Cyanobacterial Toxins 2024

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine Toxins".

Deadline for manuscript submissions: 1 September 2025 | Viewed by 279

Special Issue Editor

Laboratorio CIFGA S.A., Lugo, Spain
Interests: cyanotoxins; marine toxins; mycotoxins; natural products; detection methods; mode of action

Special Issue Information

Dear Colleagues,

Cyanobacteria, commonly found in aquatic environments, can rapidly proliferate and form so-called CyanoHABs (cyanobacterial harmful algal blooms), compromising water quality and safety due to, among others, the production of toxic compounds named cyanotoxins or cyanobacterial toxins. CyanoHABS occur with increasing frequency, probably due to eutrophication and global climate change influences, representing a human, environmental, and ecological health concern.

This Special Issue is focused on up-to-date findings or reviews on all areas of the chemistry, molecular biology, toxicology, methods of identification or detection, accumulation and remediation of cyanobacterial toxins, including monitoring and managing strategies and understanding of the ecological and public health impact of these toxins’ production

Dr. Eva Cagide
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cyanobacteria
  • cyanotoxins
  • cyanobacterial harmful algal blooms
  • cyanobacterial toxins production
  • toxic mechanisms
  • monitoring and detection
  • occurrence, accumulation and bioaccumulation
  • risk assessment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2201 KiB  
Article
Searching for Paralytic Toxin, Tetrodotoxin, in Swedish Bivalve Shellfish
by Aida Zuberovic Muratovic, Shyamraj Dharavath, Jonas Bergquist, Malin Persson, Elin Renborg, Heidi Pekar and Mirjam Klijnstra
Mar. Drugs 2025, 23(6), 257; https://doi.org/10.3390/md23060257 - 19 Jun 2025
Abstract
Tetrodotoxin (TTX), earlier known as a tropical paralytic neurotoxin from pufferfish poisoning, has increasingly been occurring in edible marine species, including filter-feeding bivalves, from relatively cold marine waters of some European countries. The defined conditions that promote the production of TTX, its origin [...] Read more.
Tetrodotoxin (TTX), earlier known as a tropical paralytic neurotoxin from pufferfish poisoning, has increasingly been occurring in edible marine species, including filter-feeding bivalves, from relatively cold marine waters of some European countries. The defined conditions that promote the production of TTX, its origin or the processes of its accumulation in seafood are still not clarified. Recent studies in temperate waters show, however, that the accumulation of quantifiable levels of TTX in bivalves appears to be influenced by seawater temperature (>15 °C), which indicates a seasonal occurrence at these latitudes. Uncertainties still remain regarding how seawater temperature interacts with other climate and environmental factors or organisms in the marine ecosystem to result in detectable levels of TTX in shellfish. Knowledge of the occurrence and distribution of TTX in the marine environment where the edible bivalves grow is important for maintaining seafood safety, as the toxin is heat-stable and remains potent even after cooking. Therefore, in this study, 264 bivalve samples collected in 2019 and 2021 from 17 sites along the Swedish west coast were analyzed with LC-MS/MS to search for TTX. The study explores the hypothesis of TTX presence in Swedish marine waters, outlines the sample screening strategy and objectives, and reports no evidence of TTX presence in Swedish bivalve shellfish (≥7.8 µg/kg) based on the analyzed samples and the time periods in which the studied samples were collected. Full article
(This article belongs to the Special Issue Cyanobacterial Toxins 2024)
Show Figures

Figure 1

Back to TopTop