Image Based Information Retrieval from the Web

A special issue of Journal of Imaging (ISSN 2313-433X).

Deadline for manuscript submissions: closed (30 August 2018) | Viewed by 48678

Special Issue Editors


E-Mail Website
Guest Editor
Department of Computer Engineering, Technological Educational Institute of Central Greece, P.C. 35100 Lamia, Greece
Interests: computer vision; pattern recognition; semantic multimedia analysis; indexing and retrieval; multimedia content representation; biomedical image analysis

Special Issue Information

Dear Colleagues,

In recent years, following the tremendous growth of the Web, extremely large amounts of digital multimedia content are being produced every day and are shared online, mainly through several newly-emerged channels, such as social networks. Moreover, several digital content archives and datasets have become publicly available. Therefore, the field of image-based information retrieval has received a great deal of attention and on a wide range of topics dealing with every aspect of content handling. When designing and implementing an image-based retrieval system, and considering the continuous growth of digital content, one has to deal with several issues such as efficiency, accuracy, scaling, user-friendliness, and impact.

The intent of this Special Issue is to collect the experiences of leading scientists, but also to serve as an assessment tool for people who are new to the world of image-based information retrieval.

This Special Issue is intended to covering the following topics, but is not limited to them:

  • Feature extraction from visual content
  • Multimodal information fusion
  • 2D/3D detection, categorization and recognition
  • Scene recognition
  • Image and video retrieval, annotation, indexing
  • Datasets construction and analysis
  • Social media analysis, interaction and retrieval
  • Multimedia representation
  • Efficient large-scale image/video search
  • Deep learning techniques for detection and classification
  • Interfaces for querying, retrieval, exploration and visualization of multimedia databases
  • Applications and systems for image/video-based information retrieval
  • User-centric social multimedia computing
  • Personalized multimedia search
  • Semantic-based multimedia big data retrieval

Prof. Dr. Phivos Mylonas
Prof. Dr. Evaggelos Spyrou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Imaging is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Information retrieval
  • Multimedia content
  • Detection
  • Recognition
  • Classification
  • Fusion

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Other

4 pages, 166 KiB  
Editorial
Introduction to the Special Issue on Image-Based Information Retrieval from the Web
by Phivos Mylonas and Evaggelos Spyrou
J. Imaging 2019, 5(7), 62; https://doi.org/10.3390/jimaging5070062 - 30 Jun 2019
Viewed by 4136
Abstract
In recent years, following the tremendous growth of the Web, extremely large amounts of digital multimedia content are being produced every day and are shared online mainly through several newly emerged channels, such as social networks [...] Full article
(This article belongs to the Special Issue Image Based Information Retrieval from the Web)

Research

Jump to: Editorial, Other

17 pages, 6839 KiB  
Article
Image-Based Surrogates of Socio-Economic Status in Urban Neighborhoods Using Deep Multiple Instance Learning
by Christos Diou, Pantelis Lelekas and Anastasios Delopoulos
J. Imaging 2018, 4(11), 125; https://doi.org/10.3390/jimaging4110125 - 23 Oct 2018
Cited by 13 | Viewed by 5890
Abstract
(1) Background: Evidence-based policymaking requires data about the local population’s socioeconomic status (SES) at detailed geographical level, however, such information is often not available, or is too expensive to acquire. Researchers have proposed solutions to estimate SES indicators by analyzing Google Street View [...] Read more.
(1) Background: Evidence-based policymaking requires data about the local population’s socioeconomic status (SES) at detailed geographical level, however, such information is often not available, or is too expensive to acquire. Researchers have proposed solutions to estimate SES indicators by analyzing Google Street View images, however, these methods are also resource-intensive, since they require large volumes of manually labeled training data. (2) Methods: We propose a methodology for automatically computing surrogate variables of SES indicators using street images of parked cars and deep multiple instance learning. Our approach does not require any manually created labels, apart from data already available by statistical authorities, while the entire pipeline for image acquisition, parked car detection, car classification, and surrogate variable computation is fully automated. The proposed surrogate variables are then used in linear regression models to estimate the target SES indicators. (3) Results: We implement and evaluate a model based on the proposed surrogate variable at 30 municipalities of varying SES in Greece. Our model has R 2 = 0.76 and a correlation coefficient of 0.874 with the true unemployment rate, while it achieves a mean absolute percentage error of 0.089 and mean absolute error of 1.87 on a held-out test set. Similar results are also obtained for other socioeconomic indicators, related to education level and occupational prestige. (4) Conclusions: The proposed methodology can be used to estimate SES indicators at the local level automatically, using images of parked cars detected via Google Street View, without the need for any manual labeling effort. Full article
(This article belongs to the Special Issue Image Based Information Retrieval from the Web)
Show Figures

Graphical abstract

17 pages, 357 KiB  
Article
An Ensemble SSL Algorithm for Efficient Chest X-Ray Image Classification
by Ioannis E. Livieris, Andreas Kanavos, Vassilis Tampakas and Panagiotis Pintelas
J. Imaging 2018, 4(7), 95; https://doi.org/10.3390/jimaging4070095 - 20 Jul 2018
Cited by 36 | Viewed by 5770
Abstract
A critical component in the computer-aided medical diagnosis of digital chest X-rays is the automatic detection of lung abnormalities, since the effective identification at an initial stage constitutes a significant and crucial factor in patient’s treatment. The vigorous advances in computer and digital [...] Read more.
A critical component in the computer-aided medical diagnosis of digital chest X-rays is the automatic detection of lung abnormalities, since the effective identification at an initial stage constitutes a significant and crucial factor in patient’s treatment. The vigorous advances in computer and digital technologies have ultimately led to the development of large repositories of labeled and unlabeled images. Due to the effort and expense involved in labeling data, training datasets are of a limited size, while in contrast, electronic medical record systems contain a significant number of unlabeled images. Semi-supervised learning algorithms have become a hot topic of research as an alternative to traditional classification methods, exploiting the explicit classification information of labeled data with the knowledge hidden in the unlabeled data for building powerful and effective classifiers. In the present work, we evaluate the performance of an ensemble semi-supervised learning algorithm for the classification of chest X-rays of tuberculosis. The efficacy of the presented algorithm is demonstrated by several experiments and confirmed by the statistical nonparametric tests, illustrating that reliable and robust prediction models could be developed utilizing a few labeled and many unlabeled data. Full article
(This article belongs to the Special Issue Image Based Information Retrieval from the Web)
Show Figures

Figure 1

34 pages, 7516 KiB  
Article
Digital Comics Image Indexing Based on Deep Learning
by Nhu-Van Nguyen, Christophe Rigaud and Jean-Christophe Burie
J. Imaging 2018, 4(7), 89; https://doi.org/10.3390/jimaging4070089 - 2 Jul 2018
Cited by 44 | Viewed by 18209
Abstract
The digital comic book market is growing every year now, mixing digitized and digital-born comics. Digitized comics suffer from a limited automatic content understanding which restricts online content search and reading applications. This study shows how to combine state-of-the-art image analysis methods to [...] Read more.
The digital comic book market is growing every year now, mixing digitized and digital-born comics. Digitized comics suffer from a limited automatic content understanding which restricts online content search and reading applications. This study shows how to combine state-of-the-art image analysis methods to encode and index images into an XML-like text file. Content description file can then be used to automatically split comic book images into sub-images corresponding to panels easily indexable with relevant information about their respective content. This allows advanced search in keywords said by specific comic characters, action and scene retrieval using natural language processing. We get down to panel, balloon, text, comic character and face detection using traditional approaches and breakthrough deep learning models, and also text recognition using LSTM model. Evaluations on a dataset composed of online library content are presented, and a new public dataset is also proposed. Full article
(This article belongs to the Special Issue Image Based Information Retrieval from the Web)
Show Figures

Figure 1

21 pages, 11031 KiB  
Article
Efficient Implementation of Gaussian and Laplacian Kernels for Feature Extraction from IP Fisheye Cameras
by Konstantinos K. Delibasis
J. Imaging 2018, 4(6), 73; https://doi.org/10.3390/jimaging4060073 - 24 May 2018
Cited by 6 | Viewed by 6110
Abstract
The Gaussian kernel, its partial derivatives and the Laplacian kernel, applied at different image scales, play a very important role in image processing and in feature extraction from images. Although they have been extensively studied in the case of images acquired by projective [...] Read more.
The Gaussian kernel, its partial derivatives and the Laplacian kernel, applied at different image scales, play a very important role in image processing and in feature extraction from images. Although they have been extensively studied in the case of images acquired by projective cameras, this is not the case for cameras with fisheye lenses. This type of cameras is becoming very popular, since it exhibits a Field of View of 180 degrees. The model of fisheye image formation differs substantially from the simple projective transformation, causing straight lines to be imaged as curves. Thus the traditional kernels used for processing images acquired by projective cameras, are not optimal for fisheye images. This work uses the calibration of the acquiring fisheye camera to define a geodesic metric for distance between pixels in fisheye images and subsequently redefines the Gaussian kernel, its partial derivatives, as well as the Laplacian kernel. Finally, algorithms for applying in the spatial domain these kernels, as well as the Harris corner detector, are proposed, using efficient computational implementations. Comparative results are shown, in terms of correctness of image processing, efficiency of application for multi scale processing, as well as salient point extraction. Thus we conclude that the proposed algorithms allow the efficient application of standard processing and analysis techniques of fisheye images, in the spatial domain, once the calibration of the specific camera is available. Full article
(This article belongs to the Special Issue Image Based Information Retrieval from the Web)
Show Figures

Figure 1

Other

Jump to: Editorial, Research

17 pages, 6790 KiB  
Technical Note
DIRT: The Dacus Image Recognition Toolkit
by Romanos Kalamatianos, Ioannis Karydis, Dimitris Doukakis and Markos Avlonitis
J. Imaging 2018, 4(11), 129; https://doi.org/10.3390/jimaging4110129 - 30 Oct 2018
Cited by 29 | Viewed by 7476
Abstract
Modern agriculture is facing unique challenges in building a sustainable future for food production, in which the reliable detection of plantation threats is of critical importance. The breadth of existing information sources, and their equivalent sensors, can provide a wealth of data which, [...] Read more.
Modern agriculture is facing unique challenges in building a sustainable future for food production, in which the reliable detection of plantation threats is of critical importance. The breadth of existing information sources, and their equivalent sensors, can provide a wealth of data which, to be useful, must be transformed into actionable knowledge. Approaches based on Information Communication Technologies (ICT) have been shown to be able to help farmers and related stakeholders make decisions on problems by examining large volumes of data while assessing multiple criteria. In this paper, we address the automated identification (and count the instances) of the major threat of olive trees and their fruit, the Bactrocera Oleae (a.k.a. Dacus) based on images of the commonly used McPhail trap’s contents. Accordingly, we introduce the “Dacus Image Recognition Toolkit” (DIRT), a collection of publicly available data, programming code samples and web-services focused at supporting research aiming at the management the Dacus as well as extensive experimentation on the capability of the proposed dataset in identifying Dacuses using Deep Learning methods. Experimental results indicated performance accuracy (mAP) of 91.52% in identifying Dacuses in trap images featuring various pests. Moreover, the results also indicated a trade-off between image attributes affecting detail, file size and complexity of approaches and mAP performance that can be selectively used to better tackle the needs of each usage scenario. Full article
(This article belongs to the Special Issue Image Based Information Retrieval from the Web)
Show Figures

Figure 1

Back to TopTop