Insect Microbiome and Immunity—2nd Edition

A special issue of Insects (ISSN 2075-4450).

Deadline for manuscript submissions: 15 April 2026 | Viewed by 1057

Special Issue Editors


E-Mail Website
Guest Editor
National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
Interests: insect microbiome and molecular biology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
Interests: insect immunity and microbiome
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The study of insect–microbe interactions is a rapidly growing field that has profound implications for our understanding of insect biology, ecology, and evolution. The integration of high-throughput sequencing with functional and ecological studies promises to uncover new insights into the complex relationships between insects and their microbial partners. Insects rely on their innate immune system to defend against pathogenic microbes and regulate microbiome composition. These microbial interactions can be either beneficial or detrimental to the insect host, and they play a crucial role in shaping insect physiology, behavior, and overall fitness. Understanding these dynamics is crucial for applications in agriculture, where beneficial microbes could be harnessed to improve pest control or enhance the health of beneficial insects such as pollinators.

Considering the success of our previous Special Issue, "Insect Microbiome and Immunity", we are pleased to launch Insect Microbiome and Immunity—2nd Edition.

Prof. Dr. Hongyu Zhang
Prof. Dr. Xiaoxue Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • insect microbiome
  • insect immunity
  • host–microbiome interactions
  • host–pathogen interactions
  • host physiology
  • mutualism
  • evolution

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3177 KB  
Article
Response of Nutritional Values and Gut Microbiomes to Dietary Intake of ω-3 Polyunsaturated Fatty Acids in Tenebrio molitor Larvae
by Aifen Yang, Yiting Ye, Qiwei Liu, Jingjing Xu, Ruixi Li, Mingfeng Xu, Xiu Wang, Sida Fu and Rongrong Yu
Insects 2025, 16(9), 970; https://doi.org/10.3390/insects16090970 - 16 Sep 2025
Viewed by 645
Abstract
Due to their high nutritional value and a lower environmental impact, Tenebrio molitor (T. molitor) larvae are regarded as an alternative protein and lipid source in food industries, animal husbandry, and fishery. This study aimed to investigate the effect of ω-3 [...] Read more.
Due to their high nutritional value and a lower environmental impact, Tenebrio molitor (T. molitor) larvae are regarded as an alternative protein and lipid source in food industries, animal husbandry, and fishery. This study aimed to investigate the effect of ω-3 PUFA intake on the nutritional value and gut microbiota of T. molitor larvae. Tenebrio molitor (T. molitor) larvae were reared with wheat bran at 20–32 °C for 4 weeks to screen for a suitable temperature. EPA ethyl esters (EE), DHA ethyl esters (ED), DHA triglycerides (TG), and krill oil (KO) were supplemented in wheat bran to rear larvae for 4 weeks, and the compositions including moisture, carbohydrates, crude protein, and crude fats were analyzed. Gut microbiome was analyzed using 16S rRNA amplicon sequencing. Larvae reared on wheat bran showed optimal growth at 28 °C. ω-3 PUFA supplements increased crude protein (1.07–1.16 fold) and crude fat (1.12–1.22 fold) contents without affecting survival. Gut microbiota composition shifted significantly in all ω-3 supplemented groups, altering over 10 genera. Bacteria with changed abundance (e.g., Clostridium), known for roles in protein/lipid metabolism, likely contributed to the enhanced nutritional contents. These findings demonstrate the benefits of ω-3 PUFA supplementation in T. molitor rearing and identify associated gut bacteria. Full article
(This article belongs to the Special Issue Insect Microbiome and Immunity—2nd Edition)
Show Figures

Figure 1

Back to TopTop