Quantum Computing and Nanomaterial Simulations

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Theory and Simulation of Nanostructures".

Deadline for manuscript submissions: closed (30 September 2024) | Viewed by 2069

Special Issue Editors

School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Interests: low-dimensional semiconductors; growth mechanism; theoretical calculations and modeling; photonic device design

E-Mail Website
Guest Editor Assistant
Mesoscopic Optics and Quantum Electronics Laboratory, Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA
Interests: integrated quantum photonics; high-dimensional entanglement; quantum optics; quantum computing; quantum network

Special Issue Information

Dear Colleagues,

The ever-evolving landscape of nanomaterials science is poised for a revolutionary paradigm shift through the integration of quantum computing methodologies. This call for papers invites scholarly contributions to a Special Issue dedicated to the meticulous exploration of “Quantum Computing and Simulation of Nanomaterials”, with emphasis on leveraging quantum computing for nanomaterial simulations and optimizing nanomaterials for quantum information processing.

Quantum computing, with its unique ability to harness superposition and entanglement, emerges as a potent tool for the nuanced representation of complex quantum systems inherent to nanomaterials. Through the lens of advanced quantum algorithms, researchers are poised to transcend classical limitations in the simulation of electronic structures, quantum transport phenomena, and the behavior of matter at the nanoscale. This Special Issue seeks to underscore the transformative impact of quantum computing on the modeling, simulation, and optimization facets of nanomaterials science.

Simultaneously, this Special Issue seeks contributions that explore the potential of nanomaterials as quintessential components for quantum computing architectures. Nanomaterials, possessing distinctive quantum features such as long coherence time and controllable quantum states, hold promise as viable candidates for qubits. Manuscripts are encouraged to investigate the design, synthesis, and utilization of nanomaterials, such as quantum dots, nitrogen-vacancy (NV) centers in diamond, and graphene, as building blocks for quantum information processing tasks, thus fostering advancements towards scalable and fault-tolerant quantum computation.

Authors are encouraged to submit manuscripts that showcase pioneering research, methodological innovations, and insightful applications that leverage the prowess of quantum computing to propel nanomaterials science into a new era of precision and computational efficiency. By uncovering the quantum properties of nanomaterials and concurrently harnessing them for quantum information processing, we aim to advance both fields into exciting realms of discovery and innovation.

Dr. Han Ye
Guest Editors

Dr. Xiang Cheng
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • quantum computing
  • nanomaterials science
  • computational materials science
  • quantum information processing
  • quantum materials
  • materials modeling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3781 KiB  
Article
Constructing Dynamical Symmetries for Quantum Computing: Applications to Coherent Dynamics in Coupled Quantum Dots
by James R. Hamilton, Raphael D. Levine and Francoise Remacle
Nanomaterials 2024, 14(24), 2056; https://doi.org/10.3390/nano14242056 - 23 Dec 2024
Viewed by 703
Abstract
Dynamical symmetries, time-dependent operators that almost commute with the Hamiltonian, extend the role of ordinary symmetries. Motivated by progress in quantum technologies, we illustrate a practical algebraic approach to computing such time-dependent operators. Explicitly we expand them as a linear combination of time-independent [...] Read more.
Dynamical symmetries, time-dependent operators that almost commute with the Hamiltonian, extend the role of ordinary symmetries. Motivated by progress in quantum technologies, we illustrate a practical algebraic approach to computing such time-dependent operators. Explicitly we expand them as a linear combination of time-independent operators with time-dependent coefficients. There are possible applications to the dynamics of systems of coupled coherent two-state systems, such as qubits, pumped by optical excitation and other addressing inputs. Thereby, the interaction of the system with the excitation is bilinear in the coherence between the two states and in the strength of the time-dependent excitation. The total Hamiltonian is a sum of such bilinear terms and of terms linear in the populations. The terms in the Hamiltonian form a basis for Lie algebra, which can be represented as coupled individual two-state systems, each using the population and the coherence between two states. Using the factorization approach of Wei and Norman, we construct a unitary quantum mechanical evolution operator that is a factored contribution of individual two-state systems. By that one can accurately propagate both the wave function and the density matrix with special relevance to quantum computing based on qubit architecture. Explicit examples are derived for the electronic dynamics in coupled semi-conducting nanoparticles that can be used as hardware for quantum technologies. Full article
(This article belongs to the Special Issue Quantum Computing and Nanomaterial Simulations)
Show Figures

Figure 1

16 pages, 16982 KiB  
Article
Numerical Modeling of Vortex-Based Superconducting Memory Cells: Dynamics and Geometrical Optimization
by Aiste Skog, Razmik A. Hovhannisyan and Vladimir M. Krasnov
Nanomaterials 2024, 14(20), 1634; https://doi.org/10.3390/nano14201634 - 12 Oct 2024
Viewed by 918
Abstract
The lack of dense random-access memory is one of the main obstacles to the development of digital superconducting computers. It has been suggested that AVRAM cells, based on the storage of a single Abrikosov vortex—the smallest quantized object in superconductors—can enable drastic miniaturization [...] Read more.
The lack of dense random-access memory is one of the main obstacles to the development of digital superconducting computers. It has been suggested that AVRAM cells, based on the storage of a single Abrikosov vortex—the smallest quantized object in superconductors—can enable drastic miniaturization to the nanometer scale. In this work, we present the numerical modeling of such cells using time-dependent Ginzburg–Landau equations. The cell represents a fluxonic quantum dot containing a small superconducting island, an asymmetric notch for the vortex entrance, a guiding track, and a vortex trap. We determine the optimal geometrical parameters for operation at zero magnetic field and the conditions for controllable vortex manipulation by short current pulses. We report ultrafast vortex motion with velocities more than an order of magnitude faster than those expected for macroscopic superconductors. This phenomenon is attributed to strong interactions with the edges of a mesoscopic island, combined with the nonlinear reduction of flux-flow viscosity due to the nonequilibrium effects in the track. Our results show that such cells can be scaled down to sizes comparable to the London penetration depth, ∼100 nm, and can enable ultrafast switching on the picosecond scale with ultralow energy per operation, ∼1019 J. Full article
(This article belongs to the Special Issue Quantum Computing and Nanomaterial Simulations)
Show Figures

Figure 1

Back to TopTop