CNG and LNG for Sustainable Transportation Systems

A special issue of Methane (ISSN 2674-0389).

Deadline for manuscript submissions: 30 June 2025 | Viewed by 10935

Special Issue Editors


E-Mail Website
Guest Editor
CNR–STEMS, Viale Marconi, 4, 80125 Naples, Italy
Interests: combustion systems; engine emissions; high-efficiency engines; advanced combustion concept; emission reduction technologies

E-Mail
Guest Editor
Department of Civil and Mechanical Engineering, University of Cassino and Southern Latium, 03043 Cassino, Italy
Interests: carbon-free fuels; biofuels; combustion analysis; 1D engine modeling; 3D combustion simulation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, it has become clear that challenges related to both climate change and energy transition must be faced simultaneously. The energy sector’s transition toward carbon neutrality presents many challenges, such as reducing energy consumption, improving system efficiency, and integrating renewable resources. Due to the favorable ratio of H atoms to C atoms and its higher knock resistance, methane combustion reduces CO2 formation by about 25% and the Global Warming Index by about 15% concerning gasoline fueling. In this regard, methane-based fuels such as compressed natural gas (CNG) and liquefied natural gas (LNG) are considered transitional fuels on the path to climate neutrality.

In the near future, the role of natural gas in propulsion systems is expected to attract growing interest in the transport sector. In the pursuit of sustainable mobility, both CNG and LNG can be used not only in conventional propulsion systems but also in combination with electric ones. The study and exploration of methane’s potential represents a significant contribution to the development of a more sustainable and resilient energy system. Indeed, adopting methane could serve as a key lever for rapidly reducing emissions contributing to climate change during the transition toward fully renewable solutions. Additionally, methane presents a distinctive opportunity to enhance the efficiency of propulsion systems and mitigate the environmental impact of heavy-duty and long-haul transportation, where electric alternatives encounter greater challenges. In this Special Issue, authors are invited to share their knowledge about the natural gas used in conventional/electric hybrid systems and other combined conventional/battery/fuel cell propulsion systems.

Topics of interest for publication include but are not limited to the following:

  • LNG and CNG combustion concepts.
  • Emission reduction technologies for LNG and CNG propulsion.
  • Exhaust–after-treatment systems for LNG/CNG propulsion systems.
  • Design and optimization of methane-electric hybrid propulsion.
  • Integration of battery and fuel cell technologies with natural gas systems.
  • Life cycle analysis of CNG and LNG compared to other fuels.
  • Strategies for reducing methane leakage across production and usage phases.
  • Enhancements to CNG and LNG refueling networks.
  • Synergies between natural gas and hydrogen infrastructure development.
  • Role of regulations and subsidies in promoting methane-based transitional fuels.
  • Comparative cost analysis of NG propulsion systems and fully electric alternatives.

We cordially invite researchers working in this field to contribute original research articles, short communications, and review articles.

Dr. Roberto Ianniello
Dr. Davide Lanni
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Methane is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • CNG
  • LNG
  • new LNG and CNG combustion concepts
  • CNG/LNG injection systems for ICEs
  • chemical kinetic mechanisms for CNG/LNG
  • exhaust after-treatment
  • CNG/LNG refueling
  • methane leakage
  • life cycle assessment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 9040 KiB  
Article
Compressed Natural Gas as an Alternative Vehicular Fuel in Tanzania: Implementation, Barriers, and Prospects
by Gerutu Bosinge Gerutu, Kenedy Aliila Greyson and Pius Victor Chombo
Methane 2023, 2(1), 66-85; https://doi.org/10.3390/methane2010006 - 17 Jan 2023
Cited by 3 | Viewed by 7311
Abstract
This paper presents the implementation of natural gas vehicles (NGVs) in Tanzania’s road transportation sector. The peculiarity of this analysis is the evaluation of the technical and economic performance of the converted gasoline and diesel engines to use compressed natural gas (CNG) as [...] Read more.
This paper presents the implementation of natural gas vehicles (NGVs) in Tanzania’s road transportation sector. The peculiarity of this analysis is the evaluation of the technical and economic performance of the converted gasoline and diesel engines to use compressed natural gas (CNG) as the cleanest-burning hydrocarbon. The technical performance involved vehicle mileage (MiCNG), fuel consumption (Fcons), speed drop, engine fuel enhancement (Fenh), and fuel saving, while the economic performance involved conversion cost (Cc), fuel cost saving (FCsaving), and payback (PB). Considering the conversion of gasoline vehicles, the MiCNG could reach an average of 100 to 500 km per filling, depending on the CNG cylinder size. The Fenh and fuel saving were ranging between 1.9 and 3.9 and 71 and 78%. With a proportion of 30:70 diesel-CNG fuel, the heavy-duty truck with 180 kg of CNG could reach 1300 km, saving about 440 L, which is 78.6% per roundtrip, while the medium passenger car with 15 kg of CNG could reach 350 km, presenting a fuel saving of about 75%. From an economic point of view, gasoline retrofitted NGVs cost about 50 to 200 TZS/km, yielding a fuel cost saving of up to 79% and starting to pay off between 2 and 7 months or 10,000 and 40,000 km, depending on the engine capacity. Considering dual fuel, the heavy-duty truck consumes about 496 TZS/km, saving about 62.3% of diesel fuel and starting to pay off after 2.5 months or 29,304 km. To conclude, NGV technologies have been successfully implemented in Tanzania’s road transportation sector, presenting significant fuel savings and reducing reliance on imported oil. While taking measures, this study paves a way for Tanzania and other sub-Saharan countries to promote NGV growth. Full article
(This article belongs to the Special Issue CNG and LNG for Sustainable Transportation Systems)
Show Figures

Figure 1

19 pages, 4076 KiB  
Article
A New Combustion Model for Medium Speed Dual-Fuel Engines in the Course of 0D/1D Simulation
by Jelto Frerichs and Peter Eilts
Methane 2022, 1(3), 158-176; https://doi.org/10.3390/methane1030013 - 7 Jul 2022
Cited by 3 | Viewed by 2478
Abstract
In this paper, a predictive combustion model is developed and implemented in GT-Power. The model consists of a detailed physically/chemically based ignition delay model, including a 1D spray model. The spray model results at the start of combustion are used to initialize the [...] Read more.
In this paper, a predictive combustion model is developed and implemented in GT-Power. The model consists of a detailed physically/chemically based ignition delay model, including a 1D spray model. The spray model results at the start of combustion are used to initialize the combustion model. The spray zone and the homogenous natural gas/air mixture are burned with different combustion models, to account for the effect of the inhomogeneous fuel distribution. NOx-emissions are modelled using a standard Extended Zeldovich Mechanism, and for the HC-emissions, two flame quenching models are included and extended with an empirical correlation. The models are calibrated with measurement data from a single cylinder engine, except for the ignition delay model which needs no calibration. The start of combustion and the combustion parameters are predicted well for a wide range of injection timings and operation conditions. Furthermore, considering unburned fuel, the engine operation parameters BSFC and IMEP are also predicted satisfactory. Due to the detailed description of the different combustion phases, the influence of the injection timing on the NOx-emission is captured satisfactorily, with the standard NOx-model. Finally, the knock limited MFB50 is also predicted within an acceptable range. Full article
(This article belongs to the Special Issue CNG and LNG for Sustainable Transportation Systems)
Show Figures

Figure 1

Back to TopTop