Nonlinear Optical Crystals 2017—Commemorative Issue in Honor of Professor Chuangtian Chen on the Occasion of his 80th Anniversary

A special issue of Crystals (ISSN 2073-4352).

Deadline for manuscript submissions: closed (31 January 2017) | Viewed by 61202

Special Issue Editors


E-Mail Website
Guest Editor
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, China
Interests: nonlinear optical crystals and devices
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Interests: solid state chemistry; crystal and magnetic structures; crystal growth; magneto-optical crystals; magneto-caloric materials

E-Mail Website
Guest Editor
State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Interests: crystal growth; nonlinear optical materials; solid state chemistry; chalcogenides; 2D materials; THz time domain spectroscopy (THz-TDS)
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Chemistry, Tsinghua University, Beijing, China
Interests: colloidal self-assembly; block copolymer self-assembly; piezoelectric and ferroelectric single crystals; organic–inorganic hybrid perovskite single crystals; black phosphorus single crystals
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is dedicated to Professor Chuangtian Chen* on the occasion of his 80th Birthday.
The role of nonlinear optical (NLO) crystals is to generate tunable laser beams covering optical spectra regions by means of frequency conversion. Currently, the commercially available crystals are capable of harmonic generation in the region from UV to near-IR. Efforts have been made to grow high quality crystals to improve their laser performance in practical applications, and to discover new crystals to extend the spectra coverage into deep-UV and mid-IR region. These areas are the main reasons for producing the current Special Issue on “Nonlinear Optical Crystals”.

This Special Issue is intended to provide a unique international forum aimed at covering a broad description of research involving theoretical study of structure–property relations, as well as on design, growth, and characterization of NLO crystals. Scientists working in a wide range of disciplines are invited to contribute to this cause.

The topics summarized in the keywords cover broad examples of the larger number of sub-topics that could be covered. The volume is especially open for innovative contributions involving any of NLO/crystal aspects of the topics and/or sub-topics.

Prof. Dr. Ning Ye
Prof. Dr. Rukang Li
Prof. Dr. Shanpeng Wang
Dr. Qingfeng Yan
Guest Editors

* Professor Chuangtian Chen, Member of the Chinese Academy of Sciences, Fellow of the Third World Academy of Sciences, has conducted research on crystal material science and technology for a long time. He proposed the Anionic group theory of the Nonlinear Optical (NLO) properties of crystals, later known as the NLO active group theory, and has successfully applied it for the search of new types of inorganic NLO materials. The research group under his leadership discovered the new NLO crystals BBO and LBO, which have applications of great importance in industry. Recently, NLO crystals, such as KBBF, SBBO and KABO, have also been developed, which have promising applications in the deep and vacuum ultraviolet region. For example, with the optical contact, prism-coupled KBBF crystal, he and co-workers have firstly achieved six harmonic generation of Nd:YVO4 laser (177.3nm), for more informations. Chen's group won a first prize of the National Invention Award and a special prize of CAS S&T Progress Award, while he has been given the Laser Focus World Commercial Technology Achievement Award and the Third World Academy of Sciences Award for Chemistry.

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Nonlinear optical crystal
  • Crystal growth
  • Crystal structure
  • Structure&ndash
  • property relations

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

5130 KiB  
Article
Effects of Changing Substituents on the Non-Linear Optical Properties of Two Coumarin Derivatives
by Basílio Baseia, Francisco A. P. Osório, Larissa Ferreira Lima and Clodoaldo Valverde
Crystals 2017, 7(6), 158; https://doi.org/10.3390/cryst7060158 - 27 May 2017
Cited by 25 | Viewed by 4388
Abstract
In this article, we study the electric properties of two coumarin derivatives whose difference stems from the change of substituents at 3-position of the pendant benzene ring ( C 18 H 15 NO 3 ) and ( [...] Read more.
In this article, we study the electric properties of two coumarin derivatives whose difference stems from the change of substituents at 3-position of the pendant benzene ring ( C 18 H 15 NO 3 ) and ( C 18 H 15 NO 4 ). We use the supermolecule approach to deal with the molecules under the effect of the crystalline environment to calculate dipole moment, linear polarizability, and second-order hyperpolarizability, for the isolated and embedded molecules, including the static and dynamic cases and the presence of solvents. The (hyper) polarizabilities were derived from an iterative process and an ab initio computational procedure. In addition, we also calculated the HOMO-LUMO energies; at this point, the objective is to verify the effect of the exchange of substituents on the Band-Gap energy, an important parameter related to the excitation properties of coumarin compounds. Full article
Show Figures

Figure 1

2914 KiB  
Article
Synthesis, Crystal Structure and Nonlinear Optical Property of RbHgI3
by Yanjun Li, Yuxun Ding, Yaming Li, Hongming Liu, Xianggao Meng, Ye Cong, Jiang Zhang, Xuanke Li, Xingguo Chen and Jingui Qin
Crystals 2017, 7(5), 148; https://doi.org/10.3390/cryst7050148 - 22 May 2017
Cited by 12 | Viewed by 5887
Abstract
Searching for new nonlinear optical (NLO) crystals to be used in the infrared (IR) region is still a challenge. This paper presents the synthesis, crystal structure and properties of a new halide, RbHgI3. Its non-centrosymmetric single crystal can be grown in [...] Read more.
Searching for new nonlinear optical (NLO) crystals to be used in the infrared (IR) region is still a challenge. This paper presents the synthesis, crystal structure and properties of a new halide, RbHgI3. Its non-centrosymmetric single crystal can be grown in solution. In its crystal structure, all the polar [HgI4]2− groups align in such a way that brings a favorable net polarization. The measurement by Kurtz–Perry powder technique indicates that RbHgI3 shows a phase-matchable second harmonic generation (SHG) property seven times stronger than that of KH2PO4 (KDP). RbHgI3 displays excellent transparency in the range of 0.48–25 μm with relatively good thermal stability. The UV absorption implies that this yellow compound’s band gap is about 2.56 eV, close to that of AgGaS2. A preliminary measurement indicates that the laser-induced damage threshold of the crystal is about 28.3 MW/cm2. These preliminary experimental data reveal that RbHgI3 is a new candidate as nonlinear optical material in the infrared region. Full article
Show Figures

Graphical abstract

4591 KiB  
Article
Comparative Interrelationship of the Structural, Nonlinear-Optical and Other Acentric Properties for Oxide, Borate and Carbonate Crystals
by Boris I. Kidyarov
Crystals 2017, 7(4), 109; https://doi.org/10.3390/cryst7040109 - 12 Apr 2017
Cited by 13 | Viewed by 5967
Abstract
The structure and the maximal nonlinear optical (NLO) susceptibility χ(2) are tabulated for more 700 acentric binary oxides, 220 crystals of simple, binary and complex borates and for the same set of 110 carbonates, tartrates, formates, oxalates, acetates and fluoride-carbonates used in [...] Read more.
The structure and the maximal nonlinear optical (NLO) susceptibility χ(2) are tabulated for more 700 acentric binary oxides, 220 crystals of simple, binary and complex borates and for the same set of 110 carbonates, tartrates, formates, oxalates, acetates and fluoride-carbonates used in ultraviolet and deep ultraviolet optoelectronics. According to the chemical formula, the structural symbols of these crystals have been plotted on the plane of two minimal oxide bond lengths (OBL). It is shown that acentric crystals are positioned on such plane inside the vertical, horizontal and slope intersected ellipses of “acentricity”. The oxide and borate crystals with moderate NLO susceptibility are found in the central parts of these ellipses intersection and, with low susceptibility, on top, at the bottom and border of the ellipses rosette. The nonpolar fluoride-carbonate crystals with high NLO susceptibility are found in the curve-side rhombic parts of the slope ellipse of “acentricity”. The unmonotonous fuzzy dependence “χ(2)” on the OBL of these crystals is observed, and their clear-cut taxonomy on compounds with π– or σ–oxide bonds is also established. It is shown that the correlations of χ(2) with other acentric properties are nonlinear for the whole set of the oxide crystals having their clear maximum at a certain value of the piezoelectric or electro-optic coefficient. The correlation “hardness–thermoconductivity-fusibility” is plotted for oxide crystals, part of which is used at the creation of self-frequency-doubling solid state lasers. Full article
Show Figures

Figure 1

2684 KiB  
Article
Structure and Optical Properties of K0.67Rb1.33Al2B2O7 Crystal
by Qian Huang, Lijuan Liu, Mingjun Xia, Yi Yang, Shu Guo, Xiaoyang Wang, Zheshuai Lin and Chuangtian Chen
Crystals 2017, 7(4), 104; https://doi.org/10.3390/cryst7040104 - 7 Apr 2017
Cited by 3 | Viewed by 4191
Abstract
A UV nonlinear optical (NLO) crystal K0.67Rb1.33Al2B2O7 (KRABO) has been obtained by the top-seeded solution growth method for the first time. Its structure is formed of coplanar [BO3]3− triangle groups and [...] Read more.
A UV nonlinear optical (NLO) crystal K0.67Rb1.33Al2B2O7 (KRABO) has been obtained by the top-seeded solution growth method for the first time. Its structure is formed of coplanar [BO3]3− triangle groups and [Al2O7]8− groups, which are built from two [AlO4]5− tetrahedra sharing one vertex. Rb and K atoms have the same coordinates and locate between each layer in a disorderly fashion. The crystal has a larger NLO effect compared with its analog K2Al2B2O7 (KABO), as evidenced by powder second harmonic generation (SHG) test. The shortest SHG phase-matching wavelength is down to 231 nm according to the first-principle calculation, which indicates that KRABO is possible for the fourth harmonic generation of Nd:YAG at 266 nm. Full article
Show Figures

Figure 1

2403 KiB  
Article
Growth of High Quality Al-Doped CsLiB6O10 Crystals Using Cs2O-Li2O-MoO3 Fluxes
by Xianchao Zhu, Heng Tu, Ying Zhao and Zhanggui Hu
Crystals 2017, 7(3), 83; https://doi.org/10.3390/cryst7030083 - 13 Mar 2017
Cited by 5 | Viewed by 5220
Abstract
Abstract: High quality and large size Al-doped CsLiB6O10 (CLBO) single crystals have been successfully grown by top-seeded solution growth (TSSG) technique using Cs2O–Li2O–MoO3 fluxes. The advantages of this newly developed flux system were investigated by [...] Read more.
Abstract: High quality and large size Al-doped CsLiB6O10 (CLBO) single crystals have been successfully grown by top-seeded solution growth (TSSG) technique using Cs2O–Li2O–MoO3 fluxes. The advantages of this newly developed flux system were investigated by viscosity measurements and growth experiments. Al-doped CLBO presents a very high transmittance in the visible region and the weak absorption values at 1064 nm along a and c axes are only 140 and 50 ppm/cm, respectively. The measured LIDT of Al-doped CLBO at λ = 1064 nm and τ = 5.0 ns is 5.10 GW/cm2. Moreover, Al-doped CLBO exhibits an apparent enhancement of the hygroscopic nature in contrast with the undoped crystal as determined by the humidity experiments. Finally, a high fourth harmonic generation (FHG) conversion efficiency of 63% utilizing Al-doped CLBO has been achieved by a picosecond mode-locked Nd:YAG laser, the results also reveal that Al doping has no obvious impact on the FHG conversion efficiency. Full article
Show Figures

Figure 1

1497 KiB  
Article
Temperature-Dependent Sellmeier Equations of IR Nonlinear Optical Crystal BaGa4Se7
by Naixia Zhai, Chao Li, Bo Xu, Lei Bai, Jiyong Yao, Guochun Zhang, Zhanggui Hu and Yicheng Wu
Crystals 2017, 7(3), 62; https://doi.org/10.3390/cryst7030062 - 23 Feb 2017
Cited by 21 | Viewed by 6202
Abstract
The thermal dependent principal refractive indices of a new promising IR nonlinear optical crystal BaGa4Se7 at wavelengths of 0.546, 0.5806, 0.644, 0.7065, 1.530, 1.970, and 2.325μm were measured by using the vertical incidence method within the temperature range from 25 [...] Read more.
The thermal dependent principal refractive indices of a new promising IR nonlinear optical crystal BaGa4Se7 at wavelengths of 0.546, 0.5806, 0.644, 0.7065, 1.530, 1.970, and 2.325μm were measured by using the vertical incidence method within the temperature range from 25 to 150 °C. We derived equations of thermal refractive index coefficients as a function of wavelength that could be used to calculate the principal thermal refractive indices at different wavelengths. The temperature-dependent Sellmeier equations were also obtained and used to calculate the phase matching angles for the optical parametric process of BaGa4Se7 crystal at different temperatures. Full article
Show Figures

Figure 1

3010 KiB  
Article
Synthesis, Crystal Structure, and Nonlinear Optical Properties of a New Alkali and Alkaline Earth Metal Carbonate RbNa5Ca5(CO3)8
by Qiaoling Chen and Min Luo
Crystals 2017, 7(1), 10; https://doi.org/10.3390/cryst7010010 - 31 Dec 2016
Cited by 10 | Viewed by 6083
Abstract
A new nonlinear optical (NLO) material, RbNa5Ca5(CO3)8, has been synthesized by the hydrothermal method. The crystal structure is established by single-crystal X-ray diffraction. RbNa5Ca5(CO3)8 crystallizes in the hexagonal [...] Read more.
A new nonlinear optical (NLO) material, RbNa5Ca5(CO3)8, has been synthesized by the hydrothermal method. The crystal structure is established by single-crystal X-ray diffraction. RbNa5Ca5(CO3)8 crystallizes in the hexagonal crystal system with space group P63mc (No. 186). The structure of RbNa5Ca5(CO3)8 can be described as the adjacent infinite [CaCO3] layers lying in the a-b plane bridged through standing-on-edge [CO3] groups by sharing O atoms (two-fold coordinated) to build a framework with four types of tunnels running through the b-axis. The Rb, Na, and [Na0.67Ca0.33] atoms reside in these tunnels, respectively. The measurement of second harmonic generation (SHG) indicated that RbNa5Ca5(CO3)8 is a phase-matchable material, which had SHG responses of approximately 1×KH2PO4 (KDP). Meanwhile, the results from the UV-VIS diffuse reflectance spectroscopy study of the powder samples indicated that the UV cut-off edges of RbNa5Ca5(CO3)8 is about 203 nm. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

8321 KiB  
Review
Borate-Based Ultraviolet and Deep-Ultraviolet Nonlinear Optical Crystals
by Yi Yang, Xingxing Jiang, Zheshuai Lin and Yicheng Wu
Crystals 2017, 7(4), 95; https://doi.org/10.3390/cryst7040095 - 25 Mar 2017
Cited by 46 | Viewed by 8026
Abstract
Borates have long been recognized as a very important family of nonlinear optical (NLO) crystals, and have been widely used in the laser frequency-converting technology in ultraviolet (UV) and deep-ultraviolet (DUV) regions. In this work, the borate-based UV and DUV NLO crystals discovered [...] Read more.
Borates have long been recognized as a very important family of nonlinear optical (NLO) crystals, and have been widely used in the laser frequency-converting technology in ultraviolet (UV) and deep-ultraviolet (DUV) regions. In this work, the borate-based UV and DUV NLO crystals discovered in the recent decade are reviewed, and the structure–property relationship in the representative borate-based UV and DUV NLO crystals is analyzed. It is concluded that the optical properties of these crystals can be well explained directly from the types and spatial arrangements of B-O groups. The deduced mechanism understanding has significant implications for the exploration and design of new borate-based crystals with excellent UV and DUV NLO performance. Full article
Show Figures

Figure 1

9354 KiB  
Review
Borates—Crystal Structures of Prospective Nonlinear Optical Materials: High Anisotropy of the Thermal Expansion Caused by Anharmonic Atomic Vibrations
by Rimma Bubnova, Sergey Volkov, Barbara Albert and Stanislav Filatov
Crystals 2017, 7(3), 93; https://doi.org/10.3390/cryst7030093 - 22 Mar 2017
Cited by 47 | Viewed by 9601
Abstract
In the present study the thermal structure evolution is reviewed for known nonlinear optical borates such as β-BaB2O4, LiB3O5, CsLiB6O10, Li2B4O7, K2Al [...] Read more.
In the present study the thermal structure evolution is reviewed for known nonlinear optical borates such as β-BaB2O4, LiB3O5, CsLiB6O10, Li2B4O7, K2Al2B2O7, and α-BiB3O6, based on single-crystal and powder X-ray diffraction data collected over wide temperature ranges. Temperature-dependent measurements of further borates are presented for the first time: α-BaB2O4 (295–673 K), β-BaB2O4 (98–693 K), LiB3O5 (98–650 K) and K2Al2B2O7 (98–348 K). In addition to the established criteria for nonlinear optical (NLO) properties of crystals, here the role of the anisotropy and anharmonicity of the thermal vibrations of atoms is analysed as well as changes in their coordination spheres and the anisotropy of the thermal expansion of the crystal structure. Non-centrosymmetric borates, especially those that have NLO properties, often show distinct anisotropies for each cation in comparison to centrosymmetric borates. All considered NLO borates contain BO3 triangles, which are the principal cause of the strong anisotropy of the thermal expansion. Full article
Show Figures

Graphical abstract

734 KiB  
Review
On the Anionic Group Approximation to the Borate Nonlinear Optical Materials
by Rukang Li
Crystals 2017, 7(2), 50; https://doi.org/10.3390/cryst7020050 - 11 Feb 2017
Cited by 32 | Viewed by 4467
Abstract
In this mini-review type of article, a brief summary of the anionic group approximation as it relates to the borate nonlinear optical (NLO) crystals, an idea firstly proposed by Professor Chen, is presented.The basic idea, calculation method, tabulated coefficients of various common borate, [...] Read more.
In this mini-review type of article, a brief summary of the anionic group approximation as it relates to the borate nonlinear optical (NLO) crystals, an idea firstly proposed by Professor Chen, is presented.The basic idea, calculation method, tabulated coefficients of various common borate, as well as nitrate or carbonate groups, in their ideal geometries will be presented. New practices reveal that those parameters can still give very accurate predicted NLO coefficients for recently found NLO crystals without any adjustment of parameters. Full article
Show Figures

Figure 1

Back to TopTop