energies-logo

Journal Browser

Journal Browser

Advanced Load Forecasting Technologies for Power Systems

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "F1: Electrical Power System".

Deadline for manuscript submissions: 20 January 2026 | Viewed by 984

Special Issue Editors


E-Mail Website
Guest Editor
Department of Electrical Engineering, Soongsil University, Seoul 06978, Republic of Korea
Interests: load forecasting; load modeling; power system operation; power system economics

E-Mail Website
Guest Editor
Department of Electrical Engineering, Sangmyung University, Seoul 03016, Republic of Korea
Interests: power system operation and planning; particularly in load forecasting and its applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The global energy transition, driven by the urgency of the climate crisis, is reshaping the power generation landscape and altering the energy mix. As renewable energy sources expand rapidly, the need for systematic power system planning and stable operation has become more critical than ever. The accurate forecasting of both demand and generation—including intermittent renewable resources—has emerged as a key enabler for effective power system operation and planning.

This Special Issue aims to present recent advances in energy forecasting methodologies and their practical applications. We invite the submission of high-quality original research articles, review papers, and technical papers that address the challenges of forecasting power demand and generation with nonlinear and uncertain characteristics, leveraging both traditional statistical methods and modern machine learning techniques.

Topics of interest include, but are not limited to, the following:

  • All aspects of energy forecasting’
  • Very short-term, short-term, medium-term, and long-term load forecasting;
  • Very short-term, short-term, medium-term, and long-term renewable energy forecasting;
  • Energy consumption forecasting over various time horizons;
  • Machine learning-based forecasting approaches;
  • Artificial intelligence techniques, including support vector machines (SVM), fuzzy inference systems, and artificial neural networks (ANN);
  • Statistical forecasting models;
  • Probabilistic and uncertainty-aware forecasting methods;
  • Forecasting for regional integrated energy systems;
  • Forecasting that incorporates behind-the-meter (BTM) generation;
  • Economic impact analysis of forecasting accuracy;
  • Development and application of advanced forecasting models.

We look forward to your contributions that advance the state of the art in load and energy forecasting for modern power systems.

Prof. Dr. Kyung-Bin Song
Dr. Young-Min Wi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • load forecasting
  • machine learning
  • renewable energy
  • advanced forecasting model

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 1996 KB  
Article
Short-Term Probabilistic Prediction of Photovoltaic Power Based on Bidirectional Long Short-Term Memory with Temporal Convolutional Network
by Weibo Yuan, Jinjin Ding, Li Zhang, Jingyi Ni and Qian Zhang
Energies 2025, 18(20), 5373; https://doi.org/10.3390/en18205373 - 12 Oct 2025
Viewed by 289
Abstract
To mitigate the impact of photovoltaic (PV) power generation uncertainty on power systems and accurately depict the PV output range, this paper proposes a quantile regression probabilistic prediction model (TCN-QRBiLSTM) integrating a Temporal Convolutional Network (TCN) and Bidirectional Long Short-Term Memory (BiLSTM). First, [...] Read more.
To mitigate the impact of photovoltaic (PV) power generation uncertainty on power systems and accurately depict the PV output range, this paper proposes a quantile regression probabilistic prediction model (TCN-QRBiLSTM) integrating a Temporal Convolutional Network (TCN) and Bidirectional Long Short-Term Memory (BiLSTM). First, the historical dataset is divided into three weather scenarios (sunny, cloudy, and rainy) to generate training and test samples under the same weather conditions. Second, a TCN is used to extract local temporal features, and BiLSTM captures the bidirectional temporal dependencies between power and meteorological data. To address the non-differentiable issue of traditional interval prediction quantile loss functions, the Huber norm is introduced as an approximate replacement for the original loss function by constructing a differentiable improved Quantile Regression (QR) model to generate confidence intervals. Finally, Kernel Density Estimation (KDE) is integrated to output probability density prediction results. Taking a distributed PV power station in East China as the research object, using data from July to September 2022 (15 min resolution, 4128 samples), comparative verification with TCN-QRLSTM and QRBiLSTM models shows that under a 90% confidence level, the Prediction Interval Coverage Probability (PICP) of the proposed model under sunny/cloudy/rainy weather reaches 0.9901, 0.9553, 0.9674, respectively, which is 0.56–3.85% higher than that of comparative models; the Percentage Interval Normalized Average Width (PINAW) is 0.1432, 0.1364, 0.1246, respectively, which is 1.35–6.49% lower than that of comparative models; the comprehensive interval evaluation index (I) is the smallest; and the Bayesian Information Criterion (BIC) is the lowest under all three weather conditions. The results demonstrate that the model can effectively quantify and mitigate PV power generation uncertainty, verifying its reliability and superiority in short-term PV power probabilistic prediction, and it has practical significance for ensuring the safe and economical operation of power grids with high PV penetration. Full article
(This article belongs to the Special Issue Advanced Load Forecasting Technologies for Power Systems)
Show Figures

Figure 1

19 pages, 1040 KB  
Article
Very Short-Term Load Forecasting for Large Power Systems with Kalman Filter-Based Pseudo-Trend Information Using LSTM
by Tae-Geun Kim, Bo-Sung Kwon, Sung-Guk Yoon and Kyung-Bin Song
Energies 2025, 18(18), 4890; https://doi.org/10.3390/en18184890 - 15 Sep 2025
Viewed by 504
Abstract
The increasing integration of renewable energy resources, driven by carbon neutrality goals, has intensified load variability, thereby making very short-term load forecasting (VSTLF) more challenging. Accurate VSTLF is essential for the reliable and economical real-time operation of power systems. This study proposes a [...] Read more.
The increasing integration of renewable energy resources, driven by carbon neutrality goals, has intensified load variability, thereby making very short-term load forecasting (VSTLF) more challenging. Accurate VSTLF is essential for the reliable and economical real-time operation of power systems. This study proposes a Long Short-Term Memory (LSTM)-based VSTLF model designed to predict nationwide power system load, including renewable generation over a six-hour horizon with 15 min intervals. The model employs a reconstituted load approach that incorporates photovoltaic (PV) generation effects and computes representative weather variables across the country. Furthermore, the most informative input features are selected through a combination of correlation analyses. To further enhance input sequences, pseudo-trend components are generated using a Kalman filter-based predictor and integrated into the model input. The Kalman filter-based pseudo-trend produced an MAPE of 1.724%, and its inclusion in the proposed model reduced the forecasting error (MAPE) by 0.834 percentage points. Consequently, the final model achieved an MAPE of 0.890%, which is under 1% of the 94,929 MW nationwide peak load. Full article
(This article belongs to the Special Issue Advanced Load Forecasting Technologies for Power Systems)
Show Figures

Figure 1

Back to TopTop