Advances in Data and Network Sciences Applied to Computational Social Science

A special issue of Information (ISSN 2078-2489). This special issue belongs to the section "Information Systems".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 29025

Special Issue Editor


E-Mail Website
Guest Editor
Big Data Institute, University of Oxford, Oxford OX3 7LF, UK
Interests: data science; machine learning; network science

Special Issue Information

Dear Colleagues,

The MDPI journal Information invites submissions for a Special Issue on “Advances in Data and Network Sciences Applied to Computational Social Science”.

Computational social science (CSS) is a research area devoted to the study of social phenomena represented by digital data using computational and statistical methods. CSS emerged after a computational revolution in social sciences caused by two main factors. First, new large-scale datasets allowed the study of human behavior that would not be possible using traditional methodological approaches used by social scientists (e.g., surveys and lab experiments). These datasets come from different sources such as social media, mobile phones, satellites, surveillance cameras, and all sorts of sensors. Second, faster computers and new computational techniques permitted the extraction of information from these huge behavioral datasets. Most of these techniques come from data and network sciences—two research areas in constant evolution and with many open questions. Some examples include complex data modeling, model selection in complex tasks, data biases, fairness, and forecasting. CSS also has many unanswered questions involving predictability, long-term impact, causality, interpretability, privacy, and ethics.

This Special Issue is dedicated to the development of new methods of data and network sciences applied to computational social science. Topics include (but are not limited to):

  • Supervised learning;
  • Unsupervised learning;
  • Deep learning;
  • Graph neural networks;
  • Time series data mining;
  • Text analysis and natural language processing (NLP);
  • Spatiotemporal data mining;
  • Forecasting;
  • Network analysis;
  • Community detection;
  • Temporal networks;
  • Epidemics in networks;
  • Causal inference;
  • Social networks analysis;
  • Social media studies;
  • Simulations of social phenomena;
  • Large-scale social experiments.

Complete instructions for authors can be found at: https://www.mdpi.com/journal/information/instructions

Dr. Leonardo Nascimento Ferreira
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Information is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • computational social science
  • data science
  • network science
  • machine learning

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

32 pages, 5367 KiB  
Article
TempoGRAPHer: Aggregation-Based Temporal Graph Exploration
by Evangelia Tsoukanara, Georgia Koloniari and Evaggelia Pitoura
Information 2025, 16(1), 46; https://doi.org/10.3390/info16010046 - 13 Jan 2025
Viewed by 757
Abstract
Graphs offer a generic abstraction for modeling entities and the interactions and relationships between them. Most real-world graphs, such as social and cooperation networks, evolve over time, and exploring their evolution may reveal important information. In this paper, we present TempoGRAPHer, a system [...] Read more.
Graphs offer a generic abstraction for modeling entities and the interactions and relationships between them. Most real-world graphs, such as social and cooperation networks, evolve over time, and exploring their evolution may reveal important information. In this paper, we present TempoGRAPHer, a system for analyzing and visualizing the evolution of temporal attributed graphs. TempoGRAPHer supports both temporal and attribute aggregation. It also allows graph exploration by identifying periods of significant growth, shrinkage, or stability. Temporal exploration is supported by two complementary strategies, namely skyline- and interaction-based exploration. Skyline-based exploration provides insights into the overall trends in the evolution, while interaction-based exploration offers a closer look at specific parts of the graph evolution history where significant changes occurred. We present experimental results demonstrating the efficiency of TempoGRAPHer. Additionally, we showcase the usefulness of our system in understanding graph evolution by presenting detailed scenarios, including exploring the evolution of a real contact network between primary school students and analyzing the collaborations in a co-authorship network between authors of the same gender over time. Full article
Show Figures

Figure 1

24 pages, 3848 KiB  
Article
Analysis of Effects on Scientific Impact Indicators Based on Coevolution of Coauthorship and Citation Networks
by Haobai Xue
Information 2024, 15(10), 597; https://doi.org/10.3390/info15100597 - 30 Sep 2024
Cited by 1 | Viewed by 1072
Abstract
This study investigates the coevolution of coauthorship and citation networks and their influence on scientific metrics such as the h-index and journal impact factors. Using a preferential attachment mechanism, we developed a model that integrated these networks and validated it with data [...] Read more.
This study investigates the coevolution of coauthorship and citation networks and their influence on scientific metrics such as the h-index and journal impact factors. Using a preferential attachment mechanism, we developed a model that integrated these networks and validated it with data from the American Physical Society (APS). While the correlations between reference counts, paper lifetime, and team sizes with scientific impact metrics are well-known, our findings demonstrate how these relationships vary depending on specific model parameters. For instance, increasing reference counts or reducing paper lifetime significantly boosts both journal impact factors and h-indexes, while expanding team sizes without adding new authors can artificially inflate h-indexes. These results highlight potential vulnerabilities in commonly used metrics and emphasize the value of modeling and simulation for improving bibliometric evaluations. Full article
Show Figures

Figure 1

20 pages, 2982 KiB  
Article
Exploring Tourist Experience through Online Reviews Using Aspect-Based Sentiment Analysis with Zero-Shot Learning for Hospitality Service Enhancement
by Ibrahim Nawawi, Kurnia Fahmy Ilmawan, Muhammad Rifqi Maarif and Muhammad Syafrudin
Information 2024, 15(8), 499; https://doi.org/10.3390/info15080499 - 20 Aug 2024
Cited by 4 | Viewed by 3931
Abstract
Hospitality services play a crucial role in shaping tourist satisfaction and revisiting intention toward destinations. Traditional feedback methods like surveys often fail to capture the nuanced and real-time experiences of tourists. Digital platforms such as TripAdvisor, Yelp, and Google Reviews provide a rich [...] Read more.
Hospitality services play a crucial role in shaping tourist satisfaction and revisiting intention toward destinations. Traditional feedback methods like surveys often fail to capture the nuanced and real-time experiences of tourists. Digital platforms such as TripAdvisor, Yelp, and Google Reviews provide a rich source of user-generated content, but the sheer volume of reviews makes manual analysis impractical. This study proposes integrating aspect-based sentiment analysis with zero-shot learning to analyze online tourist reviews effectively without requiring extensive annotated datasets. Using pretrained models like RoBERTa, the research framework involves keyword extraction, sentence segment detection, aspect construction, and sentiment polarity measurement. The dataset, sourced from TripAdvisor reviews of attractions, hotels, and restaurants in Central Java, Indonesia, underwent preprocessing to ensure suitability for analysis. The results highlight the importance of aspects such as food, accommodation, and cultural experiences in tourist satisfaction. The findings indicate a need for continuous service improvement to meet evolving tourist expectations, demonstrating the potential of advanced natural language processing techniques in enhancing hospitality services and customer satisfaction. Full article
Show Figures

Figure 1

15 pages, 2515 KiB  
Article
Exploring Community Awareness of Mangrove Ecosystem Preservation through Sentence-BERT and K-Means Clustering
by Retno Kusumaningrum, Selvi Fitria Khoerunnisa, Khadijah Khadijah and Muhammad Syafrudin
Information 2024, 15(3), 165; https://doi.org/10.3390/info15030165 - 14 Mar 2024
Cited by 3 | Viewed by 2197
Abstract
The mangrove ecosystem is crucial for addressing climate change and supporting marine life. To preserve this ecosystem, understanding community awareness is essential. While latent Dirichlet allocation (LDA) is commonly used for this, it has drawbacks such as high resource requirements and an inability [...] Read more.
The mangrove ecosystem is crucial for addressing climate change and supporting marine life. To preserve this ecosystem, understanding community awareness is essential. While latent Dirichlet allocation (LDA) is commonly used for this, it has drawbacks such as high resource requirements and an inability to capture semantic nuances. We propose a technique using Sentence-BERT and K-Means Clustering for topic identification, addressing these drawbacks. Analyzing mangrove-related Twitter data in Indonesian from 1 September 2021 to 31 August 2022 revealed nine topics. The visualized tweet frequency indicates a growing public awareness of the mangrove ecosystem, showcasing collaborative efforts between the government and society. Our method proves effective and can be extended to other domains. Full article
Show Figures

Figure 1

16 pages, 1903 KiB  
Article
Navigating the Digital Neurolandscape: Analyzing the Social Perception of and Sentiments Regarding Neurological Disorders through Topic Modeling and Unsupervised Research Using Twitter
by Javier Domingo-Espiñeira, Oscar Fraile-Martínez, Cielo Garcia-Montero, María Montero, Andrea Varaona, Francisco J. Lara-Abelenda, Miguel A. Ortega, Melchor Alvarez-Mon and Miguel Angel Alvarez-Mon
Information 2024, 15(3), 152; https://doi.org/10.3390/info15030152 - 8 Mar 2024
Cited by 2 | Viewed by 2121
Abstract
Neurological disorders represent the primary cause of disability and the secondary cause of mortality globally. The incidence and prevalence of the most notable neurological disorders are growing rapidly. Considering their social and public perception by using different platforms like Twitter can have a [...] Read more.
Neurological disorders represent the primary cause of disability and the secondary cause of mortality globally. The incidence and prevalence of the most notable neurological disorders are growing rapidly. Considering their social and public perception by using different platforms like Twitter can have a huge impact on the patients, relatives, caregivers and professionals involved in the multidisciplinary management of neurological disorders. In this study, we collected and analyzed all tweets posted in English or Spanish, between 2007 and 2023, referring to headache disorders, dementia, epilepsy, multiple sclerosis, spinal cord injury or Parkinson’s disease using a search engine that has access to 100% of the publicly available tweets. The aim of our work was to deepen our understanding of the public perception of neurological disorders by addressing three major objectives: (1) analyzing the number and temporal evolution of both English and Spanish tweets discussing the most notable neurological disorders (dementias, Parkinson’s disease, multiple sclerosis, spinal cord injury, epilepsy and headache disorders); (2) determining the main thematic content of the Twitter posts and the interest they generated temporally by using topic modeling; and (3) analyzing the sentiments associated with the different topics that were previously collected. Our results show that dementias were, by far, the most common neurological disorders whose treatment was discussed on Twitter, and that the most discussed topics in the tweets included the impact of neurological diseases on patients and relatives, claims to increase public awareness, social support and research, activities to ameliorate disease development and existent/potential treatments or approaches to neurological disorders, with a significant number of the tweets showing negative emotions like fear, anger and sadness, and some also demonstrating positive emotions like joy. Thus, our study shows that not only is Twitter an important and active platform implicated in the dissemination and normalization of neurological disorders, but also that the number of tweets discussing these different entities is quite inequitable, and that a greater intervention and more accurate dissemination of information by different figures and professionals on social media could help to convey a better understanding of the current state, and to project the future state, of neurological diseases for the general public. Full article
Show Figures

Figure 1

20 pages, 1037 KiB  
Article
Building a Multimodal Classifier of Email Behavior: Towards a Social Network Understanding of Organizational Communication
by Harsh Shah, Kokil Jaidka, Lyle Ungar, Jesse Fagan and Travis Grosser
Information 2023, 14(12), 661; https://doi.org/10.3390/info14120661 - 14 Dec 2023
Cited by 1 | Viewed by 2581
Abstract
Within organizational settings, communication dynamics are influenced by various factors, such as email content, historical interactions, and interpersonal relationships. We introduce the Email MultiModal Architecture (EMMA) to model these dynamics and predict future communication behavior. EMMA uses data related to an email sender’s [...] Read more.
Within organizational settings, communication dynamics are influenced by various factors, such as email content, historical interactions, and interpersonal relationships. We introduce the Email MultiModal Architecture (EMMA) to model these dynamics and predict future communication behavior. EMMA uses data related to an email sender’s social network, performance metrics, and peer endorsements to predict the probability of receiving an email response. Our primary analysis is based on a dataset of 0.6 million corporate emails from 4320 employees between 2012 and 2014. By integrating features that capture a sender’s organizational influence and likability within a multimodal structure, EMMA offers improved performance over models that rely solely on linguistic attributes. Our findings indicate that EMMA enhances email reply prediction accuracy by up to 12.5% compared to leading text-centric models. EMMA also demonstrates high accuracy on other email datasets, reinforcing its utility and generalizability in diverse contexts. Our findings recommend the need for multimodal approaches to better model communication patterns within organizations and teams and to better understand how relationships and histories shape communication trajectories. Full article
Show Figures

Figure 1

17 pages, 908 KiB  
Article
An Unsupervised Graph-Based Approach for Detecting Relevant Topics: A Case Study on the Italian Twitter Cohort during the Russia–Ukraine Conflict
by Enrico De Santis, Alessio Martino, Francesca Ronci and Antonello Rizzi
Information 2023, 14(6), 330; https://doi.org/10.3390/info14060330 - 12 Jun 2023
Cited by 2 | Viewed by 2302
Abstract
On 24 February 2022, the invasion of Ukraine by Russian troops began, starting a dramatic conflict. As in all modern conflicts, the battlefield is both real and virtual. Social networks have had peaks in use and many scholars have seen a strong risk [...] Read more.
On 24 February 2022, the invasion of Ukraine by Russian troops began, starting a dramatic conflict. As in all modern conflicts, the battlefield is both real and virtual. Social networks have had peaks in use and many scholars have seen a strong risk of disinformation. In this study, through an unsupervised topic tracking system implemented with Natural Language Processing and graph-based techniques framed within a biological metaphor, the Italian social context is analyzed, in particular, by processing data from Twitter (texts and metadata) captured during the first month of the war. The system, improved if compared to previous versions, has proved to be effective in highlighting the emerging topics, all the main events and any links between them. Full article
Show Figures

Figure 1

17 pages, 3741 KiB  
Article
Trend Analysis of Decentralized Autonomous Organization Using Big Data Analytics
by Hyejin Park, Ivan Ureta and Boyoung Kim
Information 2023, 14(6), 326; https://doi.org/10.3390/info14060326 - 9 Jun 2023
Cited by 9 | Viewed by 4128
Abstract
Decentralized Autonomous Organizations (DAOs) have gained widespread attention in academia and industry as potential future models for decentralized governance and organization. In order to understand the trends and future potential of this rapidly growing technology, it is crucial to conduct research in the [...] Read more.
Decentralized Autonomous Organizations (DAOs) have gained widespread attention in academia and industry as potential future models for decentralized governance and organization. In order to understand the trends and future potential of this rapidly growing technology, it is crucial to conduct research in the field. This research aims at a data-driven approach for the objective content analysis of big data related to DAOs, using text mining and Latent Dirichlet Allocation (LDA)-based topic modeling. The study analyzed tweets with the hashtag #DAO and all Reddit data with “DAO”. The results were from the identification of the top 100 frequently appearing keywords, as well as the top 20 keywords with high network centrality, and key topics related to finance, gaming, and fundraising, from both Twitter and Reddit. The analysis revealed twelve topics from Twitter and eight topics from Reddit, with the term “community” frequently appearing across many of these topics. The findings provide valuable insights into the current trend and future potential of DAOs, and should be used by researchers to guide further research in the field and by decision makers to explore innovative ways to govern the organizations. Full article
Show Figures

Figure 1

18 pages, 509 KiB  
Article
Regularized Generalized Logistic Item Response Model
by Alexander Robitzsch
Information 2023, 14(6), 306; https://doi.org/10.3390/info14060306 - 26 May 2023
Cited by 3 | Viewed by 2393
Abstract
Item response theory (IRT) models are factor models for dichotomous or polytomous variables (i.e., item responses). The symmetric logistic or probit link functions are most frequently utilized for modeling dichotomous or polytomous items. In this article, we propose an IRT model for dichotomous [...] Read more.
Item response theory (IRT) models are factor models for dichotomous or polytomous variables (i.e., item responses). The symmetric logistic or probit link functions are most frequently utilized for modeling dichotomous or polytomous items. In this article, we propose an IRT model for dichotomous and polytomous items using the asymmetric generalistic logistic link function that covers a lot of symmetric and asymmetric link functions. Compared to IRT modeling based on the logistic or probit link function, the generalized logistic link function additionally estimates two parameters related to the asymmetry of the link function. To stabilize the estimation of item-specific asymmetry parameters, regularized estimation is employed. The usefulness of the proposed model is illustrated through simulations and empirical examples for dichotomous and polytomous item responses. Full article
Show Figures

Figure 1

20 pages, 2509 KiB  
Article
Mapping Thriving at Work as a Growing Concept: Review and Directions for Future Studies
by Ghulam Abid and Francoise Contreras
Information 2022, 13(8), 383; https://doi.org/10.3390/info13080383 - 10 Aug 2022
Cited by 17 | Viewed by 5130
Abstract
This study aims to provide a bibliometric analysis of the literature on thriving at work in psychology and business/management produced between 2001 and 2021, using the Web of Science (WoS) database. The analyses allowed us to identify, through 190 documents, the emergence of [...] Read more.
This study aims to provide a bibliometric analysis of the literature on thriving at work in psychology and business/management produced between 2001 and 2021, using the Web of Science (WoS) database. The analyses allowed us to identify, through 190 documents, the emergence of the concept of thriving at work and its development. The main research variables related to this concept and its methodology were identified. Likewise, the most influential authors, the most cited articles, the more frequently cited journals, and the countries contributing to developing this construct are analyzed. In addition, an analysis of co-citation, co-occurrences, and bibliographic coupling was conducted. Finally, content analysis of the most popular keywords and the co-citation of cited references are conducted. These analyses allow the identification of the main developments in the topic of thriving at work. The theoretical and practical implications of this bibliometric analysis are discussed. Full article
Show Figures

Figure 1

Back to TopTop