Gel-Based Materials for Biomedical Engineering

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Chemistry and Physics".

Deadline for manuscript submissions: closed (20 November 2024) | Viewed by 20495

Special Issue Editors

National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
Interests: hydrogels; biomaterials; biodegradable implants; tissue engineering; electrospinning; smart biomaterial
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
Interests: biomaterials; conductive hydrogels; wound healing; heart failure; biosensors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We invite you and your collaboators to participate in the upcoming Special Issue of Gels on the topic of “Gel-Based Materials for Biomedical Engineering”.

Gels, or hydrogels, are colloidal systems composed of two or more phases commonly used in biomedical applications and usually consist of three-dimensional polymer networks and solvents. Due to their inherent biocompatibility, high water content, porosity, flexibility, and low immunogenicity, hydrogels have been widely used in biomedical fields. Examples of its application include contact lenses, biosensors, drug delivery systems, wound healing and tissue engineering. Polymer networks can be derived from both hydrophilic natural materials and synthetic polymers. Natural polymer hydrogels usually have good biocompatibility, but their applications are limited by their low mechanical strength and fragile nature. The mechanical properties of synthetic polymer hydrogels can be regulated by optimizing their molecular structure. However, their biological properties still need improvevment. In addition, by modifying the polymer network with stimuli-responsive groups or them compounding with functional components, we can obtain “smart” hydrogels. These are distinguished by their responsivness to different types of stimuli including thermal, light, magnetic field, chemical reagents, ultrasound and pH. The potential applications of these hydrogels in biomedical engineering need to be further explored.

This Special Issue, entitled “Gel-Based Materials for Biomedical Engineering,” aims to further explore the composition, structure, performance and biocompatibility of gels, providing the latest research progress into gel-based materials in biomedical applications. Academics and scholars from across the field are welcome to submit original research articles and reviews on this topic.

Dr. Daihua Fu
Dr. Jieyu Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomaterials
  • hydrogels
  • injectable hydrogels
  • cryogels
  • tissue engineering
  • wound healing
  • drug delivery
  • heart failure

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 12627 KiB  
Article
Functional Properties of Gelatin–Alginate Hydrogels for Use in Chronic Wound Healing Applications
by Olha Maikovych, Pamela Pasetto, Nataliia Nosova, Olena Kudina, Dmytro Ostapiv, Volodymyr Samaryk and Serhii Varvarenko
Gels 2025, 11(3), 174; https://doi.org/10.3390/gels11030174 - 27 Feb 2025
Cited by 1 | Viewed by 1008
Abstract
In this study, a hydrogel material based on porcine gelatin and sodium alginate was synthesized for use as a dressing for chronic wound treatment. The hydrogels were covalently cross-linked using polyethylene glycol diglycidyl ether (PEGDE 500), and the interaction between the components was [...] Read more.
In this study, a hydrogel material based on porcine gelatin and sodium alginate was synthesized for use as a dressing for chronic wound treatment. The hydrogels were covalently cross-linked using polyethylene glycol diglycidyl ether (PEGDE 500), and the interaction between the components was confirmed via FTIR. The properties of the resulting hydrogels were examined, including gel-fraction volume, swelling degree in different media, mechanical properties, pore size, cytotoxicity, and the ability to absorb and release analgesics (lidocaine, novocaine, sodium diclofenac). The hydrogel’s resistance to enzymatic action by protease was enhanced both through chemical cross-linking and physical interactions between gelatin and alginate. The absorption capacity of the hydrogels, reaching 90 g per dm2 of the hydrogel dressing, indicates their potential for absorbing wound exudates. It was demonstrated that the antiseptic (chlorhexidine) contained in the structured gelatin–alginate hydrogels can be released into an infected substrate, resulting in a significant inhibition of pathogenic microorganisms (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Aspergillus niger). These results clearly demonstrate that the obtained hydrogel materials can serve as non-traumatic dressings for the treatment of chronic and/or infected wounds. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering)
Show Figures

Figure 1

16 pages, 7510 KiB  
Article
Brown Adipose Stem Cell-Loaded Resilin Elastic Hydrogel Rebuilds Cardiac Function after Myocardial Infarction via Collagen I/III Reorganisation
by Le Zhao, Huaying Liu, Rui Gao, Kaihui Zhang, Yuxuan Gong, Yaya Cui, Shen Ke, Jing Wang and Haibin Wang
Gels 2024, 10(9), 568; https://doi.org/10.3390/gels10090568 - 31 Aug 2024
Viewed by 1274
Abstract
Irreversible fibrosis following myocardial infarction (MI) stiffens the infarcted myocardium, which remains challenging to restore. This study aimed to investigate whether the injectable RLP12 hydrogel, derived from recombinant resilin protein, could serve as a vehicle for stem cells to enhance the function of [...] Read more.
Irreversible fibrosis following myocardial infarction (MI) stiffens the infarcted myocardium, which remains challenging to restore. This study aimed to investigate whether the injectable RLP12 hydrogel, derived from recombinant resilin protein, could serve as a vehicle for stem cells to enhance the function of the infarcted myocardium. The RLP12 hydrogel was prepared and injected into the myocardium of rats with MI, and brown adipose-derived mesenchymal stem cells (BADSCs) were loaded. The survival and differentiation of BADSCs in vivo were investigated using immunofluorescence one week and four weeks after treatment, respectively. The heart function, MI area, collagen deposition, and microvessel density were further assessed four weeks after treatment through echocardiography, histology, immunohistochemistry, and immunofluorescence. The RLP12 hydrogel was prepared with a shear modulus of 10–15 kPa. Four weeks after transplantation, the RLP12 hydrogel significantly improved cardiac function by increasing microvessel density and reducing infarct area size and collagen deposition in MI rats. Furthermore, the distribution ratio of collagen III to I increased in both the centre and edge areas of the MI, indicating the improved compliance of the infarct heart. Moreover, the RLP12 hydrogel also promoted the survival and differentiation of BADSCs into cardiac troponin T- and α-smooth muscle-positive cells. The RLP12 hydrogel can be utilised as an injectable vehicle of BADSCs for treating MI and regulating collagen I and III expression profiles to improve the mechanical microenvironment of the infarct site, thereby restoring heart function. The study provides novel insights into the mechanical interactions between the hydrogel and the infarct microenvironment. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering)
Show Figures

Figure 1

12 pages, 2780 KiB  
Article
Molecular Recognition between Carbon Dioxide and Biodegradable Hydrogel Models: A Density Functional Theory (DFT) Investigation
by Domingo Cesar Carrascal-Hernandez, Maximiliano Mendez-Lopez, Daniel Insuasty, Samira García-Freites, Marco Sanjuan and Edgar Márquez
Gels 2024, 10(6), 386; https://doi.org/10.3390/gels10060386 - 5 Jun 2024
Cited by 3 | Viewed by 1567
Abstract
In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO2) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and [...] Read more.
In this research, we explore the potential of employing density functional theory (DFT) for the design of biodegradable hydrogels aimed at capturing carbon dioxide (CO2) and mitigating greenhouse gas emissions. We employed biodegradable hydrogel models, including polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate. The complexation process between the hydrogel and CO2 was thoroughly investigated at the ωB97X-D/6-311G(2d,p) theoretical level. Our findings reveal a strong affinity between the hydrogel models and CO2, with binding energies ranging from −4.5 to −6.5 kcal/mol, indicative of physisorption processes. The absorption order observed was as follows: chitosan > PVP > HEAC > PEG. Additionally, thermodynamic parameters substantiated this sequence and even suggested that these complexes remain stable up to 160 °C. Consequently, these polymers present a promising avenue for crafting novel materials for CO2 capture applications. Nonetheless, further research is warranted to optimize the design of these materials and assess their performance across various environmental conditions. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering)
Show Figures

Figure 1

23 pages, 6110 KiB  
Article
Nanocomposite Gels Loaded with Flurbiprofen: Characterization and Skin Permeability Assessment in Different Skin Species
by Sheimah El Bejjaji, Gladys Ramos-Yacasi, Joaquim Suñer-Carbó, Mireia Mallandrich, Lara Goršek, Chandler Quilchez and Ana Cristina Calpena
Gels 2024, 10(6), 362; https://doi.org/10.3390/gels10060362 - 24 May 2024
Cited by 3 | Viewed by 2189
Abstract
Nanocomposite gels consist of nanoparticles dispersed in a gel matrix. The main aim of this work was to develop nanocomposite gels for topical delivery of Flurbiprofen (FB) for humans and farm animals. Nanocomposite gels were prepared stemming from nanoparticles (NPs) freeze-dried with two [...] Read more.
Nanocomposite gels consist of nanoparticles dispersed in a gel matrix. The main aim of this work was to develop nanocomposite gels for topical delivery of Flurbiprofen (FB) for humans and farm animals. Nanocomposite gels were prepared stemming from nanoparticles (NPs) freeze-dried with two different cryoprotectants, D-(+)-trehalose (NPs-TRE) and polyethylene glycol 3350 (NPs-PEG), sterilized by gamma (γ) irradiation, and gelled with Sepigel® 305. Nanocomposite gels with FB-NPs-TRE and FB-NPs-PEG were physiochemically characterized in terms of appearance, pH, morphological studies, porosity, swelling, degradation, extensibility, and rheological behavior. The drug release profile and kinetics were assessed, as well as, the ex vivo permeation of FB was assessed in human, porcine and bovine skin. In vivo studies in healthy human volunteers were tested without FB to assess the tolerance of the gels with nanoparticles. Physicochemical studies demonstrated the suitability of the gel formulations. The ex vivo skin permeation capacity of FB-NPs nanocomposite gels with different cryoprotectants allowed us to conclude that these formulations are suitable topical delivery systems for human and veterinary medicine. However, there were statistically significant differences in the permeation of each formulation depending on the skin. Results suggested that FB-NPs-PEG nanocomposite gel was most suitable for human and porcine skin, and the FB-NPs-TRE nanocomposite gel was most suitable for bovine skin. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering)
Show Figures

Graphical abstract

20 pages, 10153 KiB  
Article
Agar Graft Modification with Acrylic and Methacrylic Acid for the Preparation of pH-Sensitive Nanogels for 5-Fluorouracil Delivery
by Ivelina Ivanova, Marta Slavkova, Teodora Popova, Borislav Tzankov, Denitsa Stefanova, Virginia Tzankova, Diana Tzankova, Ivanka Spassova, Daniela Kovacheva and Christina Voycheva
Gels 2024, 10(3), 165; https://doi.org/10.3390/gels10030165 - 23 Feb 2024
Cited by 1 | Viewed by 2441
Abstract
Agar, a naturally occurring polysaccharide, has been modified by grafting it with acrylic (AcA) and methacrylic (McA) acid monomers, resulting in acrylic or methacrylic acid grafted polymer (AA-g-AcA or AA-g-McA) with pH-sensitive swelling behavior. Different ratios between agar, monomers, and initiator were applied. [...] Read more.
Agar, a naturally occurring polysaccharide, has been modified by grafting it with acrylic (AcA) and methacrylic (McA) acid monomers, resulting in acrylic or methacrylic acid grafted polymer (AA-g-AcA or AA-g-McA) with pH-sensitive swelling behavior. Different ratios between agar, monomers, and initiator were applied. The synthesized grades of both new polymer series were characterized using FTIR spectroscopy, NMR, TGA, DSC, and XRD to ascertain the intended grafting. The percentage of grafting (% G), grafting efficiency (% GE), and % conversion (% C) were calculated, and models with optimal characteristics were further characterized. The swelling behavior of the newly synthesized polymers was studied over time and in solutions with different pH. These polymers were subsequently crosslinked with varying amounts of glutaraldehyde to obtain 5-fluorouracil-loaded nanogels. The optimal ratios of polymer, drug, and crosslinker resulted in nearly 80% loading efficiency. The performed physicochemical characterization (TEM and DLS) showed spherical nanogels with nanometer sizes (105.7–250 nm), negative zeta potentials, and narrow size distributions. According to FTIR analysis, 5-fluorouracil was physically incorporated. The swelling and release behavior of the prepared nanogels was pH-sensitive, favoring the delivery of the chemotherapeutic to tumor cells. The biocompatibility of the proposed nanocarrier was proven using an in vitro hemolysis assay. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering)
Show Figures

Graphical abstract

19 pages, 13830 KiB  
Article
Chitosan–Polyethylene Glycol Inspired Polyelectrolyte Complex Hydrogel Templates Favoring NEO-Tissue Formation for Cardiac Tissue Engineering
by Angelo Keklikian, Natan Roberto de Barros, Ahmad Rashad, Yiqing Chen, Jinrui Tan, Ruoyu Sheng, Dongwei Sun, Huinan Liu and Finosh G. Thankam
Gels 2024, 10(1), 46; https://doi.org/10.3390/gels10010046 - 8 Jan 2024
Cited by 5 | Viewed by 2354
Abstract
Neo-tissue formation and host tissue regeneration determine the success of cardiac tissue engineering where functional hydrogel scaffolds act as cardiac (extracellular matrix) ECM mimic. Translationally, the hydrogel templates promoting neo-cardiac tissue formation are currently limited; however, they are highly demanding in cardiac tissue [...] Read more.
Neo-tissue formation and host tissue regeneration determine the success of cardiac tissue engineering where functional hydrogel scaffolds act as cardiac (extracellular matrix) ECM mimic. Translationally, the hydrogel templates promoting neo-cardiac tissue formation are currently limited; however, they are highly demanding in cardiac tissue engineering. The current study focused on the development of a panel of four chitosan-based polyelectrolyte hydrogels as cardiac scaffolds facilitating neo-cardiac tissue formation to promote cardiac regeneration. Chitosan-PEG (CP), gelatin-chitosan-PEG (GCP), hyaluronic acid-chitosan-PEG (HACP), and combined CP (CoCP) polyelectrolyte hydrogels were engineered by solvent casting and assessed for physiochemical, thermal, electrical, biodegradable, mechanical, and biological properties. The CP, GCP, HACP, and CoCP hydrogels exhibited excellent porosity (4.24 ± 0.18, 13.089 ± 1.13, 12.53 ± 1.30 and 15.88 ± 1.10 for CP, GCP, HACP and CoCP, respectively), water profile, mechanical strength, and amphiphilicity suitable for cardiac tissue engineering. The hydrogels were hemocompatible as evident from the negligible hemolysis and RBC aggregation and increased adsorption of plasma albumin. The hydrogels were cytocompatible as evident from the increased viability by MTT (>94% for all the four hydrogels) assay and direct contact assay. Also, the hydrogels supported the adhesion, growth, spreading, and proliferation of H9c2 cells as unveiled by rhodamine staining. The hydrogels promoted neo-tissue formation that was proven using rat and swine myocardial tissue explant culture. Compared to GCP and CoCP, CP and HACP were superior owing to the cell viability, hemocompatibility, and conductance, resulting in the highest degree of cytoskeletal organization and neo-tissue formation. The physiochemical and biological performance of these hydrogels supported neo-cardiac tissue formation. Overall, the CP, GCP, HACP, and CoCP hydrogel systems promise novel translational opportunities in regenerative cardiology. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering)
Show Figures

Figure 1

16 pages, 3662 KiB  
Article
Biomimetic Gradient Hydrogels with High Toughness and Antibacterial Properties
by Mingzhu Zeng, Zhimao Huang, Xiao Cen, Yinyu Zhao, Fei Xu, Jiru Miao, Quan Zhang and Rong Wang
Gels 2024, 10(1), 6; https://doi.org/10.3390/gels10010006 - 21 Dec 2023
Cited by 1 | Viewed by 1939
Abstract
Traditional hydrogels, as wound dressings, usually exhibit poor mechanical strength and slow drug release performance in clinical biomedical applications. Although various strategies have been investigated to address the above issues, it remains a challenge to develop a simple method for preparing hydrogels with [...] Read more.
Traditional hydrogels, as wound dressings, usually exhibit poor mechanical strength and slow drug release performance in clinical biomedical applications. Although various strategies have been investigated to address the above issues, it remains a challenge to develop a simple method for preparing hydrogels with both toughness and controlled drug release performance. In this study, a tannic acid-reinforced poly (sulfobetaine methacrylate) (TAPS) hydrogel was fabricated via free radical polymerization, and the TAPS hydrogel was subjected to a simple electrophoresis process to obtain the hydrogels with a gradient distribution of copper ions. These gradient hydrogels showed tunable mechanical properties by changing the electrophoresis time. When the electrophoresis time reached 15 min, the hydrogel had a tensile strength of 368.14 kPa, a tensile modulus of 16.17 kPa, and a compressive strength of 42.77 MPa. It could be loaded at 50% compressive strain and then unloaded for up to 70 cycles and maintained a constant compressive stress of 1.50 MPa. The controlled release of copper from different sides of the gradient hydrogels was observed. After 6 h of incubation, the hydrogel exhibited a strong bactericidal effect on Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, with low toxicity to NIH/3T3 fibroblasts. The high toughness, controlled release of copper, and enhanced antimicrobial properties of the gradient hydrogels make them excellent candidates for wound dressings in biomedical applications. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering)
Show Figures

Figure 1

18 pages, 3639 KiB  
Article
Bromelain- and Silver Nanoparticle-Loaded Polycaprolactone/Chitosan Nanofibrous Dressings for Skin Wound Healing
by Yasaman Saghafi, Hadi Baharifar, Najmeh Najmoddin, Azadeh Asefnejad, Hassan Maleki, Sayed Mahmoud Sajjadi-Jazi, Alireza Bonkdar, Forough Shams and Kamyar Khoshnevisan
Gels 2023, 9(8), 672; https://doi.org/10.3390/gels9080672 - 19 Aug 2023
Cited by 24 | Viewed by 3742
Abstract
A cutaneous wound is caused by various injuries in the skin, which can be wrapped with an efficient dressing. Electrospinning is a straightforward adjustable technique that quickly and continuously generates nanofibrous wound dressings containing antibacterial and anti-inflammatory agents to promote wound healing. The [...] Read more.
A cutaneous wound is caused by various injuries in the skin, which can be wrapped with an efficient dressing. Electrospinning is a straightforward adjustable technique that quickly and continuously generates nanofibrous wound dressings containing antibacterial and anti-inflammatory agents to promote wound healing. The present study investigated the physicochemical and biological properties of bromelain (BRO)- and silver nanoparticle (Ag NPs)-loaded gel-based electrospun polycaprolactone/chitosan (PCL/CS) nanofibrous dressings for wound-healing applications. Electron microscopy results showed that the obtained nanofibers (NFs) had a uniform and homogeneous morphology without beads with an average diameter of 176 ± 63 nm. The FTIR (Fourier transform infrared) analysis exhibited the loading of the components. Moreover, adding BRO and Ag NPs increased the tensile strength of the NFs up to 4.59 MPa. BRO and Ag NPs did not significantly affect the hydrophilicity and toxicity of the obtained wound dressing; however, the antibacterial activity against E. coli and S. aureus bacteria was significantly improved. The in vivo study showed that the wound dressing containing BRO and Ag NPs improved the wound-healing process within one week compared to other groups. Therefore, gel-based PCL/CS nanofibrous dressings containing BRO and Ag NPs could be a promising solution for healing skin wounds. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering)
Show Figures

Graphical abstract

Review

Jump to: Research

38 pages, 3067 KiB  
Review
Hydrogel-Based Scaffolds: Advancing Bone Regeneration Through Tissue Engineering
by Juan Luis Cota Quintero, Rosalío Ramos-Payán, José Geovanni Romero-Quintana, Alfredo Ayala-Ham, Mercedes Bermúdez and Elsa Maribel Aguilar-Medina
Gels 2025, 11(3), 175; https://doi.org/10.3390/gels11030175 - 27 Feb 2025
Viewed by 1488
Abstract
Bone tissue engineering has emerged as a promising approach to addressing the limitations of traditional bone grafts for repairing bone defects. This regenerative medicine strategy leverages biomaterials, growth factors, and cells to create a favorable environment for bone regeneration, mimicking the body’s natural [...] Read more.
Bone tissue engineering has emerged as a promising approach to addressing the limitations of traditional bone grafts for repairing bone defects. This regenerative medicine strategy leverages biomaterials, growth factors, and cells to create a favorable environment for bone regeneration, mimicking the body’s natural healing process. Among the various biomaterials explored, hydrogels (HGs), a class of three-dimensional, hydrophilic polymer networks, have gained significant attention as scaffolds for bone tissue engineering. Thus, this review aimed to investigate the potential of natural and synthetic HGs, and the molecules used for its functionalization, for enhanced bone tissue engineering applications. HGs offer several advantages such as scaffolds, including biocompatibility, biodegradability, tunable mechanical properties, and the ability to encapsulate and deliver bioactive molecules. These properties make them ideal candidates for supporting cell attachment, proliferation, and differentiation, ultimately guiding the formation of new bone tissue. The design and optimization of HG-based scaffolds involve adapting their composition, structure, and mechanical properties to meet the specific requirements of bone regeneration. Current research focuses on incorporating bioactive molecules, such as growth factors and cytokines, into HG scaffolds to further enhance their osteoinductive and osteoconductive properties. Additionally, strategies to improve the mechanical strength and degradation kinetics of HGs are being explored to ensure long-term stability and support for new bone formation. The development of advanced HG-based scaffolds holds great potential for revolutionizing bone tissue engineering and providing effective treatment options for patients with bone defects. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering)
Show Figures

Graphical abstract

21 pages, 1916 KiB  
Review
The Clinical Application of Gel-Based Composite Scaffolds in Rotator Cuff Repair
by Shebin Tharakan, Michael Hadjiargyrou and Azhar Ilyas
Gels 2025, 11(1), 2; https://doi.org/10.3390/gels11010002 - 24 Dec 2024
Viewed by 1271
Abstract
Rotator cuff tears are a common injury that can be treated with or without surgical intervention. Gel-based scaffolds have gained significant attention in the field of tissue engineering, particularly for applications like rotator cuff repair. Scaffolds can be biological, synthetic, or a mixture [...] Read more.
Rotator cuff tears are a common injury that can be treated with or without surgical intervention. Gel-based scaffolds have gained significant attention in the field of tissue engineering, particularly for applications like rotator cuff repair. Scaffolds can be biological, synthetic, or a mixture of both materials. Collagen, a primary constituent of the extracellular matrix (ECM) in musculoskeletal tissues, is one of the most widely used materials for gel-based scaffolds in rotator cuff repair, but other ECM-based and synthetic-based composite scaffolds have also been utilized. These composite scaffolds can be engineered to mimic the biomechanical and biological properties of natural tissues, supporting the healing process and promoting regeneration. Various clinical studies examined the effectiveness of these composite scaffolds with collagen, ECM and synthetic polymers and provided outstanding results with remarkable improvements in range of motion (ROM), strength, and pain. This review explores the material composition, manufacturing process and material properties of gel-based composite scaffolds as well as their clinical outcomes for the treatment of rotator cuff injuries. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering)
Show Figures

Figure 1

Back to TopTop