Mild Zika Virus Infection in Mice Without Motor Impairments Induces Working Memory Deficits, Anxiety-like Behaviors, and Dysregulation of Immunity and Synaptic Vesicle Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement and Biosafety
2.2. Animals and Viral Inoculation
2.3. Viral Replication and Titration
2.4. Necropsy and Sample Preservation
2.5. Detection of ZIKV by RT-qPCR and Genome Quantification
2.6. Library Preparation and Sequencing
2.7. Differential Expression and Protein–Protein Interaction Network Analysis
2.8. Behavioral Testing
2.8.1. T-Maze (Ugo Basile, Gemonio, Italy)
2.8.2. Rotarod Test (Ugo Basile, Gemonio, Italy)
2.8.3. Open Field Test
2.9. Statistical Analysis
3. Results
3.1. Subcutaneous Inoculation with ZIKV in Neonatal Mice Induces Brain Tissue Infection Without Fatal Outcomes
3.2. Infection Model with Heterogeneous Clinical Response and Decrease in Viral Genomes over Time
3.3. Behavioral Abnormalities in ZIKV-Infected Mice: Altered Cognitive but Not Locomotor Responses
3.4. Overexpression of Genes Associated with Immune Response and Downregulation of Genes Associated with Vesicular Functions and Cellular Architecture
3.5. Interaction Network of the Top DEGs Expressed in the Cortex and Cerebellum
3.6. Interaction Networks of Downregulated DEGs in the Cortex and Cerebellum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayes, E.B. Zika Virus Outside Africa. Emerg. Infect. Dis. 2009, 15, 1347–1350. [Google Scholar] [CrossRef] [PubMed]
- Hennessey, M.; Fischer, M.; Staples, J.E. Zika Virus Spreads to New Areas—Region of the Americas, May 2015–January 2016. MMWR. Morb. Mortal. Wkly. Rep. 2019, 65, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Pielnaa, P.; Al-Saadawe, M.; Saro, A.; Dama, M.F.; Zhou, M.; Huang, Y.; Huang, J.; Xia, Z. Zika Virus-Spread, Epidemiology, Genome, Transmission Cycle, Clinical Manifestation, Associated Challenges, Vaccine and Antiviral Drug Development. Virology 2020, 543, 34–42. [Google Scholar] [CrossRef]
- PAHO/WHO PLISA Plataforma de Información En Salud Para Las Américas. Zika—Reporte de Casos Acumulados. Available online: https://www3.paho.org/data/index.php/es/temas/zika-weekly-es/ (accessed on 14 December 2023).
- Gasco, S.; Muñoz-Fernández, M.Á. A Review on the Current Knowledge on Zikv Infection and the Interest of Organoids and Nanotechnology on Development of Effective Therapies against Zika Infection. Int. J. Mol. Sci. 2020, 22, 35. [Google Scholar] [CrossRef]
- Dick, G.W. Zika Virus (II). Pathogenicity and Physical Properties. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 521–534. [Google Scholar] [CrossRef]
- Noorbakhsh, F.; Abdolmohammadi, K.; Fatahi, Y.; Dalili, H.; Rasoolinejad, M.; Rezaei, F.; Salehi-Vaziri, M.; Zahra Shafiei-Jandaghi, N.; Shamsi Gooshki, E.; Zaim, M.; et al. Zika Virus Infection, Basic and Clinical Aspects: A Review Article. Iran. J. Public Health 2019, 48, 20–31. [Google Scholar] [CrossRef]
- Cauchemez, S.; Besnard, M.; Bompard, P.; Dub, T.; Guillemette-Artur, P.; Eyrolle-Guignot, D.; Salje, H.; Van Kerkhove, M.D.; Abadie, V.; Garel, C.; et al. Association between Zika Virus and Microcephaly in French Polynesia, 2013–2015: A Retrospective Study. Lancet 2016, 387, 2125–2132. [Google Scholar] [CrossRef]
- Rice, M.E.; Galang, R.R.; Roth, N.M.; Ellington, S.R.; Moore, C.A.; Valencia-Prado, M.; Ellis, E.M.; Tufa, A.J.; Taulung, L.A.; Alfred, J.M.; et al. Vital Signs: Zika-Associated Birth Defects and Neurodevelopmental Abnormalities Possibly Associated with Congenital Zika Virus Infection—U.S. Territories and Freely Associated States, 2018. MMWR. Morb. Mortal. Wkly. Rep. 2018, 67, 858. [Google Scholar] [CrossRef]
- Musso, D.; Ko, A.I.; Baud, D. Zika Virus Infection—After the Pandemic. N. Engl. J. Med. 2019, 381, 1444–1457. [Google Scholar] [CrossRef]
- Mulkey, S.B.; Arroyave-Wessel, M.; Peyton, C.; Bulas, D.I.; Fourzali, Y.; Jiang, J.; Russo, S.; McCarter, R.; Msall, M.E.; Du Plessis, A.J.; et al. Neurodevelopmental Abnormalities in Children with in Utero Zika Virus Exposure Without Congenital Zika Syndrome. JAMA Pediatr. 2020, 174, 269–276. [Google Scholar] [CrossRef]
- Nielsen-Saines, K.; Brasil, P.; Kerin, T.; Vasconcelos, Z.; Gabaglia, C.R.; Damasceno, L.; Pone, M.; Abreu de Carvalho, L.M.; Pone, S.M.; Zin, A.A.; et al. Delayed Childhood Neurodevelopment and Neurosensory Alterations in the Second Year of Life in a Prospective Cohort of ZIKV-Exposed Children. Nat. Med. 2019, 25, 1213. [Google Scholar] [CrossRef] [PubMed]
- van der Linden, V.; Pessoa, A.; Dobyns, W.; Barkovich, A.J.; van der Linden, H., Jr.; Filho, E.L.R.; Ribeiro, E.M.; Leal, M.d.C.; Coimbra, P.P.d.A.; Aragão, M.d.F.V.V.; et al. Description of 13 Infants Born During October 2015–January 2016 With Congenital Zika Virus Infection Without Microcephaly at Birth—Brazil. MMWR. Morb. Mortal. Wkly. Rep. 2019, 65, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Laiton-Donato, K.; Álvarez-Díaz, D.A.; Rengifo, A.C.; Torres-Fernández, O.; Usme-Ciro, J.A.; Rivera, J.A.; Santamaría, G.; Naizaque, J.; Monroy-Gómez, J.; Sarmiento, L.; et al. Complete Genome Sequence of a Colombian Zika Virus Strain Obtained from BALB/c Mouse Brain after Intraperitoneal Inoculation. Microbiol. Resour. Announc. 2019, 8, 2–4. [Google Scholar] [CrossRef]
- Lazear, H.M.; Govero, J.; Smith, A.M.; Platt, D.J.; Fernandez, E.; Miner, J.J.; Diamond, M.S. A Mouse Model of Zika Virus Pathogenesis. Cell Host Microbe 2016, 19, 720–730. [Google Scholar] [CrossRef]
- Li, H.; Saucedo-Cuevas, L.; Regla-Nava, J.A.; Chai, G.; Sheets, N.; Tang, W.; Terskikh, A.V.; Shresta, S.; Gleeson, J.G. Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation. Cell Stem Cell 2016, 19, 593. [Google Scholar] [CrossRef]
- Figueiredo, C.P.; Barros-Aragão, F.G.Q.; Neris, R.L.S.; Frost, P.S.; Soares, C.; Souza, I.N.O.; Zeidler, J.D.; Zamberlan, D.C.; de Sousa, V.L.; Souza, A.S.; et al. Zika Virus Replicates in Adult Human Brain Tissue and Impairs Synapses and Memory in Mice. Nat. Commun. 2019, 10, 3890. [Google Scholar] [CrossRef]
- Paul, A.M.; Acharya, D.; Neupane, B.; Thompson, E.A.; Gonzalez-Fernandez, G.; Copeland, K.M.; Garrett, M.; Liu, H.; Lopez, M.E.; de Cruz, M.; et al. Congenital Zika Virus Infection in Immunocompetent Mice Causes Postnatal Growth Impediment and Neurobehavioral Deficits. Front. Microbiol. 2018, 9, 2028. [Google Scholar] [CrossRef]
- Rengifo, A.C.; Rivera, J.; Álvarez-Díaz, D.A.; Naizaque, J.; Santamaria, G.; Corchuelo, S.; Gómez, C.Y.; Torres-Fernández, O. Morphological and Molecular Changes in the Cortex and Cerebellum of Immunocompetent Mice Infected with Zika Virus. Viruses 2023, 15, 1632. [Google Scholar] [CrossRef]
- Marín-Padilla, M. Development of the Human Cerebral Cortex. A Cytoarchitectonic Theory. Rev. Neurol. 1999, 29, 208–216. [Google Scholar] [CrossRef]
- Martynoga, B.; Drechsel, D.; Guillemot, F. Molecular Control of Neurogenesis: A View from the Mammalian Cerebral Cortex. Cold Spring Harb. Perspect. Biol. 2012, 4, a008359. [Google Scholar] [CrossRef]
- Silbereis, J.; Heintz, T.; Taylor, M.M.; Ganat, Y.; Ment, L.R.; Bordey, A.; Vaccarino, F. Astroglial Cells in the External Granular Layer Are Precursors of Cerebellar Granule Neurons in Neonates. Mol. Cell. Neurosci. 2010, 44, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Semple, B.D.; Blomgren, K.; Gimlin, K.; Ferriero, D.M.; Noble-Haeusslein, L.J. Brain Development in Rodents and Humans: Identifying Benchmarks of Maturation and Vulnerability to Injury across Species. Prog. Neurobiol. 2013, 106–107, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Delgado-García, J.M. Modelos Experimentales En Ratones Silvestres y Transgénicos Para El Estudio de Funciones Motoras y Cognitivas. Rev. Neurol. 2005, 41, S163. [Google Scholar] [CrossRef]
- National Research Council. Guide for the Care and Use of Laboratory Animals, Eighth ed.; Garber, J., Barbee, W., Bielitzki, J., Eds.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Russell, W.; Burch, R. The Principles of Humane Experimental Technique; UFAW: Wheathampstead, UK, 1959. [Google Scholar]
- Van der Meer, M.; Rolls, A.; Baumans, V.; Olivier, B.; Van Zutphen, L.F.M. Use of Score Sheets for Welfare Assessment of Transgenic Mice. Lab. Anim. 2001, 35, 379–389. [Google Scholar] [CrossRef]
- Kohn, D.F.; Martin, T.E.; Foley, P.L.; Morris, T.H.; Swindle, M.M.; Vogler, G.A.; Wixson, S.K. Guidelines for the Assessment and Management of Pain in Rodents and Rabbits. J. Am. Assoc. Lab. Anim. Sci. 2007, 46, 97–108. [Google Scholar]
- Cepeda Prado, E.A. Diferencias En La Expresión de Marcadores Neuronales y No Neuronales En Cerebros de Dos Cepas de Ratón Adulto; Pontificia Universidad Javeriana: Bogotá, Colombia, 2003. [Google Scholar]
- Hamel, K.A.; Cvetanovic, M. Cerebellar Regional Dissection for Molecular Analysis. J. Vis. Exp. 2020, 2020, e61922. [Google Scholar] [CrossRef]
- Beaudoin, G.M.J.; Lee, S.H.; Singh, D.; Yuan, Y.; Ng, Y.G.; Reichardt, L.F.; Arikkath, J. Culturing Pyramidal Neurons from the Early Postnatal Mouse Hippocampus and Cortex. Nat. Protoc. 2012, 7, 1741–1754. [Google Scholar] [CrossRef]
- Álvarez-Díaz, D.A.; Valencia-Álvarez, E.; Rivera, J.A.; Rengifo, A.C.; Usme-Ciro, J.A.; Peláez-Carvajal, D.; Lozano-Jiménez, Y.Y.; Torres-Fernández, O. An Updated RT-QPCR Assay for the Simultaneous Detection and Quantification of Chikungunya, Dengue and Zika Viruses. Infect. Genet. Evol. 2021, 93, 104967. [Google Scholar] [CrossRef]
- La Roche Hoffmann, F. Creating Standard Curves with Genomic DNA or Plasmid DNA Templates for Use in Quantitative PCR.; Applied Biosystems: Waltham, MA, USA, 2003. [Google Scholar]
- Krueger, F.; James, F.; Ewels, P.; Afyounian, E.; Weinstein, M.; Schuster-Boeckler, B.; Hulselmans, G.; Sclamons. FelixKrueger/TrimGalore: v0.6.10—Add default decompression path. Zenodo. 2023. Available online: https://zenodo.org/record/7598955 (accessed on 9 March 2025).
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering Splice Junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Elizarraras, J.M.; Liao, Y.; Shi, Z.; Zhu, Q.; Pico, A.R.; Zhang, B. WebGestalt 2024: Faster Gene Set Analysis and New Support for Metabolomics and Multi-Omics. Nucleic Acids Res. 2024, 52, W415–W421. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein–Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2022, 51, D638. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498. [Google Scholar] [CrossRef]
- Montgomery, K.C. Exploratory Behavior and Its Relation to Spontaneous Alternation in a Series of Maze Exposures. J. Comp. Physiol. Psychol. 1952, 45, 50–57. [Google Scholar] [CrossRef]
- d’Isa, R.; Comi, G.; Leocani, L. Apparatus Design and Behavioural Testing Protocol for the Evaluation of Spatial Working Memory in Mice through the Spontaneous Alternation T-Maze. Sci. Rep. 2021, 11, 21177. [Google Scholar] [CrossRef]
- Lalonde, R. The Neurobiological Basis of Spontaneous Alternation. Neurosci. Biobehav. Rev. 2002, 26, 91–104. [Google Scholar] [CrossRef]
- Jurado-Arjona, J.; Rodríguez-Matellán, A.; Ávila, J.; Hernández, F. GSK3β Overexpression Driven by GFAP Promoter Improves Rotarod Performance. Brain Res. 2019, 1712, 47–54. [Google Scholar] [CrossRef]
- Deacon, R.M.J. Measuring Motor Coordination in Mice. J. Vis. Exp. 2013, e2609. [Google Scholar] [CrossRef]
- D’Angelo, E. Physiology of the Cerebellum. Handb. Clin. Neurol. 2018, 154, 85–108. [Google Scholar] [CrossRef]
- International Mouse Phenotyping Consorcium Rotarod Protocol. Available online: https://www.mousephenotype.org/impress/ProcedureInfo?action=list&procID=168 (accessed on 12 January 2024).
- Osmon, K.J.L.; Vyas, M.; Woodley, E.; Thompson, P.; Walia, J.S. Battery of Behavioral Tests Assessing General Locomotion, Muscular Strength, and Coordination in Mice. J. Vis. Exp. 2018, 2018, 55491. [Google Scholar] [CrossRef]
- Seibenhener, M.L.; Wooten, M.C. Use of the Open Field Maze to Measure Locomotor and Anxiety-like Behavior in Mice. J. Vis. Exp. 2015, e52434. [Google Scholar] [CrossRef]
- Ireland, D.D.C.; Manangeeswaran, M.; Lewkowicz, A.P.; Engel, K.; Clark, S.M.; Laniyan, A.; Sykes, J.; Lee, H.N.; McWilliams, I.L.; Kelley-Baker, L.; et al. Long-Term Persistence of Infectious Zika Virus: Inflammation and Behavioral Sequela in Mice. PLoS Pathog. 2020, 16, e1008689. [Google Scholar] [CrossRef]
- Snyder-Keller, A.; Kramer, L.D.; Zink, S.; Bolivar, V.J. Mouse Strain and Sex-Dependent Differences in Long-Term Behavioral Abnormalities and Neuropathologies after Developmental Zika Infection. J. Neurosci. 2019, 39, 5393. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of Type I Interferon Responses. Nat. Rev. Immunol. 2013, 14, 36–49. [Google Scholar] [CrossRef]
- Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. Interferon-Stimulated Genes: A Complex Web of Host Defenses. Annu. Rev. Immunol. 2014, 32, 513. [Google Scholar] [CrossRef]
- Schoggins, J.W.; Rice, C.M. Interferon-Stimulated Genes and Their Antiviral Effector Functions. Curr. Opin. Virol. 2011, 1, 519. [Google Scholar] [CrossRef]
- Hamel, R.; Dejarnac, O.; Wichit, S.; Ekchariyawat, P.; Neyret, A.; Luplertlop, N.; Perera-Lecoin, M.; Surasombatpattana, P.; Talignani, L.; Thomas, F.; et al. Biology of Zika Virus Infection in Human Skin Cells. J. Virol. 2015, 89, 8880–8896. [Google Scholar] [CrossRef]
- Magoro, T.; Dandekar, A.; Jennelle, L.T.; Bajaj, R.; Lipkowitz, G.; Angelucci, A.R.; Bessong, P.O.; Hahn, Y.S. IL-1β/TNF-α/IL-6 Inflammatory Cytokines Promote STAT1-Dependent Induction of CH25H in Zika Virus–Infected Human Macrophages. J. Biol. Chem. 2019, 294, 14591. [Google Scholar] [CrossRef]
- Oyarzún-Arrau, A.; Alonso-Palomares, L.; Valiente-Echeverría, F.; Osorio, F.; Soto-Rifo, R. Crosstalk between RNA Metabolism and Cellular Stress Responses during Zika Virus Replication. Pathogens 2020, 9, 158. [Google Scholar] [CrossRef]
- Fensterl, V.; Sen, G.C. Interferon-Induced Ifit Proteins: Their Role in Viral Pathogenesis. J. Virol. 2014, 89, 2462. [Google Scholar] [CrossRef] [PubMed]
- Vladimer, G.I.; Górna, M.W.; Superti-Furga, G. IFITs: Emerging Roles as Key Anti-Viral Proteins. Front. Immunol. 2014, 5, 94. [Google Scholar] [CrossRef] [PubMed]
- Mancini, A.; Ghiglieri, V.; Parnetti, L.; Calabresi, P.; Di Filippo, M. Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Front. Immunol. 2021, 12, 644294. [Google Scholar] [CrossRef]
- Deshpande, D.; Fuchs, L.; Klose, C.S.N. Neuro-Immune-Metabolism: The Tripod System of Homeostasis. Immunol. Lett. 2021, 240, 77–97. [Google Scholar] [CrossRef]
- Watts, M.E.; Pocock, R.; Claudianos, C.; Chowen, J.A.; Arevalo, M.A.; Rosenberger, T.A. Brain Energy and Oxygen Metabolism: Emerging Role in Normal Function and Disease. Front. Mol. Neurosci. 2018, 11, 216. [Google Scholar] [CrossRef]
- Rothman, D.L.; Behar, K.L.; Hyder, F.; Shulman, R.G. In Vivo NMR Studies of the Glutamate Neurotransmitter Flux and Neuroenergetics: Implications for Brain Function. Annu. Rev. Physiol. 2003, 65, 401–427. [Google Scholar] [CrossRef]
- Drescher, K.M.; Murray, P.D.; David, C.S.; Pease, L.R.; Rodriguez, M. CNS Cell Populations Are Protected from Virus-Induced Pathology by Distinct Arms of the Immune System. Brain Pathol. 1999, 9, 21–31. [Google Scholar] [CrossRef]
- Suzuki, Y.; Lutshumba, J.; Chen, K.C.; Abdelaziz, M.H.; Sa, Q.; Ochiai, E. IFN-γ Production by Brain-Resident Cells Activates Cerebral MRNA Expression of a Wide Spectrum of Molecules Critical for Both Innate and T Cell-Mediated Protective Immunity to Control Reactivation of Chronic Infection with Toxoplasma Gondii. Front. Cell. Infect. Microbiol. 2023, 13, 1110508. [Google Scholar] [CrossRef]
- Sonar, S.A.; Shaikh, S.; Joshi, N.; Atre, A.N.; Lal, G. IFN-γ Promotes Transendothelial Migration of CD4+ T Cells across the Blood–Brain Barrier. Immunol. Cell Biol. 2017, 95, 843–853. [Google Scholar] [CrossRef]
- Conti, P.; Ronconi, G.; Lauritano, D.; Mastrangelo, F.; Caraffa, A.; Gallenga, C.E.; Frydas, I.; Kritas, S.K.; Carinci, F.; Gaudelli, F.; et al. Impact of TNF and IL-33 Cytokines on Mast Cells in Neuroinflammation. Int. J. Mol. Sci. 2024, 25, 3248. [Google Scholar] [CrossRef]
- Di Filippo, M.; Sarchielli, P.; Picconi, B.; Calabresi, P. Neuroinflammation and Synaptic Plasticity: Theoretical Basis for a Novel, Immune-Centred, Therapeutic Approach to Neurological Disorders. Trends Pharmacol. Sci. 2008, 29, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Mottahedin, A.; Ardalan, M.; Chumak, T.; Riebe, I.; Ek, J.; Mallard, C. Effect of Neuroinflammation on Synaptic Organization and Function in the Developing Brain: Implications for Neurodevelopmental and Neurodegenerative Disorders. Front. Cell. Neurosci. 2017, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Vhp, L.; Aragão, M.; Pinho, R.; Hazin, A.; Paciorkowski, A.; Penalva de Oliveira, A.; Masruha, M.R. Congenital Zika Virus Infection: A Review with Emphasis on the Spectrum of Brain Abnormalities. Curr. Neurol. Neurosci. Rep. 2020, 20, 49. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.Y.; Zuo, G.L.; Li, X.F.; Ye, Q.; Deng, Y.Q.; Huang, X.Y.; Cao, W.C.; Qin, C.F.; Luo, Z.G. Vertical Transmission of Zika Virus Targeting the Radial Glial Cells Affects Cortex Development of Offspring Mice. Cell Res. 2016, 26, 645. [Google Scholar] [CrossRef]
- Zare Mehrjardi, M.; Keshavarz, E.; Poretti, A.; Hazin, A.N. Neuroimaging Findings of Zika Virus Infection: A Review Article. Jpn. J. Radiol. 2016, 34, 765–770. [Google Scholar] [CrossRef]
- Ravindran, S.; Lahon, A. Tropism and Immune Response of Chikungunya and Zika Viruses: An Overview. Cytokine 2023, 170, 156327. [Google Scholar] [CrossRef]
- Veettil, M.V.; Krishna, G.; Pillai, V.S. Viral and Host Cellular Factors Used by Neurotropic Viruses. Mol. Immunol. Neurol. Dis. 2021, 2, 75–83. [Google Scholar] [CrossRef]
- Abbas, Y.M.; Wu, D.; Bueler, S.A.; Robinson, C.V.; Rubinstein, J.L. Structure of V-ATPase from the Mammalian Brain. Science 2020, 367, 1240–1246. [Google Scholar] [CrossRef]
- Bodzęta, A.; Kahms, M.; Klingauf, J. The Presynaptic V-ATPase Reversibly Disassembles and Thereby Modulates Exocytosis but Is Not Part of the Fusion Machinery. Cell Rep. 2017, 20, 1348–1359. [Google Scholar] [CrossRef]
- Blondeau, F.; Ritter, B.; Allaire, P.D.; Wasiak, S.; Girard, M.; Hussain, N.K.; Angers, A.; Legendre-Guillemin, V.; Roy, L.; Boismenu, D.; et al. Tandem MS Analysis of Brain Clathrin-Coated Vesicles Reveals Their Critical Involvement in Synaptic Vesicle Recycling. Proc. Natl. Acad. Sci. USA 2004, 101, 3833–3838. [Google Scholar] [CrossRef]
- Maycox, P.R.; Link, E.; Reetz, A.; Morris, S.A.; Jahn, R. Clathrin-Coated Vesicles in Nervous Tissue Are Involved Primarily in Synaptic Vesicle Recycling. J. Cell Biol. 1992, 118, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Slepnev, V.I.; De Camilli, P. Accessory Factors in Clathrin-Dependent Synaptic Vesicle Endocytosis. Nat. Rev. Neurosci. 2000, 1, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Park, M. Shank Postsynaptic Scaffolding Proteins in Autism Spectrum Disorder: Mouse Models and Their Dysfunctions in Behaviors, Synapses, and Molecules. Pharmacol. Res. 2022, 182, 106340. [Google Scholar] [CrossRef]
- Silverman, J.L.; Turner, S.M.; Barkan, C.L.; Tolu, S.S.; Saxena, R.; Hung, A.Y.; Sheng, M.; Crawley, J.N. Sociability and Motor Functions in Shank1 Mutant Mice. Brain Res. 2011, 1380, 120–137. [Google Scholar] [CrossRef]
- Gordon-Lipkin, E.; Peacock, G. The Spectrum of Developmental Disability with Zika Exposure: What Is Known, What Is Unknown, and Implications for Clinicians. J. Dev. Behav. Pediatr. 2019, 40, 387–395. [Google Scholar] [CrossRef]
- Leppänen, P.K.; Ravaja, N.; Ewalds-Kvist, S.B.M. Twenty-Three Generations of Mice Bidirectionally Selected for Open-Field Thigmotaxis: Selection Response and Repeated Exposure to the Open Field. Behav. Process. 2006, 72, 23–31. [Google Scholar] [CrossRef]
- Canteras, N.S.; Resstel, L.B.; Bertoglio, L.J.; de Pádua Carobrez, A.; Guimarães, F.S. Neuroanatomy of Anxiety. Curr. Top. Behav. Neurosci. 2010, 2, 77–96. [Google Scholar] [CrossRef]
- Simon, P.; Dupuis, R.; Costentin, J. Thigmotaxis as an Index of Anxiety in Mice. Influence of Dopaminergic Transmissions. Behav. Brain Res. 1994, 61, 59–64. [Google Scholar] [CrossRef]
- Kulesskaya, N.; Voikar, V. Assessment of Mouse Anxiety-like Behavior in the Light–Dark Box and Open-Field Arena: Role of Equipment and Procedure. Physiol. Behav. 2014, 133, 30–38. [Google Scholar] [CrossRef]
Target | Primer/Probe | RefSeq ID |
---|---|---|
ZIKV | F: CTGYGGGATCTCCTCTGTYTCAA | KJ776791.2 |
R: ACGGGCAATCTCTGTGGASCTCT | ||
P: FAM-ACGGTCGTTGTGGGATCTGTRAAA-BHQ-0 | ||
GAPDH | F: AGGTCGGTGTGAACGGATTTG | NM_017008 |
R: GGGGTCCGTTGATGGCAACA |
Tissue | Gen | Uniprot Description | Uniprot Accession | Degree | Betweenness Centrality | Closeness Centrality |
---|---|---|---|---|---|---|
Cerebellum; Cortex | Ifit3 | IFN-induced antiviral protein, which acts as an inhibitor of cellular, as well as viral processes, cell migration, proliferation, signaling, and viral replication. | Q64345 | 37 | 0.07 | 0.49 |
Cerebellum | Stat1 | Signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG/SCF, and other cytokines and other growth factors. | P42225 | 35 | 0.31 | 0.57 |
Cerebellum; Cortex | Ifit1 | Interferon-induced antiviral RNA-binding protein that specifically binds single-stranded RNA bearing a 5′-triphosphate group (PPP-RNA), thereby acting as a sensor of viral single-stranded RNAs and inhibiting expression of viral messenger RNAs. | Q64282 | 32 | 0.15 | 0.53 |
Cerebellum; Cortex | Usp18 | Interferon-induced ISG15 specific protease that plays a crucial role in maintaining a proper balance of ISG15-conjugated proteins in cells. | Q9WTV6 | 30 | 0.03 | 0.46 |
Cerebellum; Cortex | Ifih1 | An innate immune receptor, which acts as a cytoplasmic sensor of viral nucleic acids and plays a major role in sensing viral infection and in the activation of a cascade of antiviral responses, including the induction of type I interferons and pro-inflammatory cytokines. | Q8R5F7 | 30 | 0.04 | 0.47 |
Cerebellum; Cortex | Ifi44 | Interferon-induced protein 44; This protein aggregates to form microtubular structures; Belongs to the IFI44 family. | Q8BV66 | 29 | 0.02 | 0.46 |
Cerebellum; Cortex | Ifit2 | IFN-induced antiviral protein, which inhibits expression of viral messenger RNAs lacking 2′-O-methylation of the 5′ cap. | Q64112 | 26 | 0.01 | 0.46 |
Cerebellum; Cortex | Rsad2 | Interferon-inducible antiviral protein, which plays a major role in the antiviral state of the cell induced by type I and type II interferon. | Q8CBB9 | 23 | 0.04 | 0.46 |
Cerebellum; Cortex | Oasl2 | Interferon-induced, dsRNA-activated antiviral enzyme, which plays a critical role in cellular innate antiviral response. | Q9Z2F2 | 23 | 0.02 | 0.44 |
Cerebellum | Irf7 | Key transcriptional regulator of type I interferon (IFN)-dependent immune responses and plays a critical role in the innate immune response against DNA and RNA viruses. Regulates the transcription of type I IFN genes and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters. | P70434 | 22 | 0.02 | 0.44 |
Tissue | Gen | Uniprot Description | Uniprot Accession | Degree | Betweenness Centrality | Closeness Centrality |
---|---|---|---|---|---|---|
Cortex | Ccl28 | C-C motif chemokine 28; Chemotactic for resting CD4, CD8 T-cells, and eosinophils. Binds to CCR10 and induces calcium mobilization in a dose-dependent manner. | Q9JIL2 | 4 | 0.06 | 1.00 |
Cortex | Ccl26 | Chemokine (C-C motif) ligand 26 | F8VQM2 | 4 | 0.06 | 1.00 |
Cortex | Cxcl14 | Chemotactic for CESS B-cells and THP-1 monocytes, but not T-cells. | Q9WUQ5 | 4 | 0.06 | 1.00 |
Cerebellum | Atp6ap1 | Guides the V-type ATPase into specialized subcellular compartments, such as neuroendocrine regulated secretory vesicles or the ruffled border of the osteoclast, thereby regulating its activity. Involved in membrane trafficking and Ca2+-dependent membrane fusion. | Q9R1Q9 | 4 | 0.57 | 0.70 |
Cerebellum | Atp6v1g2 | V-type proton ATPase subunit G 2; Catalytic subunit of the peripheral V1 complex of vacuolar ATPase (V-ATPase). V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells. | Q9WTT4 | 4 | 0.06 | 0.58 |
Cerebellum | Rnasek | Regulates the activity of vacuolar (H+)-ATPase (V-ATPase), which is responsible for acidifying and maintaining the pH of intracellular compartments. Required at an early stage of receptor-mediated endocytosis. | Q8K3C0 | 4 | 0.06 | 0.58 |
Cerebellum | Tmem199 | Accessory component of the proton-transporting vacuolar (V)-ATPase protein pump involved in intracellular iron homeostasis. In aerobic conditions, required for intracellular iron homeostasis, thus triggering the activity of Fe2+ prolyl hydroxylase (PHD) enzymes and leading to HIF1A hydroxylation and subsequent proteasomal degradation. | Q5SYH2 | 4 | 0.06 | 0.58 |
Cerebellum | Prkcg | Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine protein kinase that plays diverse roles in neuronal cells and eye tissues, such as regulation of the neuronal receptors GRIA4/GLUR4 and GRIN1/NMDAR1. | P63318 | 3 | 0.52 | 0.58 |
Cerebellum | Spaar | Negatively regulates mTORC1 activation by inhibiting recruitment of mTORC1 to lysosomes upon stimulation with amino acids: acts by promoting the formation of a tightly bound supercomplex composed of the lysosomal V-ATPase, Ragulator, and Rag GTPases, preventing recruitment of mTORC1 | A0A1B0GSZ0 | 3 | 0.00 | 0.44 |
Cortex | Shank1 | Seems to be an adapter protein in the postsynaptic density (PSD) of excitatory synapses that interconnects receptors of the postsynaptic membrane, including NMDA-type and metabotropic glutamate receptors, and the actin-based cytoskeleton. Plays a role in the structural and functional organization of the dendritic spine and synaptic junction. | D3YZU1 | 1 | 0.00 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chivatá-Ávila, J.A.; Rojas-Estevez, P.; Muñoz-Suarez, A.M.; Caro-Morales, E.; Rengifo, A.C.; Torres-Fernández, O.; Lozano, J.M.; Álvarez-Díaz, D.A. Mild Zika Virus Infection in Mice Without Motor Impairments Induces Working Memory Deficits, Anxiety-like Behaviors, and Dysregulation of Immunity and Synaptic Vesicle Pathways. Viruses 2025, 17, 405. https://doi.org/10.3390/v17030405
Chivatá-Ávila JA, Rojas-Estevez P, Muñoz-Suarez AM, Caro-Morales E, Rengifo AC, Torres-Fernández O, Lozano JM, Álvarez-Díaz DA. Mild Zika Virus Infection in Mice Without Motor Impairments Induces Working Memory Deficits, Anxiety-like Behaviors, and Dysregulation of Immunity and Synaptic Vesicle Pathways. Viruses. 2025; 17(3):405. https://doi.org/10.3390/v17030405
Chicago/Turabian StyleChivatá-Ávila, Jaime Alexander, Paola Rojas-Estevez, Alejandra M. Muñoz-Suarez, Esthefanny Caro-Morales, Aura Caterine Rengifo, Orlando Torres-Fernández, Jose Manuel Lozano, and Diego A. Álvarez-Díaz. 2025. "Mild Zika Virus Infection in Mice Without Motor Impairments Induces Working Memory Deficits, Anxiety-like Behaviors, and Dysregulation of Immunity and Synaptic Vesicle Pathways" Viruses 17, no. 3: 405. https://doi.org/10.3390/v17030405
APA StyleChivatá-Ávila, J. A., Rojas-Estevez, P., Muñoz-Suarez, A. M., Caro-Morales, E., Rengifo, A. C., Torres-Fernández, O., Lozano, J. M., & Álvarez-Díaz, D. A. (2025). Mild Zika Virus Infection in Mice Without Motor Impairments Induces Working Memory Deficits, Anxiety-like Behaviors, and Dysregulation of Immunity and Synaptic Vesicle Pathways. Viruses, 17(3), 405. https://doi.org/10.3390/v17030405