3D Printing in Bioengineering and Pharmaceutical Manufacturing

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Pharmaceutical Technology, Manufacturing and Devices".

Deadline for manuscript submissions: 20 March 2026 | Viewed by 83

Special Issue Editor


E-Mail Website
Guest Editor
Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
Interests: bioengineering; tissue engineering; regenerative medicine; 3D-printing; 3D-bioprinting; musculoskeletal science

Special Issue Information

Dear Colleagues,

3D printing is rapidly transforming bioengineering and pharmaceutical manufacturing by enabling complex geometries, on-demand production, and true personalization. This Special Issue examines advances in bioprinting tissues and organs, 3D-printed drug delivery systems, and hybrid manufacturing workflows that integrate materials science, microfluidics, and process analytics to realize precision therapeutics. Emphasis is placed on patient-specific formulations—controlled-release, implantable scaffolds, and dosing devices—designed from patient data and enabled by CAD-to-print pipelines and regulatory-aware quality control. The challenges covered include biomaterial biocompatibility and stability, scale-up and reproducibility, supply-chain integration, and regulatory and ethical frameworks for personalized products. The emerging directions highlighted include AI-enabled (e.g., machine-learning-driven) design optimization, multi-material and cell-laden printing, closed-loop manufacturing with real-time monitoring, and decentralized production models for point-of-care therapy. Collectively, the collected papers aim to map the technical milestones and translational pathways required to move 3D-printed bioactive constructs from lab innovation to safe, regulated clinical and manufacturing practice and implementation.

Dr. Darren J. Player
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • 3D printing
  • 3D-bioprinting
  • precision medicine
  • personalized medicine
  • bioengineering
  • pharmaceutical manufacturing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3831 KB  
Article
Development of a Microwell System for Reproducible Formation of Homogeneous Cell Spheroids
by Miguel A. Reina Mahecha, Ginevra Mariani, Pauline E. M. van Schaik, Paulien Schaafsma, Theo G. van Kooten, Prashant K. Sharma and Inge S. Zuhorn
Pharmaceutics 2026, 18(1), 56; https://doi.org/10.3390/pharmaceutics18010056 - 31 Dec 2025
Abstract
Background/Objectives: Three-dimensional (3D) cell cultures are increasingly used because 3D cell aggregates better mimic tissue-level biological mechanisms and support studies of tissue physiology and drug screening. However, existing laboratory methods and commercial microwell platforms often yield inconsistent results and can be error-prone, time-consuming, [...] Read more.
Background/Objectives: Three-dimensional (3D) cell cultures are increasingly used because 3D cell aggregates better mimic tissue-level biological mechanisms and support studies of tissue physiology and drug screening. However, existing laboratory methods and commercial microwell platforms often yield inconsistent results and can be error-prone, time-consuming, or costly. The objective of this work was to develop a reproducible, high-yield, and cost-effective approach for generating homogeneous cell aggregates using custom 3D-printed microwell stamps. Methods: Custom conical and semi-spherical microwell stamps were fabricated using 3D printing. Stamp resolution was characterized by scanning electron microscopy (SEM). Negative imprints were cast in polydimethylsiloxane (PDMS), a biocompatible and hydrophobic polymer conducive to cell aggregation. These PDMS microwells were then used to generate pluripotent stem cell aggregates (embryoid bodies, EBs) and tumor spheroids from adherent cancer cell lines. Results: The 3D-printed stamps produced high-resolution conical and semi-spherical microwells in PDMS. Semi-spherical microwells enabled rapid, simple, and cost-effective formation of pluripotent stem cell aggregates that were homogeneous in size and shape. These aggregates outperformed those produced using commercial microwell plates and ultra-low attachment plates. The fabricated microwells also generated uniform tumor spheroids from adherent cancer cells, demonstrating their versatility. Conclusions: The in-house 3D-printed microwell stamps offer a reproducible, efficient, and economical platform for producing homogeneous cell aggregates. This system improves upon commercial alternatives and supports a broad range of applications, including pluripotent stem cell embryoid body formation and tumor spheroid generation. Full article
(This article belongs to the Special Issue 3D Printing in Bioengineering and Pharmaceutical Manufacturing)
Show Figures

Figure 1

Back to TopTop