Advances in the Study and Application of Polymers

A special issue of Solids (ISSN 2673-6497).

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 7271

Special Issue Editors


E-Mail Website
Guest Editor
Institut Européen des Membranes—IEM, Université de Montpellier, CEDEX 05, 34095 Montpellier, France
Interests: block copolymers; RAFT polymerization; self-assembly; polymerization-induced self-assembly (PISA); hybrid material; block copolymer membranes; metal and covalent organic frameworks (MOF and COF)
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
ENSCM Ecole Nationale Superieure de Chimie de Montpellier, Equipe Ingénierie et Architectures Macromoléculaires, Montpellier, France
Interests: design and synthesis of functional polymers
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue, entitled “Advances in the Study and Application of Polymers”, invites the submission of excellent papers on the state of the art in many key areas of polymer science. Full articles, communications, and review papers are welcome.

Potential topics include, but are not limited to:

  • Sustainable development, life cycle, recycling; controlled degradation; vitrimers; synthesis methodology (sustainable); catalysis; etc.
  • Polymers for energy: batteries; fuel cells; photovoltaics; etc.
  • Multi-scale structuring: self-assembly; additive manufacturing; dispersed media; porous material; etc.
  • Polymers and materials for the future: electroactive polymers; information storage; metamaterials.

This project, together with the 50e Édition du Colloque National du GFP (GFP 2022: https://gfp2022.sciencesconf.org/), held in Montpellier, France, 21–25 November 2022, provides a communication platform for researchers in this field and aims to further contribute to the development of both fundamental and applied research in the field of polymers.

We look forward to receiving your contributions.

Dr. Mona Semsarilar
Dr. Vincent Ladmiral
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Solids is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainable polymers
  • life cycle of polymers
  • vitrimers
  • electro-active polymers
  • self-assembled and multi-scale structures

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 4684 KiB  
Article
Taguchi Robust Design of Phase Transfer Catalytic Hydrolysis of Polyethylene Terephthalate (PET) Waste in Mild Conditions: Application for the Preparation of Metal–Organic Frameworks
by Asma Nouira, Imene Bekri-Abbes, Isabel Pestana Paixão Cansado and Paulo Alexandre Mira Mourão
Solids 2025, 6(1), 10; https://doi.org/10.3390/solids6010010 - 6 Mar 2025
Viewed by 247
Abstract
With the rapid increase in polyethylene terephthalate (PET) usage in recent years, recycling has become indispensable in mitigating environmental damage and safeguarding natural resources. In this context, this study presents a methodology for valorizing PET waste through phase transfer catalytic hydrolysis conducted at [...] Read more.
With the rapid increase in polyethylene terephthalate (PET) usage in recent years, recycling has become indispensable in mitigating environmental damage and safeguarding natural resources. In this context, this study presents a methodology for valorizing PET waste through phase transfer catalytic hydrolysis conducted at a low temperature (80 °C) and atmospheric pressure, with the goal of recovering the terephthalic acid (TPA) monomer. The recovered TPA monomer was subsequently utilized as a precursor for the synthesis of metal–organic frameworks (MOFs). Tributylhexadecyl phosphonium bromide (3Bu6DPB) was selected as the phase transfer catalyst due to its efficiency and sustainability. The process parameters, including the concentration of NaOH, the wt.% of catalyst to PET, and the concentration of PET in the solution, were varied to optimize the hydrolysis reaction. The Taguchi design methodology with an L9 (3^3) orthogonal array was employed to analyze the influence of these factors on the depolymerization time. The analysis of variance (ANOVA) results revealed that the concentration of NaOH was the most significant factor, contributing to 93.3% of the process efficiency, followed by the wt.% of the catalyst to PET (6.5%). The findings also demonstrated that the concentration of NaOH had the greatest impact (Δ = 4.27, rank = 1), while the concentration of PET had the smallest effect (Δ = 0.16, rank = 3). The optimal conditions for PET depolymerization were achieved in 75 min with 20 g/100 mL of NaOH, 12 wt.% of catalyst to PET, and 5 g/100 mL of PET. The recovered TPA monomer was further employed as an organic ligand to synthesize Fe(III)-TPA MOFs under mild conditions (80 °C for 24 h). The X-ray diffraction (XRD) analysis revealed the simultaneous formation of MOF-235(Fe) and MIL-101(Fe), two multifunctional materials with diverse properties and applications. This study highlights an efficient approach for producing low-cost MOFs while promoting urban waste recycling, contributing to an integrated strategy for PET recycling and resource valorization. Full article
(This article belongs to the Special Issue Advances in the Study and Application of Polymers)
Show Figures

Graphical abstract

11 pages, 1294 KiB  
Article
Rotational Mobility of TEMPO Spin Probe in Polypropylene: EPR Spectra Simulation and Calculation via Approximated Formulas
by Natalia A. Chumakova, Tatiana S. Yankova and Alexander I. Kokorin
Solids 2024, 5(4), 499-509; https://doi.org/10.3390/solids5040033 - 15 Oct 2024
Viewed by 1042
Abstract
The rotational correlation times of a small compact spin probe (2,2,6,6-tetramethylpiperidin-1-yl)oxyl in isotactic polypropylene were obtained over a wide temperature range by EPR spectra simulation taking into account rotational anisotropy as well as distribution of the probe molecules by rotational mobility. The averaged [...] Read more.
The rotational correlation times of a small compact spin probe (2,2,6,6-tetramethylpiperidin-1-yl)oxyl in isotactic polypropylene were obtained over a wide temperature range by EPR spectra simulation taking into account rotational anisotropy as well as distribution of the probe molecules by rotational mobility. The averaged values of the rotational correlation times were compared with the corresponding values calculated using well-known approximated formulas based on the intensities and widths of the spectral lines. It was shown that the calculated values can be used as effective parameters to characterize the rotational mobility of the spin probe in the polymer matrix in a wide range of rotational correlation times. Full article
(This article belongs to the Special Issue Advances in the Study and Application of Polymers)
Show Figures

Figure 1

14 pages, 10258 KiB  
Article
Polystyrene Coating on APTES-Primed Hydroxylated AA2024-T3: Characterization and Failure Mechanism of Corrosion
by Cheng-fu Chen
Solids 2023, 4(3), 254-267; https://doi.org/10.3390/solids4030016 - 1 Sep 2023
Cited by 2 | Viewed by 2319
Abstract
Polystyrene has limited adhesivity to inorganic materials such as metals. However, the inorganic surface can be treated to enhance bonding to energetically stable polystyrene. This concept is verified in this paper with organosilane aminopropyltriethoxysilane (APTES) as the coupling agent primed on hydroxylated aluminum [...] Read more.
Polystyrene has limited adhesivity to inorganic materials such as metals. However, the inorganic surface can be treated to enhance bonding to energetically stable polystyrene. This concept is verified in this paper with organosilane aminopropyltriethoxysilane (APTES) as the coupling agent primed on hydroxylated aluminum alloy AA2024-T3. We characterize the structural integrity and electrical impedance of the polystyrene coating on APTES-primed surfaces with different cured conditions after exposure to 3.5 wt.% NaCl solution for seven days. The results show that top-coated polystyrene on APTES is more structurally intact and less electrically conductive than the polystyrene coating alone. The coating layer made of top-coating polystyrene on a curing APTES film has the largest water uptake rate in the early stage of immersion in the corrosion solution. In the later stage, all coating layers tested regained their impedance while losing structural integrity. The charge transfer in the double layer of coated specimens for all types of coatings tested is predominantly through capacitance-based charging/discharging, presumably governed by the adsorption mechanism of ions at the coating/substrate interface. Full article
(This article belongs to the Special Issue Advances in the Study and Application of Polymers)
Show Figures

Figure 1

17 pages, 4921 KiB  
Article
Experimental Investigation of the Vibration-Induced Heating of Polyetheretherketone for High-Frequency Applications
by Michael Kucher, Martin Dannemann, Davood Peyrow Hedayati, Robert Böhm and Niels Modler
Solids 2023, 4(2), 116-132; https://doi.org/10.3390/solids4020008 - 29 Apr 2023
Cited by 2 | Viewed by 2018
Abstract
Dynamically loaded structures made of thermoplastic polymers have been extensively exploited in several demanding industries. Due to the viscoelastic and thermal properties of thermoplastic polymers, self-heating is generally inevitable, especially during dynamic deformations at high frequencies. Therefore, the thermoplastic polyether ether ketone (PEEK), [...] Read more.
Dynamically loaded structures made of thermoplastic polymers have been extensively exploited in several demanding industries. Due to the viscoelastic and thermal properties of thermoplastic polymers, self-heating is generally inevitable, especially during dynamic deformations at high frequencies. Therefore, the thermoplastic polyether ether ketone (PEEK), with its high temperature resistance and high specific strength, is a particularly ideal candidate for dynamically loaded applications. Using scanning laser Doppler vibrometry and infrared thermography, an experimental study of the vibration characteristics and the vibration-induced heating of flat-sheet PEEK specimens was carried out. The specimens were base-excited by means of a piezoelectric actuator at high frequencies in the range between 1 and 16 kHz. As a result, a maximum temperature rise of approximately 6.4 K was detected for the highest investigated excitation. A high correlation between the spatial distribution of the velocity along the beam’s axial direction and the resulting temperature increase was measured. To summarize, the occurring self-heating of PEEK due to the dissipation of vibrational energy has to be critically considered for dynamically loaded structural applications, especially areas with high displacement amplitudes, such as antinodes, which yield the highest temperature increase. Full article
(This article belongs to the Special Issue Advances in the Study and Application of Polymers)
Show Figures

Figure 1

Back to TopTop