Previous Issue
Volume 6, September
 
 

Electron. Mater., Volume 6, Issue 4 (December 2025) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
23 pages, 6147 KB  
Article
Reliability of Fine-Pitch Cu-Microbumps for 3D Heterogeneous Integration: Effect of Solder, Pitch Scaling and Substrate Materials
by Haohan Guo and Shubhra Bansal
Electron. Mater. 2025, 6(4), 18; https://doi.org/10.3390/electronicmat6040018 - 3 Nov 2025
Viewed by 342
Abstract
A new and transformative era in semiconductor packaging is underway, wherein, there is a shift from transistor scaling to system scaling and integration through advanced packaging. For advanced packaging, interconnect scaling is a key driver, with interconnect density requirements for chip-to-substrate microbump pitch [...] Read more.
A new and transformative era in semiconductor packaging is underway, wherein, there is a shift from transistor scaling to system scaling and integration through advanced packaging. For advanced packaging, interconnect scaling is a key driver, with interconnect density requirements for chip-to-substrate microbump pitch below 5 μm and half-line pitch below 1 μm for Cu redistribution layer (RDL). Here, we present a comprehensive theoretical comparison of thermal cycling behavior in accordance with JESD22-A104D standard, intermetallic thickness evolution, and steady-state thermal analysis of Cu-microbump assembly for different bonding materials and substrates. Bonding materials studied include solder caps such as SAC105 (Sn98.5Ag1.0Cu0.5), eutectic Sn-Pb (Sn63Pb37), eutectic Sn-Bi (Sn42Bi58), Pb95Sn5, Indium, and Cu-Cu TCB structure. Effect of substrates including Si, glass and FR-4 is evaluated for various microbump structures with varying pitches (85 µm, 40 µm, 10 µm, and 5 µm) on their fatigue life. Results indicate that for Cu-microbump assemblies at an 85 µm pitch. The Pb95Sn5 exhibits the longest predicted fatigue life (3267 cycles by Engelmaier and 452 cycles by Darveaux), while SAC105 shows the shortest (320 and 103 cycles). Additionally, the Cu-Cu TCB structure achieves an estimated lifetime of approximately 7800 cycles, which is significantly higher than all solder-based Cu-microbump assemblies. The findings contribute to advanced packaging applications by providing valuable theoretical references for optimizing solder materials and structural configurations. Full article
Show Figures

Figure 1

18 pages, 2787 KB  
Article
An Efficient Electrostatic Discharge Analytical Model for a Local Bottom-Gate Carbon Nanotube Field-Effect Transistor
by Weiyi Zheng, Yuyan Zhang, Zhifeng Chen, Qiaoying Gan, Xuefang Xiao, Ying Gao, Jianhua Jiang and Chengying Chen
Electron. Mater. 2025, 6(4), 17; https://doi.org/10.3390/electronicmat6040017 - 23 Oct 2025
Viewed by 343
Abstract
In the post-Moore era, carbon nanotube field-effect transistors (CNTFETs) are a promising alternative to complementary metal-oxide-semiconductor (CMOS) technology at and below the 5 nm node. Compact models bridge circuit design and device physics, yet the electrostatic discharge (ESD) behavior of CNTFETs remains insufficiently [...] Read more.
In the post-Moore era, carbon nanotube field-effect transistors (CNTFETs) are a promising alternative to complementary metal-oxide-semiconductor (CMOS) technology at and below the 5 nm node. Compact models bridge circuit design and device physics, yet the electrostatic discharge (ESD) behavior of CNTFETs remains insufficiently captured. Focusing on the local bottom-gate (LBG) CNTFET structure, which offers enhanced gate control due to its bottom-gate configuration, this paper investigates three dominant ESD-triggering mechanisms—thermionic current, tunneling leakage current, and thermal failure breakdown. Then, a hybrid compact–behavioral ESD model for CNTFETs is established. After theoretical derivation and comparison with test results, the model parameters are optimized through fitting. The simulation results exhibit excellent agreement with CNTFET measurements, particularly capturing the Human Body Model (HBM) pre-charge threshold phenomenon at 72 V and accurately predicting the subsequent voltage collapse behavior. This validates the accuracy and effectiveness of the model, laying a theoretical and experimental foundation for further construction of carbon-based standard-cell and I/O libraries. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Figure 1

31 pages, 8104 KB  
Review
Recent Advances in Triboelectric Materials for Active Health Applications
by Chang Peng, Yuetong Lin, Zhenyu Jiang, Yiping Liu, Licheng Zhou, Zejia Liu, Liqun Tang and Bao Yang
Electron. Mater. 2025, 6(4), 16; https://doi.org/10.3390/electronicmat6040016 - 23 Oct 2025
Viewed by 451
Abstract
Triboelectric materials can convert irregular mechanical stimuli from human motion or environmental sources into high surface charge densities and instantaneous electrical outputs. Their intrinsic properties, such as flexibility, stretchability, chemical tunability, and compatibility with diverse substrates, play a critical role in determining the [...] Read more.
Triboelectric materials can convert irregular mechanical stimuli from human motion or environmental sources into high surface charge densities and instantaneous electrical outputs. Their intrinsic properties, such as flexibility, stretchability, chemical tunability, and compatibility with diverse substrates, play a critical role in determining the efficiency and reliability of triboelectric devices. In the context of active health, triboelectric materials not only serve as the core functional layers for self-powered sensing but also enable real-time physiological monitoring, motion tracking, and human–machine interaction by directly transducing biomechanical signals into electrical information. Soft triboelectric sensors exhibit high sensitivity, wide operational ranges, excellent biocompatibility, and wearability, making them highly promising for active health monitoring applications. Despite these advantages, challenges remain in enhancing surface charge density, achieving effective signal multiplexing, and ensuring long-term stability. This review provides a comprehensive overview of triboelectric mechanisms, working modes, influencing factors, performance enhancement strategies, and wearable health applications. Finally, it systematically summarizes the key improvement approaches and future development directions of triboelectric materials for active health, offering valuable guidance for advancing wearable self-powered biosensors. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Figure 1

6 pages, 900 KB  
Communication
Nanoswelling Structures of Silicone Rubber Under Aluminum Nanoparticles Induced by 193 nm ArF Excimer Laser
by Masayuki Okoshi
Electron. Mater. 2025, 6(4), 15; https://doi.org/10.3390/electronicmat6040015 - 21 Oct 2025
Viewed by 235
Abstract
In metal nanoparticles, localized surface plasmon resonance occurs due to the interaction between electrons on the surface and light. Among them, aluminum (Al) nanoparticles are known to have a resonant absorption wavelength in the ultraviolet light region. In this paper, I found a [...] Read more.
In metal nanoparticles, localized surface plasmon resonance occurs due to the interaction between electrons on the surface and light. Among them, aluminum (Al) nanoparticles are known to have a resonant absorption wavelength in the ultraviolet light region. In this paper, I found a new phenomenon in which nanoswelling structures are formed on the silicone rubber surface by distributing Al nanoparticles on the surface and irradiating them uniformly with an ArF excimer laser at a wavelength of 193 nm. The formation of the nanoswelling structure was not observed when gold nanoparticles were distributed. Thus, the mechanism of nanoswelling structure formation is considered as follows: localized surface plasmon resonance is induced in the Al nanoparticles by the interaction between the Al nanoparticles and the ArF excimer laser, which causes photodissociation of the Si-O-Si bonds of the silicone rubber underneath, volume expansion due to molecular weight reduction, and swelling to nanometer sizes. The present study provides a new biomimetic method for ensuring the mechano-bactericidal functions of a silicone rubber surface to develop highly functional plastic windows for automobiles. Full article
Show Figures

Graphical abstract

15 pages, 3325 KB  
Article
Impact of SiN Passivation on Dynamic-RON Degradation of 100 V p-GaN Gate AlGaN/GaN HEMTs
by Marcello Cioni, Giacomo Cappellini, Giovanni Giorgino, Alessandro Chini, Antonino Parisi, Cristina Miccoli, Maria Eloisa Castagna, Aurore Constant and Ferdinando Iucolano
Electron. Mater. 2025, 6(4), 14; https://doi.org/10.3390/electronicmat6040014 - 7 Oct 2025
Viewed by 539
Abstract
In this paper, the impact of SiN passivation on dynamic-RON degradation of AlGaN/GaN HEMTs devices is put in evidence. To this end, samples showing different SiN passivation stoichiometry are considered, labeled as Sample A and Sample B. For dynamic-RON tests, two [...] Read more.
In this paper, the impact of SiN passivation on dynamic-RON degradation of AlGaN/GaN HEMTs devices is put in evidence. To this end, samples showing different SiN passivation stoichiometry are considered, labeled as Sample A and Sample B. For dynamic-RON tests, two different experimental setups are employed to investigate the RON-drift showing up during conventional switch mode operation by driving the DUTs under both (i) resistive load and (ii) soft-switching trajectory. This allows to discern the impact of hot carriers and off-state drain voltage stress on the RON parameter drift. Measurements performed with both switching loci shows similar dynamic-RON response, indicating that hot carriers are not involved in the degradation of tested devices. Nevertheless, a significant difference was observed between Sample A and Sample B, with the former showing an additional RON-degradation mechanism, not present on the latter. This additional drift is totally ascribed to the SiN passivation layer and is confirmed by the different leakage current measured across the two SiN types. The mechanism is explained by the injection of negative charges from the Source Field-Plate towards the AlGaN surface that are captured by surface/dielectric states and partially depletes the 2DEG underneath. Full article
Show Figures

Figure 1

12 pages, 1863 KB  
Article
Development of Water-Developable Negative Photoresist for i-Line Photolithography Using Cellulose Derivatives with Underlayer
by Hiryu Hayashi, Yuna Hachikubo, Mano Ando, Misaki Oshima, Mayu Morita and Satoshi Takei
Electron. Mater. 2025, 6(4), 13; https://doi.org/10.3390/electronicmat6040013 - 25 Sep 2025
Viewed by 594
Abstract
Water-developable photoresist was synthesized by introducing methacrylate groups into hydroxypropyl cellulose (HPC), a cellulose derivative, via substitution of hydroxyl groups. The material enabled micropatterning through ultraviolet (UV) exposure at a wavelength of 365 nm with an exposure dose of 450 mJ/cm2. [...] Read more.
Water-developable photoresist was synthesized by introducing methacrylate groups into hydroxypropyl cellulose (HPC), a cellulose derivative, via substitution of hydroxyl groups. The material enabled micropatterning through ultraviolet (UV) exposure at a wavelength of 365 nm with an exposure dose of 450 mJ/cm2. Line and dot micropatterns were formed on polypropylene substrates applying underlayer, achieving resolutions of 4.5 µm and 5.0 µm, respectively. The photoresist demonstrated superior etching resistance under CF4 plasma compared to another water-soluble photo resist. Unlike conventional photoresists that require hazardous organic solvents, this water-developable photoresist offers an environmentally friendly alternative, reducing health risks and environmental impact in the electronics industry. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop