |||
Age | ||||||
Mean/std | 18.3/18.7 | 13.1/11.8 | Na | 0.293 b | ||
Median/IR | 10.0/16.0 | 10.9/9.0 | ||||
Sex | ||||||
Male | 28 | 59.6 | 105 | 56.5 | 1.14 | 0.829 |
Female | 19 | 40.4 | 81 | 43.5 | ||
Place of residence | ||||||
Rural | 7 | 14.9 | 81 | 43.5 | 0.23 | <0.001 |
Urban | 40 | 85.1 | 105 | 56.5 | ||
Health Insurance type | ||||||
Contributory | 33 | 70.2 | 104 | 55.9 | 1.86 | 0.104 |
Subsidized | 14 | 29.8 | 82 | 44.1 | ||
Comorbidity | ||||||
Yes | 14 | 29.8 | 17 | 9.1 | 4.22 | 0.001 |
No | 33 | 70.2 | 169 | 90.9 | ||
NS1 (n = 203) * | ||||||
Negative | 3 | 17.6 | 77 | 41.4 | 0.30 | 0.097 |
Positive | 14 | 82.4 | 109 | 58.6 | ||
IgM (n = 229) * | ||||||
Negative | 5 | 11.6 | 46 | 24.7 | 0.40 | 0.097 |
Positive | 38 | 88.4 | 140 | 75.3 | ||
IgG (n = 227) * | ||||||
Negative | 8 | 19.5 | 20 | 10.8 | 2.01 | 0.200 |
Positive | 33 | 80.5 | 166 | 89.2 | ||
RT-PCR (n = 194) * | ||||||
Negative | 3 | 37.5 | 93 | 50.0 | 0.60 | 0.740 |
Positive | 5 | 62.5 | 93 | 50.0 | ||
Infection * | ||||||
Secondary | 31 | 72.1 | 166 | 89.2 | 3.21 | 0.012 |
Primary | 12 | 27.9 | 20 | 10.8 | ||
Serotype * | ||||||
DENV-1 | 2 | 50.0 | 64 | 68.8 | 0.45 | 0.765 |
DENV-2 | 2 | 50.0 | 29 | 31.2 | ||
Co-infection | ||||||
Yes | 7 | 14.9 | 37 | 19.9 | 1.42 | 0.579 |
No | 40 | 85.1 | 149 | 80.1 | ||
Malaria | ||||||
Yes | 5 | 10.6 | 2 | 1.1 | 10.95 | 0.003 |
No | 42 | 89.4 | 184 | 98.9 | ||
Leptospirosis | ||||||
Yes | 2 | 4.3 | 35 | 18.8 | 0.19 | 0.027 |
No | 45 | 95.7 | 151 | 81.2 |
Variable | SD | Non-SD | OR | p-Value a | ||
---|---|---|---|---|---|---|
n = 47 | % | n = 186 | % | |||
Retro-orbital pain | 8 | 17.0 | 88 | 45.4 | 0.23 | <0.001 |
Abdominal pain | 40 | 85.1 | 121 | 53.5 | 3.07 | 0.013 |
Nausea | 39 | 83.0 | 109 | 48.4 | 3.44 | 0.003 |
Fatigue | 31 | 66.0 | 151 | 69.6 | 0.45 | 0.040 |
Dizziness | 8 | 17.0 | 71 | 36.6 | 0.33 | 0.010 |
Myalgia | 25 | 53.2 | 154 | 73.0 | 0.24 | <0.001 |
Arthralgia | 26 | 55.3 | 149 | 70.3 | 0.31 | 0.001 |
Exanthem | 8 | 17.0 | 100 | 51.5 | 0.18 | <0.001 |
Pruritus | 5 | 10.6 | 92 | 48.2 | 0.12 | <0.001 |
Jaundice | 5 | 10.6 | 3 | 1.6 | 7.26 | 0.010 |
Edema of extremities | 11 | 23.4 | 16 | 8.1 | 3.25 | 0.010 |
Fluid accumulation | 24 | 51.1 | 14 | 6.7 | 12.82 | <0.001 |
Ascites | 11 | 23.4 | 10 | 5.1 | 5.38 | <0.001 |
Respiratory distress | 5 | 10.6 | 0 | 0.0 | - | <0.001 |
Irritability | 16 | 34.0 | 5 | 2.5 | 18.68 | <0.001 |
Convulsion | 5 | 10.6 | 1 | 0.5 | 22.02 | 0.001 |
Hepatomegaly | 27 | 57.4 | 15 | 7.0 | 16.20 | <0.001 |
Splenomegaly | 8 | 17.0 | 4 | 2.1 | 9.33 | <0.001 |
Hematemesis | 16 | 34.0 | 4 | 2.0 | 23.48 | <0.001 |
Variable | SD | Non-SD | p-Value a | ||
---|---|---|---|---|---|
Min–Max | Median [Q1–Q3] | Min–Max | Median [Q1–Q3] | ||
Age (years completed) | 0.4–84.0 | 10.0 [6.0–22.0] | 0.6–70.0 | 10.0 [6.0–15.0] | 0.293 |
Systolic blood pressure (mm/Hg) | 70.0–172.0 | 101.0 [97.3–111.8] | 85.0–143.0 | 100.0 [95.0–110.0] | 0.283 |
Diastolic blood pressure (mmHg) | 40.0–91.0 | 63.0 [60.0–71.0] | 40.0–94.0 | 61.0 [60.0–70.0] | 0.856 |
Mean arterial pressure (mmHg) | 50.0–140.0 | 80.0 [73.7–87.7] | 56.3–109.0 | 74.7 [71.4–83.3] | 0.050 |
Pulse pressure (mmHg) | 20.0–81.0 | 40.0 [36.0–46.0] | 10.0–68.0 | 40.0 [35.0–40.0] | 0.250 |
Heart rate (pulse for one minute) | 68.0–140.0 | 105.0 [89.0–116.4] | 50.0–151.0 | 98.0 [88.0–111.8] | 0.160 |
Respiratory rate (number of breaths for one minute) | 14.0–40.0 | 20.0 [18.3–23.0] | 16.0–45.0 | 21.5 [20.0–24.0] | 0.041 |
Oxygen saturation (%) | 56.0–99.0 | 98.0 [97.0–99.0] | 90.0–99.0 | 98.0 [98.0–99.0] | 0.113 |
Hemoglobin (gr/dL) | 7.9–18.6 | 13.1 [11.9–14.6] | 5.1–19.4 | 12.4 [11.5–13.5] | 0.032 |
Hematocrit (%) | 23.9–63.1 | 40.5 [34.7–44.7] | 15.3–57.6 | 37.3 [34.6–40.6] | 0.025 |
Platelets (mm3) | 7000.0–422,000.0 | 60,000.0 [31,000.0–109,500.0] | 5200.0–534,000.0 | 147,381.6 [93,500.0–215,500.0] | 0.000 |
White blood cells (mm3) | 1600.0–23,000.0 | 6414.0 [4005.0–9650.0] | 1437.0–45,000.0 | 4425.0 [3302.5–6165.0] | 0.000 |
Neutrophils (%) | 13.0–95.2 | 56.0 [47.9–73.5] | 8.6–92.0 | 50.0 [36.0–65.4] | 0.008 |
Lymphocytes (%) b | 0.3–77.0 | 31.2 [17.5–38.9] | 3.9–81.2 | 36.1 [24.0–46.6] | 0.009 |
Eosinophils (%) c | 0.0–9.0 | 0.7 [0.14–1.0] | 0.0–19.7 | 2.4 [0.61–4.71] | 0.000 |
Basophils (%) d | 0.0–4.0 | 0.9 [0.7–1.7] | 0.0–5.0 | 1.0 [0.61–1.21] | 0.787 |
Aspartate Aminotransferase (UI/L) e | 13.0–3000.0 | 133.1 [71.6–620.5] | 15.3–469.6 | 94.6 [61.0–114.0] | 0.000 |
Alanine Aminotransferase (UI/L) e | 11.0–3000.0 | 63.5 [35.0–229.0] | 9.5–481.9 | 48.3 [28.8–65.2] | 0.001 |
C-reactive protein (mg/dL) f | 0.2–276.0 | 4.5 [1.31–12.4] | 0.0–96.9 | 1.0 [0.3–3.6] | 0.008 |
Creatinine (UI/L) g | 0.3–9.6 | 0.7 [0.6–1.0] | 0.2–2.6 | 0.5 [0.4–0.7] | 0.000 |
Blood urea nitrogen (mg/dL) h | 4.1–94.2 | 14.5 [10.0–28.0] | 2.0–81.4 | 9.2 [8.0–11.3] | 0.000 |
Prothrombin time (seconds) i | 10.0–20.0 | 13.7 [11.5–16.7] | 10.0–20.0 | 12.8 [11.5–14.8] | 0.030 |
Activated partial thromboplastin time (seconds) i | 27.6–70.0 | 41.8 [38.1–54.3] | 24.9–68.0 | 36.7 [34.3–38.8] | 0.000 |
Clinical Parameter | Coefficient | SE | p-Value | aOR | 95% CI | |
---|---|---|---|---|---|---|
(Intercept) | −2.782 | 0.526 | <0.001 | |||
Primary infection * | −0.794 | 0.239 | 0.001 | 0.452 | 0.283 | 0.723 |
Platelets | −1.706 | 0.434 | <0.001 | 0.182 | 0.078 | 0.425 |
Leukocytes | 0.623 | 0.269 | 0.021 | 1.865 | 1.101 | 3.160 |
Eosinophils | −1.305 | 0.657 | 0.047 | 0.271 | 0.075 | 0.982 |
Neutrophils | 1.181 | 0.330 | 0.000 | 3.258 | 1.705 | 6.227 |
AST (liver function test) | 1.526 | 0.515 | 0.003 | 4.600 | 1.675 | 12.632 |
Training a | Test b | |||
---|---|---|---|---|
Metrics/Dataset | Non-SD | SD | Non-SD | SD |
Precision | 0.90 | 0.84 | 0.92 | 0.88 |
Recall (sensitivity) | 0.97 | 0.57 | 0.97 | 0.70 |
F1 score | 0.94 | 0.68 | 0.95 | 0.78 |
Support | 149 | 37 | 37 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salazar Flórez, J.E.; Marín Velasquez, K.; Giraldo Cardona, L.S.; Segura Cardona, Á.M.; Restrepo Jaramillo, B.N.; Arboleda, M. Dengue Severity Prediction in a Hyperendemic Region in Colombia. Viruses 2025, 17, 740. https://doi.org/10.3390/v17060740
Salazar Flórez JE, Marín Velasquez K, Giraldo Cardona LS, Segura Cardona ÁM, Restrepo Jaramillo BN, Arboleda M. Dengue Severity Prediction in a Hyperendemic Region in Colombia. Viruses. 2025; 17(6):740. https://doi.org/10.3390/v17060740
Chicago/Turabian StyleSalazar Flórez, Jorge Emilio, Katerine Marín Velasquez, Luz Stella Giraldo Cardona, Ángela María Segura Cardona, Berta Nelly Restrepo Jaramillo, and Margarita Arboleda. 2025. "Dengue Severity Prediction in a Hyperendemic Region in Colombia" Viruses 17, no. 6: 740. https://doi.org/10.3390/v17060740
APA StyleSalazar Flórez, J. E., Marín Velasquez, K., Giraldo Cardona, L. S., Segura Cardona, Á. M., Restrepo Jaramillo, B. N., & Arboleda, M. (2025). Dengue Severity Prediction in a Hyperendemic Region in Colombia. Viruses, 17(6), 740. https://doi.org/10.3390/v17060740