Swine Viruses: Immunology and Vaccinology

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Viral Immunology, Vaccines, and Antivirals".

Deadline for manuscript submissions: 20 December 2025 | Viewed by 729

Special Issue Editors


E-Mail Website
Guest Editor
College of Veterinary Medicine, Southwest University, Chongqing 400715, China
Interests: porcine reproductive and respiratory syndrome; porcine coronavirus; porcine picornavirus; veterinary clinical diagnostic research
Special Issues, Collections and Topics in MDPI journals

E-Mail Website1 Website2
Guest Editor
Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
Interests: veterinary sciences; virology; porcine epidemic diarrhea virus; vaccine

Special Issue Information

Dear Colleagues,

This Special Issue titled "Swine Viruses: Immunology and Vaccinology" explores the frontiers of research in the battle against swine viral diseases. With a focus on the latest scientific breakthroughs, this Special Issue will examine the evolving nature of swine viruses, the dynamic mechanisms of the porcine immune system, and innovative strategies in vaccine development. It will provide a platform for scholars to discuss challenges and opportunities in the field, including the impact of emerging viruses, the role of genomics in vaccine design, and the integration of novel immunological insights. This collection aims to inspire new directions in research and to contribute to the advancement of swine health and disease prevention strategies.

Prof. Dr. Yue Wang
Prof. Dr. Hongying Chen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • swine virology
  • swine immunology
  • vaccine development
  • vaccinology
  • viral pathogenesis
  • vaccine design
  • disease prevention
  • swine health

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 1465 KiB  
Article
Development and Application of Mouse-Derived CD2v Monoclonal Antibodies Against African Swine Fever Virus from Single B Cells
by Litao Yu, Fangtao Li, Xingqi Zou, Lu Xu, Junjie Zhao, Yan Li, Guorui Peng, Yingju Xia, Qizu Zhao and Yuanyuan Zhu
Viruses 2025, 17(8), 1123; https://doi.org/10.3390/v17081123 - 15 Aug 2025
Viewed by 366
Abstract
African swine fever (ASF) is a highly pathogenic and hemorrhagic swine infectious disease caused by the African swine fever virus (ASFV). It encodes over 150 proteins, among which the CD2v protein plays multiple roles throughout the infection process. Single B-cell antibody technology is [...] Read more.
African swine fever (ASF) is a highly pathogenic and hemorrhagic swine infectious disease caused by the African swine fever virus (ASFV). It encodes over 150 proteins, among which the CD2v protein plays multiple roles throughout the infection process. Single B-cell antibody technology is a cutting-edge method for preparing monoclonal antibodies (mAbs), which has the advantages of rapid, efficient, and high yield in antibody production, while possessing natural conformations. In this study, by cloning and expressing antibody genes in vitro, 14 murine-derived mAbs were prepared using recombinant CD2v proteins as immunogenic sources, which brings sufficient enrichment and selectivity for the development of antibodies based on the single B-cell antibody technique. All 14 mAbs demonstrated reactivity with CD2v protein by indirect ELISA, whereas 8 mAbs successfully detected CD2v in ASFV-infected PAM cells by IFA, indicating the tested mAbs can effectively recognize and bind to ASFV CD2v. Finally, a blocking ELISA method for detecting CD2v antibodies using CD2v mAb C89 was established, which holds significant potential for broad application in the serological diagnosis of ASFV with determination of the CD2v-blocking ELISA specificity, sensitivity, reproducibility, and compliance rate. It could be used for the rapid clinical detection of ASFV CD2v protein to provide a powerful tool for the monitoring of epidemics. Full article
(This article belongs to the Special Issue Swine Viruses: Immunology and Vaccinology)
Show Figures

Figure 1

Back to TopTop