Seismicity Precursors and Their Practical Account
Abstract
:1. Introduction
2. Survey of the Most Documented Seismic Precursors
2.1. Non-Electromagnetic Indications
2.1.1. Pre-Seismic Activity
2.1.2. Pre-Seismic Gaps
2.1.3. Strange Animal Behavior
2.1.4. Statistical Results
2.1.5. Disturbances of Physical Parameters of the Ground (Ground Stress, Ground Electric Currents, Temperature, Gas Emanations, Ground Deformation Water Level Changes of Lakes and Wells, Seismic Lights)
2.1.6. Most Known Organized Attempts at Seismic Forecasting
- (1)
- The Parkfield Experiment
- (2)
- The Tokai-Kanto Initiative
2.2. Electromagnetic Indications
2.2.1. The Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) Hypothesis
- Gas Emissions: The release of radon and other gases alters atmospheric conductivity.
- Water Level Variations: Changes in groundwater levels affect the ionospheric response.
- Thermal Anomalies: Heat-induced atmospheric perturbations influence electromagnetic conditions.
- Electromagnetic Waves: Unlike the first three channels, this pathway remains entirely within the electromagnetic spectrum throughout its trajectory.
2.2.2. Ionospheric Disturbances
2.2.3. The DEMETER Satellite Experience and Its Legacy
2.2.4. The Crucial LAIC Ring of the Schumann Resonances
3. Artificial Intelligence (AI) and the Expected Contribution to the Seismic Prediction
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayakawa, M.; Fujinawa, Y. (Eds.) Electromagnetic Phenomena Related to EQ Prediction; Terra Scientific Publishing Company: Tokyo, Japan, 1994. [Google Scholar]
- Hayakawa, M.; Molchanov, O. (Eds.) Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, Tokyo; Terra Scientific Publishing Company: Tokyo, Japan, 2002. [Google Scholar]
- Hayakawa, M.; Molchanov, O.A. Seismo-electromagnetics: As a new field of radio physics: Electromagnetic phenomena associated with EQs. Radio Sci. Bull. 2007, 320, 8–17. [Google Scholar]
- Pullinets, A.S. Lithosphere-Atmosphere-Ionosphere Coupling Related to EQs. In Proceedings of the 2nd URSI AT-OASC, Gran Canaria, Spain, 28 May–1 June 2018. [Google Scholar]
- Hayakawa, M. EQ Precursor Studies in Japan. In Pre-EQ Processes: A Multidisciplinary Approach to EQ Prediction Studies; Geophysical Monograph 234; Ouzounov, D., Pullinets, S., Hattori, K., Taylor, P., Eds.; AGU: Washington, DC, USA, 2018. [Google Scholar]
- Finkelstein, D.R.D.; Powell, J. The piezoelectric theory of earthquake lightning. J. Geophys. Res. 1973, 78, 992–993. [Google Scholar] [CrossRef]
- Brace, W.F. Dilatancy-related electrical resistivity change in rocks. Pure Appl. Geophys. 1975, 113, 207–217. [Google Scholar] [CrossRef]
- Mitzutani, H.; Ishido, T. A new interpretation of magnetic field variation associated with the Matsushiro earthquakes. J. Geomagn. Geoelectr. 1976, 28, 179–188. [Google Scholar] [CrossRef]
- Sasai, Y. The piezomagnetic field associated with the Mogi model. Bull. Earthq. Res. Inst. Univ. Tokyo 1979, 54, 1–29. [Google Scholar]
- Sasai, Y. Tectonomagnetic modeling on the basis of the linear piezomagnetic effect. Bull. Earthq. Res. Inst. Univ. Tokyo 1991, 66, 585–722. [Google Scholar]
- Sasai, Y. Tectonomagnetic modeling based on the piezomagnetism: A review. Ann. Geofis. 2001, 44, 361–368. [Google Scholar]
- Hadjicontis, V.; Mavromatou, C. Electric signals recorded during uniaxial compression of rock samples: Their possible correlation with preseismic electric signals. Acta Geophys. Pol. 1995, 43, 49–61. [Google Scholar]
- Varotsos, P.; Alexopoulos, K.; Nomicos, K. Seven-hour precursors to EQs determined from telluric currents. Prakt. Acad. Athens 1981, 56, 417–433. [Google Scholar]
- Varotsos, P. The Physics of Seismic Electric Signals; Terra Scientific Publishing: Tokyo, Japan, 2005. [Google Scholar]
- Moore, G. Magnetic Disturbances preceding the 1964 Alaska EQ. Nature 1964, 203, 508–509. [Google Scholar] [CrossRef]
- Leonard, R.S.; Barnes, R.A., Jr. Observation of ionospheric disturbances following the Alaska EQ. J. Geophys. Res. Lett. 1965, 70, 1250–1253. [Google Scholar] [CrossRef]
- Davis, K.; Baker, D.M. Ionospheric effects observed around the time of the Alaska EQ of March 28, 1964. J. Geophys. Res. 1965, 70, 2251–2253. [Google Scholar] [CrossRef]
- Petraki, E.; Nikolopoulos, D.; Nomicos, C.; Stonham, J.; Cantzos, D.; Yannakopoulos, P.; Kottou, S. Electromagnetic Pre-earthquake Precursors: Mechanisms, Data and Models-A Review. J. Earth Sci. Clim. Chang. 2015, 6, 250. [Google Scholar]
- Nikolopoulos, D.; Cantzos, D.; Alam, A.; Dimopoulos, S.; Petraki, E. Electromagnetic and Radon Earthquake Precursors. Geosciences 2024, 14, 271. [Google Scholar] [CrossRef]
- Conti, L.; Picozza, P.; Sotgiu, A. A Critical Review of Ground Based Observations of Earthquake Precursors. Front. Earth Sci. 2021, 9, 676766. [Google Scholar] [CrossRef]
- Kayal, J.R. MicroEQ Seismology and Seismotectonics of South Asia; Springer: Berlin/Heidelberg, Germany, 2008; p. 15. ISBN 978-1-4020-8179-8. [Google Scholar]
- National Research Council (U.S.); Committee on the Science of EQs. EQ Physics and Fault-System Science, Living on an Active Earth: Perspectives on EQ Science; National Academies Press: Washington, DC, USA, 2003; p. 418. ISBN 978-0-309-06562-7. [Google Scholar]
- McCann, W.R.; Nishenko, S.P.; Sykes, L.R.; Krause, J. Seismic Gaps and Plate tectonics: Seismic Potential for Major Plate Boundaries. Pure Appl. Geophys. 1979, 117, 1082–1147. [Google Scholar] [CrossRef]
- Mogi, K. EQ Prediction; Academic Press: Tokyo, Japan, 1985. [Google Scholar]
- Nishenko, S.P. Circum-Pacific seismic potential: 1989–1999. Pure Appl. Geophys. 1991, 135, 169–259. [Google Scholar] [CrossRef]
- Rong, Y.; Jackson, D.; Kagan, Y.Y. Seismic gaps and EQs. J. Geophys. Res. 2003, 108, 2471. [Google Scholar] [CrossRef]
- Ohtake, M.; Matumoto, T.; Latham, G.V. Seismicity gap near Oaxaca, southern Mexico as a probable precursor to a large EQ. Pure Appl. Geophys. 1977, 115, 375–385. [Google Scholar] [CrossRef]
- Ohtake, M.; Matumoto, T.; Latham, G. Evaluation of the Forecast of the 1978 Oaxaca, Southern Mexico EQ Based on a Precursory Seismic Quiescence; AGU, Earth and Space Science: Washington, DC, USA, 1981. [Google Scholar]
- Kagan, Y.; Jackson, D. Seismic Gap Hypothesis: Ten Years After. J. Geophys. Res. 1991, 96, 419–421, 431. [Google Scholar] [CrossRef]
- Lomnitz, C.; Nava, A.F. The Predictive value of seismic gaps. Bull. Seismol. Soc. Am. 1983, 73, 1815–1824. [Google Scholar]
- Evernden, J.U.S. Geological Survey Office of EQ Studies. Prior to EQs; U.S. Department of Commerce, National Technical Information Service: Alexandria, VA, USA, 1976.
- Buskirk, R.E.; Frohlich, C.; Latham, G.V. Unusual animal behavior before EQs: A review of possible sensory mechanisms. Rev. Geophys. Space Phys. 1981, 19, 247–270. [Google Scholar] [CrossRef]
- Rikitake, T. The Science of Macro-Anomaly Precursory to an EQ; Kinmiraisha: Nagoya, Japan, 1998. [Google Scholar]
- Hayakawa, M. Possible Electromagnetic Effects on Abnormal Animal Behavior Before an EQ. Animals 2013, 3, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Okano, H.; Tada, H.; Nishimura, E.; Sugimoto, K.; Mohri, K.; Fukushima, M. Lizards respond to an extremely low-frequency electromagnetic field. J. Exp. Biol. 2010, 213, 1985–1990. [Google Scholar] [CrossRef]
- Hayakawa, M.; Yamauchi, H.; Ohtan, N.; Ohta, M.; Tosa, S.; Asano, T.; Schekotov, A.; Izutsu, J.; Potirakis, S.; Eftaxias, K. On the Precursory Abnormal Animal Behavior and Electromagnetic Effects for the Kobe EQ (M~6) on April 12, 2013. Open J. EQ Res. 2016, 5, 165–171. [Google Scholar]
- Hayakawa, M.; Yamauchi, H. Unusual Animal Behavior as a Possible Candidate of EQ Prediction. Appl. Sci. 2024, 14, 4317. [Google Scholar] [CrossRef]
- Panagopoulos, D.; Balmori, A.; Chrousos, G. On the biophysical mechanism of sensing upcoming EQs by animals. Sci. Total Environ. 2020, 717, 136989. [Google Scholar] [CrossRef]
- Kirschvink, J.L. EQ Prediction by Animals: Evolution and Sensory Perception. Bull. Seism. Soc. Am. 2000, 90, 312–323. [Google Scholar] [CrossRef]
- USGS. Animals and Earthquake Prediction. by Earthquake Hazards Program Report. Available online: https://www.usgs.gov/programs/earthquake-hazards (accessed on 14 January 2025).
- Bolt, B. EQs and Geological Discovery; Scientific American Library; W.H. Freeman & Co: New York, NY, USA, 1993; ISBN 0-7167-5040-6. [Google Scholar]
- Grant, R.; Raulin, J.P.; Freund, F.T. Animal Activity prior to M=7 EQ in Peru. Changes in Animal Activity Prior to a Major (M = 7) EQ in the Peruvian Andes. Phys. Chem. Earth, Parts A/B/C 2015, 85–86, 69–77. [Google Scholar] [CrossRef]
- Fidani, C.; Freund, F.; Grant, R. Cows Come Down from the Mountains before the (Mw = 6.1) EQ Colfiorito in September 1997; A Single Case Study. Animals 2014, 4, 292–312. [Google Scholar] [CrossRef]
- Fidani, C. Biological Anomalies around the 2009 L’Aquila EQ. Animals 2013, 3, 693–721. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, D.; Cavina, E.; Cataldi, G.; Straser, V. Reverse Migration of the Wood Pigeons and electromagnetic emissions, before the Mw 3.7 EQ occurred in Visso-Macerata, Central Italy on October 18. Int. J. Soc. Relev. Concern 2022, 10, 24–41. [Google Scholar]
- De Liso, G.; Fidani, C.; Viotto, A. Multi-Parametric Monitoring System of Associated Seismic Phenomenology and Unusual Animal Behaviour in Western Piedmon. Adv. Res. 2014, 2, 303–319. [Google Scholar] [CrossRef]
- Sánchez, J.J. Reports of abnormal animal behavior in relation to EQs in Colombia. Boletín Geológico 2024, 51. [Google Scholar] [CrossRef]
- De Liso, G.; Fidani, C.; Viotto, A. Unusual animal behavior before EQs and multiple parameter monitoring in Western Piedmont. Earth Sci. 2014, 3, 14. [Google Scholar]
- Freund, F.; Stolc, V. Nature of Pre-EQ Phenomena and their Effects on Living Organisms. Animals 2013, 3, 513–531. [Google Scholar] [CrossRef]
- Garstang, M.; Kelley, M. Understanding Animal Detection of Precursor EQ Sounds. Animals 2017, 7, 66. [Google Scholar] [CrossRef]
- Zöller, G.; Hainzl, S.; Tilmann, F.; Woith, H.; Dahm, T. Comment on “Potential short-term EQ forecasting by farm animal monitoring” by Wikelski, Mueller, Scocco, Catorci, Desinov, Belyaev, Keim, Pohlmeier, Fechteler, and Mai. Ethology 2020, 127, 302–306. [Google Scholar] [CrossRef]
- Wikelski, M.; Mueller, U.; Scocco, P.; Catorci, A.; Desinov, L.V.; Belyaev, M.Y.; Keim, D.; Pohlmeier, W.; Fechteler, G.; Mai, P.M. Potential short-term EQ forecasting by farm animal monitoring. Ethology 2020, 126, 931–941. [Google Scholar] [CrossRef]
- Lott, D.F.; Hart, B.L.; Howell, M.W. Retrospective Studies of Unusual Animal Behavior as an EQ Predictor. Geophys. Res. Lett. 1981, 8, 1203–1206. [Google Scholar] [CrossRef]
- Heiko, W.; Gesa, M.; Petersen, S.; Torsten, D. Can Animals Predict EQs? Bull. Seismol. Soc. Am. 2018, 108, 1031–1045. [Google Scholar] [CrossRef]
- Rundle, J.B.; Turcotte, D.L.; Donnellan, A.; Ludwig, L.G.; Luginbuhl, M.; Gong, G. Nowcasting EQs. Earth Space Sci. Tech. Rep. Methods 2016, 3, 480–486. [Google Scholar] [CrossRef]
- Rundle, J.B.; Luginbuhl, M.; Giguere, A.; Turcotte, D.L. Natural Time, Nowcasting and the Physics of EQs: Estimation of Seismic Risk to Global Megacities. Pure Appl. Geophys. 2018, 175, 647–660. [Google Scholar] [CrossRef]
- Rundle, J.B.; Giguere, A.; Turcotte, D.L.; Crutchfield, J.P.; Donnellan, A. Global Seismic Nowcasting With Shannon Information Entropy. Earth Space Sci. 2019, 6, 191–197. [Google Scholar] [CrossRef]
- Pasari, S. Nowcasting EQs in the Bay of Bengal Region. Pure Appl. Geophys. 2019, 176, 1417–1432. [Google Scholar] [CrossRef]
- Brace, F.W.; Paulding, W.B.; Scholz, H.C. Dilatancy in the fracture of crystalline rocks. J. Geophys. Res. 1966, 71, 3939–3953. [Google Scholar] [CrossRef]
- Scholz, C.; Sykes, H.; Aggarwal, L.R.; Yah, P. EQ Prediction: A Physical Basis. Science 1973, 181, 803–810. [Google Scholar] [CrossRef]
- Main, I.G.; Bell, A.F.; Meredith, P.G.; Geiger, S.; Touati, S. The dilatancy–diffusion hypothesis and EQ predictability. Geol. Soc. Lond. Spec. Publ. 2012, 367, 215–230. [Google Scholar] [CrossRef]
- Hough, S.E. Predicting the Unpredictable: The Tumultuous Science of EQ Prediction; Princeton University Press: Princeton, NJ, USA, 2010; ISBN 978-0-691-13816-9. [Google Scholar]
- International Commission on EQ Forecasting for Civil Protection (ICEF)). Operational EQ Forecasting: State of Knowledge and Guidelines for Utilization. Ann. Geophys. 2011, 54, 315–391. [Google Scholar] [CrossRef]
- Freund, F. Pre-EQ Signals: Underlying Physical Processes. J. Asian Earth Sci. 2011, 41, 383–400. [Google Scholar] [CrossRef]
- Nicholaenko, P.A.; Schekotov, Y.; Hayakawa, M.; Romero, R.; Izutsu, J. Electromagnetic Manifestations of Tonga Eruption in Schumann Resonance Band. J. Atmos. Sol. Teerr. Phys. 2022, 237, 105897. [Google Scholar] [CrossRef]
- Love, J.; Thomas, J. Insignificant Solar-Terrestrial Triggering of EQs. Geophys. Res. Lett. 2013, 40, 1165–1170. [Google Scholar] [CrossRef]
- Lukianova, R.; Daurbayeva, G.; Siylkanova, A. Ionospheric and Meteorological Anomalies Associated with the EQ in Central Asia on 22 January 2024. Remote Sens. 2024, 16, 3112. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D.; Karelin, A.; Boyarchuk, K. EQ Precursors in the Atmosphere and Ionosphere; Springer: Dordrecht, The Netherlands, 2022. [Google Scholar]
- Terada, T. On luminous phenomena accompanying earthquakes. Bull. Earthq. Res. Inst. Tokyo Univ. 1931, 9, 225–255. [Google Scholar] [CrossRef]
- Derr, J.S. Earthquake lights: A review of observations and present theories. Bull. Seismol. Soc. Am. 1973, 63, 2177–2187. [Google Scholar]
- Thériault, P.R.; St-Laurent, F.; Freund, F.; Derr, J. Prevalence of Earthquake Lights Associated with Rift Environments. Seismol. Res. Lett. 2014, 85, 159–178. [Google Scholar] [CrossRef]
- Freund, F.; Ouillon, G.; Scoville, J.; Didier, S. EQ precursors in the light of peroxy defects theory: Critical review of systematic observations Review. Eur. Phys. J. Spec. Top. 2021, 230, 7–46. [Google Scholar] [CrossRef]
- Freund, F. Co-seismic EQ Lights: The Underlying Mechanism. Pure Appl. Geophys. 2019, 176, 3439–3450. [Google Scholar] [CrossRef]
- Xie, B.; Wu, L.; Mao, W.; Wang, Z.; Sun, L.; Xu, Y. Horizontal Magnetic Anomaly Accompanying the Co-Seismic EQ Light of the M7.3 Fukushima EQ of 16 March 2022: Phenomenon and Mechanism. Remote Sens. 2023, 15, 5052. [Google Scholar] [CrossRef]
- Bakum, W.H.; Lindh, A. The Parkfield California, EQ Prediction Experiment. Science 1985, 239, 619–6124. [Google Scholar] [CrossRef]
- Papadopoulos, G. Fοllowing the footpath of Enceladus. In Seismology for Common Audience; Oselotos: Athens, Greece, 2021. (In Greek) [Google Scholar]
- Pullinets, A.S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model—An unified concept for EQ precursors validation. J. Asian Earth Sci. 2010, 41, 371–382. [Google Scholar] [CrossRef]
- Pulinets, A.S. Natural Radioactivity, EQs and the Ionosphere. EOS 2007, 88, 217–218. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Nickolaenko, A.P. Seismogenic effects in ULF/ELF/VLF electromagnetic waves. Int. J. Electron. Appl. Res. 2019, 6, 1–86. [Google Scholar] [CrossRef]
- Karamanos, K.; Peratzakis, A.; Kapiris, P.; Nikolopoulos, S.; Kopanas, J.; Eftaxias, K. Extracting preseismic electromagnetic signatures in terms of symbolic dynamics. Nonlinear Process. Geophys. 2005, 12, 835–848. [Google Scholar] [CrossRef]
- Karamanos, K. Preseismic Electromagnetic signals in terms of complexity. Phys. Rev. 2006, E74, 016104. [Google Scholar] [CrossRef]
- Hayakawa, M.; Hobara, Y. Current Status of seismo-electromagnetics for short-term EQ prediction. Geomagn. Nat. Hazards Risk 2010, 1, 115–155. [Google Scholar] [CrossRef]
- Nickolaenko, A.P.; Hayakawa, M. Disturbances of Lower Ionosphere Above The Center of Earthquake and Anomaly in the Global Electromagnetic Resonance Signal.- Part 1: Models of Ionosphere. Telecommun. Radio Eng. 2015, 74, 1025–1038. [Google Scholar] [CrossRef]
- Nickolaenko, A.P.; Hayakawa, M. Disturbances of Lower Ionosphere Above The Center of Earthquake and Anomaly in the Global Electromagnetic Resonance Signal.- Part 2:Anomalies in the Power Spectra. Telecommun. Radio Eng. 2015, 74, 1109–1122. [Google Scholar] [CrossRef]
- Namgaladze, A.; Karpov, M.; Knyazeva, M. Seismogenic Disturbances of the ionosphere During High Geomagnetic Activity. Atmosphere 2019, 10, 359. [Google Scholar] [CrossRef]
- Hayakawa, M.; Asano, T.; Rozhnoi, A.; Solovieva, M. Very-Low To Low Frequency Sounding of Ionospheric Perturbations and Possible Association with EQs; Geophysicsl Monographs 234; AGU; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2021. [Google Scholar]
- Schekotov, A.; Chebrov, D.; Hayakawa, M.; Belyaev, G.; Berseneva, N. Short-term earthquake prediction in Kamchatka using low-frequency magnetic fields. Nat. Hazards 2020, 100, 735–755. [Google Scholar] [CrossRef]
- Heki, K.; Ping, J.S. Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array. Earth Planet. Sci. Lett. 2005, 236, 845–855. [Google Scholar]
- Otsuka, Y.; Kotake, N.; Tsugawa, T.; Shiokawa, K.; Ogawa, T.; Effendy; Saito, S.; Kawamura, M.; Maruyama, T.; Hemmakorn, N.; et al. GPS detection of total electron content variations over Indonesia and Thailand following the 26 December 2004 EQ. Earth Planets Space 2006, 58, 159–165. [Google Scholar] [CrossRef]
- Liu, J.Y.; Tsai, H.F.; Lin, C.H.; Kamogawa, M.; Chen, Y.I.; Lin, C.H.; Huang, B.S.; Yu, S.B.; Yeh, Y.H. Coseismic ionospheric disturbances triggered by the Chi-Chi EQ, 029/2009. Geophys. Res. 2010, 115, A08303. [Google Scholar] [CrossRef]
- Liperovskaya, E.V.; Biagi, P.-F.; Meister, C.-V.; Rodkin, M.V. foF2 seismo-ionospheric effect analysis: Actual data and numerical simulations. Nat. Hazards Earth Syst. Sci. 2008, 8, 1387–1393. [Google Scholar] [CrossRef]
- Tsugawa, T.; Saito, A.; Otsuka, Y.; Nishioka, M.; Maruyama, T.; Kato, H.; Nagatsuma, T.; Murata, K.T. Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku EQ. Earth Planets Space 2011, 63, 875–879. [Google Scholar] [CrossRef]
- Saito, A.; Tsugawa, T.; Otsuka, Y.; Nishioka, M.; Iyemori, T.; Matsumura, M.; Saito, S.; Chen, C.H.; Goi, Y.; Choosakul, N. Acoustic resonance and plasma depletion detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku EQ. Earth Planets Space 2011, 63, 863–867. [Google Scholar] [CrossRef]
- Saito, A.; Fukao, S.; Miyazaki, S. High resolution mapping of TEC perturbations with the GSI GPS network over Japan. Geophys. Res. Lett. 1998, 25, 3079–3082. [Google Scholar] [CrossRef]
- Chen, C.H.; Yeh, T.K.; Liu, J.Y.; Wang, C.H.; Wen, S.; Yen, H.Y.; Chang, S.H. Surface Deformation and Seismic Rebound: Implications and applications. Surv. Geophys. 2011, 32, 291–313. [Google Scholar] [CrossRef]
- Matsumura, M.; Saito, A.; Iyemori, T.; Shinagawa, H.; Tsugawa, T.; Otsuka, Y.; Nishioka, M.; Chen, C.H. Numerical simulations of atmospheric waves excited by the 2011 off the Pacific coast of Tohoku EQ. Earth Planets Space 2011, 63, 885–889. [Google Scholar] [CrossRef]
- Maruyama, T.; Tsugawa, H.; Kato, A.; Saito, Y.; Otsuka, Y.; Nishioka, M. Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific coast of Tohoku EQ. Earth Planets Space 2011, 63, 869–873. [Google Scholar] [CrossRef]
- Munawar, S.; Shuanggen, J. Pre-seismic ionospheric anomalies of the 2013 Mw ¼ 7.7 Pakistan EQ from GPS and COSMIC observations. Geod. Geodyn. 2018, 9, 378–387. [Google Scholar]
- Tao, D.; Wang, G.; Zong, J.; Wen, Y.; Cao, J.; Battiston, R.; Zeren, Z. Are the Significant Ionospheric Anomalies Associated with the 3 2007 Great Deep-Focus Undersea Jakarta-Java EQ. Remote Sens. 2022, 14, 2211. [Google Scholar] [CrossRef]
- Inchin, P.A.; Snively, J.B.; Zettergren, M.D.; Komjathy, A.; Verkhoglyadova, O.P.; Ram, S.T. Modelling of Ionospheric responses to atmospheric acoustic and gravity waves driven by the 2015 Nepal 7.8 Gorkha EQ. J. Geophys. Res. 2020, 125, e2019jA027200. [Google Scholar] [CrossRef]
- Inchin, P.A.; Snively, J.B.; Kaneko, Y.; Zettergren, M.D.; Komjathy, A. Inferring the evolution of a large EQ from the acoustic impacts on the ionosphere. AGU Adv. 2021, 2, e2020AV000260. [Google Scholar] [CrossRef]
- Chen, C.-H.; Zhang, S.; Mao, Z.; Sun, Y.-Y.; Liu, J.; Chen, T.; Zhang, X.; Yisimayili, A.; Qing, H.; Luo, T.; et al. The Lithosphere-Atmosphere-Ionosphere Coupling of Multiple Geophysical Parameters Approximately 3 Hours Prior to the 2022 M6.8 Luding EQ. Geosciences 2023, 13, 356. [Google Scholar] [CrossRef]
- Parrot, M.; Li, M. DEMETER Results Related to Seismic Activity. URSI Radio Sci. Bull. 2017, 58, 18–25. [Google Scholar]
- Harrison, G.R.; Aplin, L.K.; Rycroft, M.J. Atmospheric Electricity Coupling between EQ, Regions and the Ionosphere. J. Atmos. Sol. Terr. Phys. 2010, 72, 376–381. [Google Scholar] [CrossRef]
- Nemec, F.; Santolik, O.; Parrot, M. Decrease of intensity of ELF/ULF waves observed in the upper ionosphere close to EQs. A statistical study. J. Geophys. Res. 2009, 114, AO4303. [Google Scholar] [CrossRef]
- Pierce, E. Atmospheric Electricity and EQ Prediction. Geophys. Res. Lett. 1976, 3, 185–188. [Google Scholar] [CrossRef]
- Walter, N.S.; Kandir kamanathan, V.; Pokhotelov, A.O. Changes in the Ultra-Low Frequency wave field during the precursor phase to the Sichuan EQ: DEMETER observations. Ann. Geophys. 2013, 31, 1597–1603. [Google Scholar] [CrossRef]
- Athanasiou, M.; Anagnostopoulos, G.C.; Iliopoulos, A.C.; Pavlos, G.P.; David, C.N. Enhanced ULF radiationobserved by DEMETER two months around the strong 2010; Haiti EQ. Nat. Hazards Earth Syst. Sci. 2011, 11, 1091–1098. [Google Scholar] [CrossRef]
- Lu, J.; Hu, Y.; Hang, C.; Zhao, Z.; Zhang, Y. Analysis of Pre-EQ ionospheric anomalies in the Japanese region based on DEMETER satellite data. Universe 2023, 9, 229. [Google Scholar] [CrossRef]
- Liu, J.; Shen, X.; Chang, F.; Chen, Y.; Sun, Y.; Chen, C.; Pullinets, S.; Hattori, K.; Ouzounov, D.; Tramutoli, V.; et al. Spatial analyses on pre-EQ ionospheric anomalies and magnetic storms observed by China seismo-electromagnetic satellite in August 2018. Geosci. Lett. 2024, 11, 4. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.; Liu, J.; Yang, M.; Yang, X.; Du, X.; Lü, J.; Xiao, J. Seismo-Ionospheric Effects Prior to Two EQs in Taiwan Detected by the China Seismo-Electromagnetic Satellite. Atmosphere 2022, 13, 1523. [Google Scholar] [CrossRef]
- Du, X.; Zhang, X. Ionospheric Disturbances Possibly Associated with Yangbi s 6.4 and Ms 7, 4 EQs in China from China Seismo- Electromagnetic Satellite. Atmosphere 2022, 13, 438. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, X.; Du, X. Analysis of Ionospheric Perturbations Possibly Related to Yangbi Ms6.4 and Maduo Ms 7, 4 EQs on 21 May 2021 in China using GPS TEC and GIM TEC Data. Atmosphere 2022, 13, 1725. [Google Scholar] [CrossRef]
- Zhao, B.; Quian, C.; Yu, H.; Liu, J.; Maimaitusun, N.; Yu, C.; Zhang, X.; Ma, Y. Preliminary Analysis of Ionospheric Anomalies before Strong EQs in and around Mainland China. Atmosphere 2022, 13, 410. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Wu, W.; Chen, C.; Wang, M.; Yang, M.; Guo, Y.; Wang, J. The seismo-Ionospheric Disturbances before the 9 June 2022 Maerkang Ms 6.0 EQ Swarm. Atmosphere 2022, 13, 1745. [Google Scholar] [CrossRef]
- Li, M.; Shen, X.; Parrot, M.; Zhang, X.; Zhang, Y.; Yu, C.; Yan, R.; Liu, D.; Lu, H.; Guo, F.; et al. Primary Joint Statistical Seismic Influence on Ionospheric Parameters Recorded by the CSES and DEMETER Satellites. J. Geophys. Res. Space Phys. 2020, 125, e2020jA028116. [Google Scholar] [CrossRef]
- Li, M.; Yang, Z.; Song, J.; Zhang, Y.; Jiang, X.; Shen, X. Statistical seismo-ionospheric influence with focal mechanism under consideration. Atmosphere 2023, 14, 455. [Google Scholar] [CrossRef]
- Chen, W.; Marchetti, D.; Zhu, K.; Sabbagh, D.; Yan, R.; Zhima, Z.; Shen, X.; Cheng, Y.; Fan, M.; Wang, S.; et al. CSES-01 Electron Density background characterization and preliminary investigation of possible Ne increase before EQ occurrence. Atmosphere 2023, 14, 1527. [Google Scholar] [CrossRef]
- Moliva, C.; Boudrikis Semlali, B.; Park, H.; Camps, A. A Preliminary Study on Ionospheric Scintillation Anomalies Detected Using GNSS-R Data from NASA CYGNSS Mission as Possible EQ Precursors. Remote Sens. 2022, 14, 2555. [Google Scholar] [CrossRef]
- Carvajal-Librado, M.; Molina, C.; Semali, B.-E.B.; Park, H.; Camps, A. Analysing GNSS-RO derived ionospheric intensity scintillation preceding EQs in the Coral Sea during 2022. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 16020–16029. [Google Scholar] [CrossRef]
- Schumann, W.O. On the free oscillations of a conducting sphere which is surrounded by an air layer and an ionosphere shell. Z. Naturforschaftung 1952, 7, 149–154. (In German) [Google Scholar] [CrossRef]
- Balser, M.; Wagner, C. Observations of Earth–Ionosphere Cavity Resonances. Nature 1960, 188, 638–641. [Google Scholar] [CrossRef]
- Balser, M.; Wagner, C.A. Diurnal power variations of the Earth-ionosphere cavity modes and their relationship to worldwide thunderstorm activity. J. Geophys. Res. 1962, 67, 619–625. [Google Scholar] [CrossRef]
- Galejs, J. Schumann Resonances. Radio Sci. J. Res. 1965, 69, 1043–1055. [Google Scholar] [CrossRef]
- Wait, R.J. Earth-Ionosphere Cavity Resonances and the Propagation of ELF Radio Waves. Radio Sci. J. Res. 1965, 69, 1057. [Google Scholar] [CrossRef]
- Price, C. ELF Electromagnetic Waves from Lightning: The Schumann Resonances. Atmosphere 2016, 7, 116. [Google Scholar] [CrossRef]
- Chapman, F.W.; Jones, D. Observations of Earth-Ionosphere Cavity Resonances and Their Interpretation in Terms of a Two-Layer Ionosphere Model. Radio Sci. J. Res. 1964, 68, 11. [Google Scholar] [CrossRef]
- Nickolaenko, A.; Hayakawa, M. Resonances in the Earth-Ionosphere Cavity. Modern Approaches in Geophysics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Nickolaenko, A.; Hayakawa, M. Schumann Resonance for Tyros; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Wlliams, E.R. The Schumann Resonance: A Global Tropical Thermometer. Science 1992, 256, 1184–1187. [Google Scholar] [CrossRef]
- Williams, E.R. Global Circuit Response to Seasonal Variations in Global Surface Air Temperature. Mon. Weather. Rev. 1994, 122, 1917–1929. [Google Scholar] [CrossRef]
- Williams, E.R. Lighting and Climate: A Review. Atmos. Res. 2005, 76, 272–287. [Google Scholar] [CrossRef]
- Heckman, S.J.; Williams, E.; Boldi, B. Total global lightning inferred from Schumann resonances measurements. J. Geophys. Res. 1998, 103, 31775–31779. [Google Scholar] [CrossRef]
- Schvets, A.V. A technique for reconstruction of global lightning distance profile from background Schumann resonance signal. J. Atmos. Sol.-Terr. Phys. 2001, 63, 1061–1074. [Google Scholar] [CrossRef]
- Price, C.; Melnicov, A. Diurnal, seasonal and inter-annual variations in the Schumann resonance parameters. J. Atmos. Sol.-Terr. Phys. 2004, 66, 1179–1185. [Google Scholar] [CrossRef]
- Tatsis, G.; Christofilakis, V.; Chronopoulos, S.K.; Baldoumas, G.; Sakkas, A.; Paschalidou, A.K.; Kassomenos, P.; Petrou, I.; Kostarakis, P.; Repapis, C.; et al. Study of the variations in The Schumann resonances parameters measured in a Southern Mediterranean environment. Sci. Total Environ. 2020, 715, 136926. [Google Scholar] [CrossRef]
- Simoes, F.; Pfaff, R.; Berthelier, J.J.; Klenzing, J. A Review of Low Frequency Electromagnetic Wave phenomena related to Tropospheric- Ionospheric Coupling Mechanisms. Space Sci. Rev. 2012, 165, 551–593. [Google Scholar] [CrossRef]
- Nikolaenko, A.; Hayakawa, M.; Hobara, Y. Long-term periodical variations in global lightning activity deduced from the Schumann resonance monitoring. J. Geophys. Res. 1999, 104, 27585–27591. [Google Scholar]
- Schvets, A.V.; Hayakawa, M.; Sekiguchi, M.; Ando, Y. Reconstruction of the global lightning distribution from ELF electromagnetic background signal. J. Atmos. Sol.-Terr. Phys. 2009, 71, 1405–1412. [Google Scholar] [CrossRef]
- Garcia, R.; Castellano, N.; Fernandez-Ros, M.; Jesus, A.; Perea-Moreno, A.; Manzano-Agugliaro, F. Applied Engineering Using Schumann Resonance for Earthquakes Monitoring. Appl. Sci. 2017, 7, 1113. [Google Scholar] [CrossRef]
- Hazra, P.; Chatterjee, S.; Banerjee, M. Schumann Resonance Mode Variation during Seismic Activity: A Review. Int. J. Cur. Res. Rev. 2017, 9, 26. [Google Scholar]
- Hayakawa, M.; Ohta, K.; Nickolaenko, A.P.; Ando, Y. Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-Chi EQ in Taiwan. Ann. Geophys. 2005, 23, 1335–1346. [Google Scholar] [CrossRef]
- Kachakhidze, N.; Kachakhidze, M.; Kereselidze, Z.; Ramishvili, G. Specific variations of the atmospheric electric field potential gradient as a possible precursor of Caucasus EQs. Nat. Hazards Earth Syst. Sci. 2009, 9, 1221–1226. [Google Scholar] [CrossRef]
- Ouyang, X.; Zhang, X.; Nickolaenko, A.P.; Hayakawa, M.; Shen, X.; Miao, Y. Schumann resonance observation in China and anomalous disturbance possibly associated with Tohoku M9.0 EQ. Earth Sci. 2013, 26, 137–145. [Google Scholar] [CrossRef]
- Hayakawa, M.; Ohta, K.; Sorokin, M.V.; Yaschenko, K.A.; Izutsu, J.; Hobara, Y.; Nickolaenko, P.A. Interpretation in terms of gyrotropic waves of Schumann –resonance-like line emissions observed at Nakatsugawa in possible association with nearby Japanese EQs. J. Atmos. Terr. Phys. 2010, 72, 1292–1298. [Google Scholar] [CrossRef]
- Sorokin, M.V.; Pokhotelov, A.O. Gyrotropic Waves in the mid-latitude ionosphere. J. Atmos. Sol.-Terr. Phys. 2005, 67, 921–930. [Google Scholar] [CrossRef]
- Tatsis, G.; Votis, C.; Christofilakis, V.; Kostarakis, P.; Tritakis, V.; Repapis, C. A prototype data acquisition and processing system for Schumann resonance measurements. J. Atmos. Sol.-Terr. Phys. 2015, 135, 152–160. [Google Scholar] [CrossRef]
- Tatsis, G.; Christofilakis, V.; Chronopoulos, S.K.; Kostarakis, P.; Nistazakis, H.E.; Repapis, C.; Tritakis, V. Design and Implementation of a Test Fixture for ELF Schumann Resonance Magnetic Antenna Receiver and Magnetic Permeability Measurements. Electronics 2020, 9, 171. [Google Scholar] [CrossRef]
- Votis, C.I.; Tatsis, G.; Christofilakis, V.; Chronopoulos, S.K.; Kostarakis, P.; Tritakis, V.; Repapis, C. A new portable ELF Schumann resonance receiver: Design and detailed analysis of the antenna and the analog frontend. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 15. [Google Scholar] [CrossRef]
- Sakkas, A.; Oikonomou, V.; Mystridis, G.; Christofilakis, V.; Tatsis, G.; Baldoumas, G.; Tritiakis, V.; Chronopoulos, S. Frequency-Selective Reconfigurable Antenna for Wireless Applications in the S and C Bands. Sensors 2023, 23, 8912. [Google Scholar] [CrossRef] [PubMed]
- Mlynarczyk, J.; Popek, M.; Kulak, A.; Klucjasz, S.; Martynski, K.; Kubisz, J. New Broadband ELF Receiver for Studying Atmospheric Discharges in Central Europe; Baltic URSI Symposium (URSI): Poznan, Poland, 2018; pp. 155–157. [Google Scholar] [CrossRef]
- Mlynarczyk, J.; Kulak, A.; Popek, M.; Iwanski, R.; Klucjasz, S.; Kubisz, J. An analysis of TLE-associated discharges using the data recorded by a new broadband ELF receiver. In Proceedings of the XVI International Conference on Atmospheric Electricity, 2018, Nara, Japan, 17–22 June 2018. [Google Scholar]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of EQ preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Tritakis, V.; Mlynarczyk, J.; Contopoulos, I.; Kubisz, J.; Christofilakis, V.; Tatsis, G.; Chronopoulos, S.K.; Repapis, C. Extremely low frequency (ELF) electromagnetic signals as a possible precursory warning of incoming seismic activity. Atmosphere 2024, 15, 457. [Google Scholar] [CrossRef]
- Tritakis, V.; Contopoulos, I.; Mlynarczyk, J.; Christophilakis, V.; Tatsis, G.; Repapis, C. How Effective and Prerequisite are the Electromagnetic Extra Low Frequency (ELF) Recordings, in the Schumann Resonances Band, to Function as Seismic Activity Precursors. Atmosphere 2022, 13, 185. [Google Scholar] [CrossRef]
- Christofilakis, V.; Tatsis, G.; Votis, G.; Contopoulos, I.; Repapis, C.; Tritakis, V. Significant ELF perturbations in the Schumann Resonance band before and during a shallow mid-magnitude seismic activity in the Greek area (Kalpaki). J. Atmos. Sol.-Terr. Phys. 2019, 182, 138–146. [Google Scholar] [CrossRef]
- Contopoulos, I.; Mlynarczyk, J.; Kubisz, J.; Tritakis, V. Possible Identification of Precursor ELF Signals on Recent EQs That Occurred Close to the Recording. Stn. Atmos. 2024, 15, 1134. [Google Scholar] [CrossRef]
- Tritakis, V.; Contopoulos, I.; Florios, C.; Tatsis, G.; Christophylakis, V.; Baldoumas, C.; Repapis, C. Anthropogenic Noise and its Footprint on ELF Schumann Resonance Recordings. Front. Earth Sci. 2021, 9, 646277. [Google Scholar] [CrossRef]
- Mlynarczyk, J.; Tritakis, V.; Contopoulos, I.; Nieckarz, Z.; Christophilakis, V.; Tatsis, G.; Repapis, C. Anthropogenic Sources of Electromagnetic Interferences in the Lowest Elf Band Recordings (Schumann Resonances). Magnetism 2022, 2, 152–167. [Google Scholar] [CrossRef]
- Wang, X.; Hu, K.; Wu, Y.; Zhou, W. A Survey of Deep Learning-Based Lightning Prediction. Atmosphere 2023, 14, 1698. [Google Scholar] [CrossRef]
- Nurafiqah Syahirah, M.; Ridzwan, S.Y. Machine learning for EQ prediction: A review (2017–2021). Earth Sci. Inform. 2023, 16, 1133–1149. [Google Scholar] [CrossRef]
- Florios, K.; Contopoulos, I.; Christofilakis, V.; Tatsis, G.; Chronopoulos, S.; Repapis, C.; Tritakis, V. Pre-seismic Electromagnetic Perturbations in Two EQs in Northern Greece. Pure App. Geophys. 2020, 177, 787–799. [Google Scholar] [CrossRef]
- Florios, K.; Contopoulos, I.; Tatsis, G.; Christofilakis, V.; Chronopoulos, S.; Repapis, C.; Tritakis, V. Possible EQ Forecasting in a narrow Space-Time-Magnitude Window. Earth Sci. Inform. 2021, 14, 349–364. [Google Scholar] [CrossRef]
- Parisa Kavianpour, M.; Kavianpour, E.; Ramezani, J.A. EQ Magnitude Prediction using Spatia-temporal Features Learning Based on Hybrid CNN- BiLSTM Model. In Proceedings of the 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS), Tehran, Iran, 29–30 December 2021. [Google Scholar] [CrossRef]
- Shan, W.; Zhang, M.; Wang, M.; Chen, H.; Zhang, R.; Yang, G.; Tang, Y.-X.; Teng, Y.; Chen, J. EPM–DCNN: EQ Prediction Models Using Deep Convolutional Neural Networks. Bull. Seismol. Soc. Am. 2022, 112, 2933–2945. [Google Scholar] [CrossRef]
- Gürsoy, G.; Varol, A.; Nasab, A. Importance of Machine Learning and Deep Learning Algorithms in EQ Prediction: A Review. In Proceedings of the 11th International Symposium on Digital Forensics and Security (ISDFS), Chattanooga, TN, USA, 11–12 May 2023. [Google Scholar] [CrossRef]
- Berhich, A.; Belouadha, F.Z.; Kabbaj, M. LSTM-based Models for EQ. In Proceedings of the Prediction International Conferences NISS2020, The 3rd International Conference on Networking, Information Systems & Security, Marrakech, Morocco, 31 March–2 April 2020. [Google Scholar] [CrossRef]
- Pwavodi, A.I.J.; Ibrahim, A.U.; Pwavodi, P.C.; Turjman, F.; Mohand-Said, A. The role of artificial intelligence and IoT in prediction of EQs. Artif. Intell. Geosci. 2024, 5, 100075. [Google Scholar]
- Yousefzadeh, M.; Hosseini, M.; Farnaghi, S.A. Spatiotemporally explicit EQ prediction using deep neural network. Soil Dyn. EQ Eng. 2021, 144, 106663. [Google Scholar] [CrossRef]
- Pasari, B.S.; Mehta, A. Earthquake Forecasting Using Artificial Neural Networks. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Dehradun, India, 20–23 November 2018; Volume XLII-5. [Google Scholar] [CrossRef]
- Fernández-Gómez, M.J.; Asencio-Cortés, G.; Troncoso, A.; Martínez-Álvarez, F. Large EQ Magnitude Prediction in Chile with Imbalanced Classifiers and Ensemble Learning. Appl. Sci. 2017, 7, 625. [Google Scholar] [CrossRef]
- Alecci, V.; De Stefano, M.; Galassi, S.; Lapi, L.; Orlando, M. Evaluation of the American Approach for Detecting Plan Irregularity. Adv. Civ. Eng. (ACE) 2019, 2019, 2861093. [Google Scholar] [CrossRef]
- Belardi, P.; Gusella, V.; Liberotti, R.; Sorignani, C. Built Environment’s Sustainability: The Design of the Gypso|TechA of the University of Perugia. Sustainability 2022, 14, 6857. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Makul, N.; Siripattarapravat, S. Utilization of ground waste seashells in cement mortars for masonry and plastering. J. Environ. Manag. 2012, 111, 133–141. [Google Scholar] [CrossRef]
- Serbouti, I.; Chenal, J.; Tazi, S.A.; Baik, A.; Hakdaoui, M. Digital Transformation in African Heritage Preservation: A Digital Twin Framework for a Sustainable Bab Al-Mansour in Meknes City, Morocco. Smart Cities 2025, 8, 29. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tritakis, V. Seismicity Precursors and Their Practical Account. Geosciences 2025, 15, 147. https://doi.org/10.3390/geosciences15040147
Tritakis V. Seismicity Precursors and Their Practical Account. Geosciences. 2025; 15(4):147. https://doi.org/10.3390/geosciences15040147
Chicago/Turabian StyleTritakis, Vasilis. 2025. "Seismicity Precursors and Their Practical Account" Geosciences 15, no. 4: 147. https://doi.org/10.3390/geosciences15040147
APA StyleTritakis, V. (2025). Seismicity Precursors and Their Practical Account. Geosciences, 15(4), 147. https://doi.org/10.3390/geosciences15040147