polymers-logo

Journal Browser

Journal Browser

Polymer Semiconductors for Flexible Electronics

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Smart and Functional Polymers".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 876

Special Issue Editor


E-Mail Website
Guest Editor
School of Nano Convergence Technology, Hallym University, Chuncheon, Republic of Korea
Interests: material; polymer; semiconductors; flexible electronics; material applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The work of Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa demonstrated that conjugated polymers, which have alternating single and double bonds along the polymer backbone, can have semiconductor properties when appropriately processed. This foundational work has directly influenced the field of polymer semiconductors, leading to the development of materials with tunable electrical properties for use in Organic Field-Effect Transistors (OFETs), Organic Photovoltaics (OPVs), Polymer Light-Emitting Diodes (PLEDs). The special issue on polymer semiconductors for flexible electronics focuses on the latest advancements, challenges, and future prospects of using polymer-based materials in next-generation flexible electronic devices. Flexible electronics have gained significant attention due to their potential for wearable technologies, foldable displays, electronic skins, and lightweight solar cells, and polymer semiconductors are at the heart of these innovations. This Special Issue, "Polymer semiconductors for flexible electronics", will cover the state of the art and key challenges in the field of organic semiconductors, with a particular focus on the design and synthesis of high-performance polymer semiconductors, flexible organic field-effect transistors, flexible organic photovoltaics, flexible light-emitting devices, wearable sensors and biomedical devices, and manufacturing techniques.

Dr. Youngjun Yun
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • semiconductors
  • flexible electronics
  • material applications
  • polymer

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2884 KiB  
Article
High-Detectivity Organic Photodetector with InP Quantum Dots in PTB7-Th:PC71BM Ternary Bulk Heterojunction
by Eunki Baek, Sung-Yoon Joe, Hyunbum Kang, Chanho Jeong, Hyunjong Lee, Insung Choi, Sohee Kim, Sangjun Park, Dongwook Kim, Jaehoon Park, Jae-Hyeon Ko, Gae Hwang Lee and Youngjun Yun
Polymers 2025, 17(16), 2214; https://doi.org/10.3390/polym17162214 - 13 Aug 2025
Viewed by 449
Abstract
Organic photodetectors (OPDs) offer considerable promise for low-power, solution-processable biosensing and imaging applications; however, their performance remains limited by spectral mismatch and interfacial trap states. In this study, a highly sensitive polymer photodiode was developed via trace incorporation (0.8 wt%) of InP/ZnSe/ZnS quantum [...] Read more.
Organic photodetectors (OPDs) offer considerable promise for low-power, solution-processable biosensing and imaging applications; however, their performance remains limited by spectral mismatch and interfacial trap states. In this study, a highly sensitive polymer photodiode was developed via trace incorporation (0.8 wt%) of InP/ZnSe/ZnS quantum dots (QDs) into a PTB7-Th:PC71BM bulk heterojunction (BHJ) matrix. This QD doping approach enhanced the external quantum efficiency (EQE) across the 540–660 nm range and suppressed the dark current density at −2 V by passivating interface trap states. Despite a slight decrease in optical absorption at the optimized composition, the internal quantum efficiency (IQE) increased significantly from ~80% to nearly 95% resulting in a net EQE improvement. This suggests that QD incorporation improved charge transport without compromising charge separation efficiency. As a result, the device achieved a specific detectivity (D*) of 1.8 × 1013 Jones, representing a 93% improvement over binary BHJs, along with an ultra-low dark current density of 7.76 × 10−10 A/cm2. Excessive QD loading, however, led to optical losses and increased dark current, underscoring the need for precise compositional control. Furthermore, the enhanced detectivity led to a 4 dB improvement in the signal-to-noise ratio (SNR) of photoplethysmography (PPG) signals in the target wavelength range, enabling more reliable biophotonic sensing without increased power consumption. This work demonstrates that QD-based spectral and interfacial engineering offers an effective and scalable route for advancing the performance of OPDs, with broad applicability to low-power biosensors and high-resolution polymer–QD imaging systems. Full article
(This article belongs to the Special Issue Polymer Semiconductors for Flexible Electronics)
Show Figures

Figure 1

Back to TopTop