Special Issue "Green Tribology"

A special issue of Lubricants (ISSN 2075-4442).

Deadline for manuscript submissions: closed (30 June 2016).

Special Issue Editor

Prof. Dr. Robert J. K. Wood
Website
Guest Editor
National Centre for Advanced Tribology at Southampton, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
Interests: erosion and tribology resistant coatings; thermal spraying; CVD; PVD; paints; antifouling, superhydrophobic, functionally graded coatings; tribocorrosion; sensing
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue will look at the science and engineering research that is exploring environment-friendly solutions to problems of friction, wear, and lubrication and seeking inspiration from nature. Currently tribology solutions to lubrication, friction and wear often rely on petrochemical-based lubricants which are associated with their own environmental costs. Green Tribology is a newly established field of engineering research with a focus on low impact ways of reducing friction and wear, as well as exploiting recycling of materials and reducing dependency on rear earth elements in tribological systems. New lubricants (i.e., aqueous or environmentally friendly) can be designed based on renewable natural materials or may even be dispensed with altogether if solid self-lubricating an wear-resistant surface coatings can be introduced. Renewable energy systems, such as wind turbines, are a natural area for Green Tribology engineering and research papers from this area will be encouraged.

A further major impetus for research is bioinspiration—studying the solutions that nature has evolved for the lubrication of joints in living organisms. One area already receiving intense research efforts is the replacement of diseased hip and knee joints in human patients, and this continues to be a focus of Green Tribology. Biomimetic approaches to design low drag, antifouling, self-healing surfaces, and multifunctional surfaces will also be within the scope of the Special Issue.

Prof. Dr. Robert J. K. Wood
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Lubricants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Aqueous lubricants
  • Biomimetic
  • Self-lubricating
  • Low friction
  • Low wear
  • Efficiency
  • Green tribology

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Surface Film Adsorption and Lubricity of Soybean Oil In-Water Emulsion and Triblock Copolymer Aqueous Solution: A Comparative Study
Lubricants 2017, 5(1), 1; https://doi.org/10.3390/lubricants5010001 - 30 Dec 2016
Cited by 4
Abstract
This paper investigates the surface film adsorption and lubricity of two different types of potential environmentally friendly cold metal forming lubricants: soybean vegetable oil in water VO/W emulsions and triblock copolymer aqueous solutions. The lubricants have different visual appearance, surface film adsorption characteristic, [...] Read more.
This paper investigates the surface film adsorption and lubricity of two different types of potential environmentally friendly cold metal forming lubricants: soybean vegetable oil in water VO/W emulsions and triblock copolymer aqueous solutions. The lubricants have different visual appearance, surface film adsorption characteristic, lubricity and surface cleaning behaviour. The effects of concentration, temperature and emulsification ultrasonic energy (for VO/W emulsion) are studied. The result shows that the soybean VO/W emulsions have stronger adsorption, superior lubricity and anti-wear property compared to the copolymer solutions. The effect of temperature is investigated at 30 °C and 65 °C which are below and above cloud point of the aqueous copolymer solutions. Both lubricants show improved friction and anti-wear property at 65 °C. However, tenacious residual film remained on the discs surface after surface cleaning indicates lower cleanability of the soybean VO/W emulsions compared to the copolymer solutions, postulating the need for extra post-processing cleaning operations after cold forming process with VO/W emulsion lubricant. Full article
(This article belongs to the Special Issue Green Tribology)
Show Figures

Figure 1

Open AccessArticle
Synthesis and Tribological Behavior of Ultra High Molecular Weight Polyethylene (UHMWPE)-Lignin Composites
Lubricants 2016, 4(3), 31; https://doi.org/10.3390/lubricants4030031 - 31 Aug 2016
Cited by 1
Abstract
In this paper, we report the synthesis and characterization of ultra-high molecular weight polyethylene (UHMWPE)-lignin composites. During this study four different compositions, namely UHMWPE, UHMWPE-13 wt. % lignin, UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % lignin were fabricated by hot pressing. Detailed [...] Read more.
In this paper, we report the synthesis and characterization of ultra-high molecular weight polyethylene (UHMWPE)-lignin composites. During this study four different compositions, namely UHMWPE, UHMWPE-13 wt. % lignin, UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % lignin were fabricated by hot pressing. Detailed microstructural studies by scanning electron microscopy (SEM) showed that UHMWPE and UHMWPE-13 wt. % lignin had a uniform microstructure, whereas UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % lignin samples were riddled with pores. UHMWPE and UHMWPE-13% lignin showed comparable flexural strengths of ~32.2 MPa and ~32.4 MPa, respectively. However, the flexural strength dropped drastically in UHMWPE-25 wt. % lignin and UHMWPE-42.5 wt. % samples to ~13 MPa and ~8 MPa, respectively. The tribology of UHMWPE-lignin composites is governed by the tribofilm formation. All the compositions showed similar µmean values and the specific wear rates (WR) decreased gradually as the concentration of lignin in UHMWPE was increased. Full article
(This article belongs to the Special Issue Green Tribology)
Show Figures

Figure 1

Open AccessArticle
The Tribological Properties of Multi-Layered Graphene as Additives of PAO2 Oil in Steel–Steel Contacts
Lubricants 2016, 4(3), 30; https://doi.org/10.3390/lubricants4030030 - 31 Aug 2016
Cited by 27
Abstract
Multi-layered graphene was prepared by supercritical CO2 exfoliation of graphite. As the additives of polyalphaolefin-2 (PAO2) oil, its tribological properties were investigated using four-ball test method. The friction reduction and anti-wear ability of pure lubricant was improved by the addition of graphene. [...] Read more.
Multi-layered graphene was prepared by supercritical CO2 exfoliation of graphite. As the additives of polyalphaolefin-2 (PAO2) oil, its tribological properties were investigated using four-ball test method. The friction reduction and anti-wear ability of pure lubricant was improved by the addition of graphene. With a favorable concentration, the graphene was dispersive. The PAO2 oil with 0.05 wt % graphene showed better tribological properties than that for the other concentration of graphene additives. It could be used as a good lubricant additive for its excellent tribological characteristics, and the multi-layered graphene can bear the load of the steel ball and prevent direct contact of the mating metal surfaces. However, a higher concentration would cause the agglomeration of graphene and weaken the improvement of tribological properties. Full article
(This article belongs to the Special Issue Green Tribology)
Show Figures

Figure 1

Open AccessFeature PaperArticle
The Friction Reducing Effect of Square-Shaped Surface Textures under Lubricated Line-Contacts—An Experimental Study
Lubricants 2016, 4(3), 26; https://doi.org/10.3390/lubricants4030026 - 11 Jul 2016
Cited by 29
Abstract
Surface texturing has been shown to be an effective modification approach for improving tribological performance. This study examined the friction reduction effect generated by square dimples of different sizes and geometries. Dimples were fabricated on the surface of ASP2023 steel plates using femtosecond [...] Read more.
Surface texturing has been shown to be an effective modification approach for improving tribological performance. This study examined the friction reduction effect generated by square dimples of different sizes and geometries. Dimples were fabricated on the surface of ASP2023 steel plates using femtosecond laser-assisted surface texturing techniques, and reciprocating sliding line contact tests were carried out on a Plint TE77 tribometer using a smooth 52100 bearing steel roller and textured ASP2023 steel plates. The tribological characterization of the friction properties indicated that the textured samples had significantly lowered the friction coefficient in both boundary (15% improvement) and mixed lubrication regimes (13% improvement). Moreover, the high data sampling rate results indicated that the dimples work as lubricant reservoirs in the boundary lubrication regime. Full article
(This article belongs to the Special Issue Green Tribology)
Show Figures

Graphical abstract

Open AccessArticle
Synthesis, Characterization and Tribological Evaluation of New Generation Materials for Aluminum Cold Rolling Oils
Lubricants 2016, 4(3), 23; https://doi.org/10.3390/lubricants4030023 - 28 Jun 2016
Cited by 2
Abstract
The present concept of being globally “green” puts additional demands on lubricants. They are to be biodegradable and ecofriendly. Therefore, in a search for alternate lubricants meeting the above demands, we have synthesized biodegradable new generation esters using alcohols such as 2,2-dimethyl-1,3-propane diol [...] Read more.
The present concept of being globally “green” puts additional demands on lubricants. They are to be biodegradable and ecofriendly. Therefore, in a search for alternate lubricants meeting the above demands, we have synthesized biodegradable new generation esters using alcohols such as 2,2-dimethyl-1,3-propane diol and 2,2-diethyl-1,3-propane diol and fatty acids like caproic and 2-ethyl caproic in presence of indigenous ion exchange resin catalyst. The synthesized esters were analyzed and characterized for their physico chemical properties. In addition, with a view to finding out the possibility of using these esters as aluminum cold rolling oils, their lubricity characteristics, biodegradability and toxicity were also investigated. The products were found to have good potential for use in biodegradable aluminum cold rolling oils meeting IS: 14385-2002 specification. Full article
(This article belongs to the Special Issue Green Tribology)
Show Figures

Graphical abstract

Review

Jump to: Research

Open AccessReview
Progress in Tribological Properties of Nano-Composite Hard Coatings under Water Lubrication
Lubricants 2017, 5(1), 5; https://doi.org/10.3390/lubricants5010005 - 17 Feb 2017
Cited by 9
Abstract
The tribological properties, under water-lubricated conditions, of three major nano-composite coatings, i.e., diamond-like carbon (DLC or a-C), amorphous carbon nitride (a-CNx) and transition metallic nitride-based (TiN-based, CrN-based), coatings are reviewed. The influences of microstructure (composition and architecture) and test conditions (counterparts and friction [...] Read more.
The tribological properties, under water-lubricated conditions, of three major nano-composite coatings, i.e., diamond-like carbon (DLC or a-C), amorphous carbon nitride (a-CNx) and transition metallic nitride-based (TiN-based, CrN-based), coatings are reviewed. The influences of microstructure (composition and architecture) and test conditions (counterparts and friction parameters) on their friction and wear behavior under water lubrication are systematically elucidated. In general, DLC and a-CNx coatings exhibit superior tribological performance under water lubrication due to the formation of the hydrophilic group and the lubricating layer with low shear strength, respectively. In contrast, TiN-based and CrN-based coatings present relatively poor tribological performance in pure water, but are expected to present promising applications in sea water because of their good corrosion resistance. No matter what kind of coatings, an appropriate selection of counterpart materials would make their water-lubricated tribological properties more prominent. Currently, Si-based materials are deemed as beneficial counterparts under water lubrication due to the formation of silica gel originating from the hydration of Si. In the meantime, the tribological properties of nano-composite coatings in water could be enhanced at appropriate normal load and sliding velocity due to mixed or hydrodynamic lubrication. At the end of this article, the main research that is now being developed concerning the development of nano-composite coatings under water lubrication is described synthetically. Full article
(This article belongs to the Special Issue Green Tribology)
Show Figures

Figure 1

Back to TopTop