sensors-logo

Journal Browser

Journal Browser

Advanced Magnetic Field-Sensing Technologies: Design and Application

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Electronic Sensors".

Deadline for manuscript submissions: 30 March 2026 | Viewed by 672

Special Issue Editor

School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China
Interests: magnetic targeting; magnetic communication; ELF field analysis; IoT
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The rapid evolution of magnetic field-sensing technologies has revolutionized diverse fields, including biomedical diagnostics, industrial automation, environmental monitoring, and space exploration. This Special Issue, “Advanced Magnetic Field-Sensing Technologies: Design and Application”, aims to showcase cutting-edge innovations in sensor design, signal processing algorithms, and interdisciplinary applications. With the growing demand for ultra-sensitive, miniaturized, and energy-efficient magnetic sensors, this issue will explore novel materials (e.g., quantum materials and magneto-resistive alloys), advanced fabrication techniques, and AI-driven calibration methods. Contributions addressing challenges such as environmental noise suppression, multi-scale field mapping, and sensor fusion for complex environments are particularly encouraged. By bridging theoretical advancements with real-world implementations, this collection seeks to propel the next generation of magnetic sensing systems for scientific discovery and industrial transformation.

Dr. Yang Ke
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • quantum magnetometry
  • MEMS-based magnetic sensors
  • spin-based sensor design
  • magnetic source modeling;
  • noise modeling and suppression algorithms
  • magnetic anomaly detection
  • novel Magnetic localization techniques
  • AI-driven calibration techniques
  • IoT-integrated magnetic sensing
  • ELF magnetic field propagation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 845 KB  
Article
Mechanism of the AC-Light-Shift-Induced Phase Shift and a DC Compensation Strategy in Bell–Bloom Magnetometers
by Rui Zhang
Sensors 2025, 25(22), 6871; https://doi.org/10.3390/s25226871 - 10 Nov 2025
Viewed by 469
Abstract
The Bell–Bloom magnetometer is promising for mobile applications, but its accuracy is limited by heading errors. A recently identified source of such error is a phase shift in the magnetic resonance, which arises from the superposition of two signals, i.e., the primary resonance [...] Read more.
The Bell–Bloom magnetometer is promising for mobile applications, but its accuracy is limited by heading errors. A recently identified source of such error is a phase shift in the magnetic resonance, which arises from the superposition of two signals, i.e., the primary resonance from synchronous pumping and a secondary resonance, 90° out-of-phase, driven by the AC light shift of the pump laser. Through Bloch equation modeling and experiment, we uncover a counter-intuitive mechanism: although initiated by the AC light shift, the phase shift’s magnitude is determined solely by the pump light’s average power (DC component) and is independent of its AC modulation. This occurs because the amplitude ratio of the two resonances depends exclusively on the DC-power-induced atomic polarization. Based on this insight, we propose a novel DC compensation scheme by adding a continuous counter-polarized beam to cancel the net DC pumping. Theoretically, this simultaneously suppresses both the AC-light-shift-induced phase shift and the DC-light-shift-induced frequency shift. The scheme’s advantage is its simplified approach to polarization control, avoiding the need for high-speed polarization modulation or major hardware changes as the beams share the same optical path. This makes it highly suitable for demanding mobile applications like aerial magnetic surveying and wearable bio-magnetic sensing in unshielded environments. Full article
(This article belongs to the Special Issue Advanced Magnetic Field-Sensing Technologies: Design and Application)
Show Figures

Figure 1

Back to TopTop