Bio-Inspired Underwater Propulsion: Actuation, Sensing, Processing and Control

A special issue of Biomimetics (ISSN 2313-7673). This special issue belongs to the section "Locomotion and Bioinspired Robotics".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 2439

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
Interests: intelligent structures; bio-inspired underwater propulsion; embodied intelligence and mechanical computing; soft robotics; adaptive structures; fluid–structure interactions; structural dynamics; smart materials

Special Issue Information

Dear Colleagues,

Bio-inspired underwater propulsion aims to harness the swimming behavior of biology and grant robotic swimmers the biological performance benefits of efficiency, maneuverability, and adaptability. However, realizing robotic swimmers with biological performance is a significant challenge due to the complex interaction between structures, fluids, and electronics and the need to control and adapt this behavior across swimming conditions. To overcome these challenges, bio-inspired underwater propulsion requires a complex interplay between actuation, sensing, processing, and control.

This Special Issue aims to present advances in bio-inspired underwater propulsion that address both the individual components and interplay between actuation, sensing, processing, and control. Contributions to this issue could include theoretical insights into bio-inspired propulsion, novel robotic swimming mechanisms, and control of bio-inspired robotic swimmers. We welcome both numerical and experimental contributions as well as any type of bio-inspired underwater propulsion mechanism.

We welcome original research articles and reviews, and we particularly encourage contributions in the following research areas:

  • Unsteady swimming;
  • Embodied intelligence;
  • Sensorimotor control;
  • Multifunctional robots;
  • Adaptive behavior;
  • Continuum and soft robotic swimmers.

We look forward to receiving your contributions.

Dr. Patrick Musgrave
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomimetics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bio-inspired underwater propulsion
  • underwater robotics
  • unsteady swimming
  • embodied intelligence
  • sensorimotor control
  • bio-inspired sensing
  • multifunctional robots
  • adaptive behavior
  • soft robots
  • fluid–structure interaction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 4981 KB  
Article
Propulsive Force Characterization of a Bio-Robotic Sea Lion Foreflipper: A Kinematic Basis for Agile Propulsion
by Anthony Drago, Nicholas Marcouiller, Shraman Kadapa, Frank E. Fish and James L. Tangorra
Biomimetics 2025, 10(12), 831; https://doi.org/10.3390/biomimetics10120831 - 12 Dec 2025
Viewed by 167
Abstract
Unmanned underwater vehicles (UUVs) capable of agile, high-speed maneuvering in complex environments require propulsion systems that can dynamically modulate three-dimensional forces. The California sea lion (Zalophus californianus) provides an exceptional biological model, using its foreflippers to achieve rapid turns and powerful [...] Read more.
Unmanned underwater vehicles (UUVs) capable of agile, high-speed maneuvering in complex environments require propulsion systems that can dynamically modulate three-dimensional forces. The California sea lion (Zalophus californianus) provides an exceptional biological model, using its foreflippers to achieve rapid turns and powerful propulsion. However, the specific kinematic mechanisms that govern instantaneous force generation from its powerful foreflippers remain poorly quantified. This study experimentally characterizes the time-varying thrust and lift produced by a bio-robotic sea lion foreflipper to determine how flipper twist, sweep, and phase overlap modulate propulsive forces. A three-degree-of-freedom bio-robotic flipper with a simplified, low-aspect-ratio planform and single compliant hinge was tested in a circulating flow tank, executing parameterized power and paddle strokes in both isolated and combined-phase trials. The time-resolved force data reveal that the propulsive stroke functions as a tunable hybrid system. The power phase acts as a force-vectoring mechanism, where the flipper’s twist angle reorients the resultant vector: thrust is maximized in a broad, robust range peaking near 45°, while lift increases monotonically to 90°. The paddle phase operates as a flow-insensitive, geometrically driven thruster, where twist angle (0° optimal) regulates thrust by altering the presented surface area. In the full stroke, a temporal-phase overlap governs thrust augmentation, while the power-phase twist provides robust steering control. Within the tested inertial flow regime (Re ≈ 104–105), this control map is highly consistent with propulsion dominated by geometric momentum redirection and impulse timing, rather than circulation-based lift. These findings establish a practical, experimentally derived control map linking kinematic inputs to propulsive force vectors, providing a foundation for the design and control of agile, bio-inspired underwater vehicles. Full article
Show Figures

Graphical abstract

18 pages, 4650 KB  
Article
Longitudinal Model Identification and Controller Design for a Fish Robot with Control Fins via Experiments
by Daewook Kim, Jinyou Kim, Changyong Oh and Taesam Kang
Biomimetics 2025, 10(11), 731; https://doi.org/10.3390/biomimetics10110731 - 1 Nov 2025
Viewed by 479
Abstract
This paper presents an experimental longitudinal mode control approach for a biomimetic underwater robot. Input–output models for surge velocity and pitch angle were derived through experiments, considering the fish robot body with servo motors and control pins as a single system to solve [...] Read more.
This paper presents an experimental longitudinal mode control approach for a biomimetic underwater robot. Input–output models for surge velocity and pitch angle were derived through experiments, considering the fish robot body with servo motors and control pins as a single system to solve the problem of fish robots, which are complex and nonlinear, and also contain uncertainty. Closed-loop control systems were designed using PID controllers based on these models, and their performance was verified through simulations and experiments. Surge velocity and pitch angle response models were developed for nominal surge velocities of 0.2 m/s and 0.4 m/s. The surge velocity response models exhibited high agreement rates of 75.25% and 81.23% between the identified linear models and experimental results at 0.2 m/s and 0.4 m/s, respectively. In contrast, the pitch angle response model showed lower agreement rates of 68.02% and 34.24% between the identified linear model and experimental results at 0.2 m/s and 0.4 m/s, respectively. The gain margin and phase margin of the surge controller were 28.7 dB and 116°, and 37.2 dB and 70.6°, respectively. For the pitch response model, the low-frequency gain of the transfer function was very small at −31 dB when the nominal surge velocity was 0.2 m/s; this gain increased to −8 dB when the nominal surge velocity was increased to 0.4 m/s. It was observed that the initial value responses of the pitch angle converged to 0° with some oscillations in both the simulations and experiments. Therefore, it is believed that by identifying a linear model and subsequently designing a controller based on it, the surge velocity of the fish robot can be effectively controlled while stabilizing its pitch angle. Full article
Show Figures

Figure 1

19 pages, 8681 KB  
Article
Design and Implementation of a Biomimetic Underwater Robot Propulsion System Inspired by Bullfrog Hind Leg Movements
by Yichen Chu, Yahui Wang, Yanhui Fu, Mingxu Ma, Yunan Zhong and Tianbiao Yu
Biomimetics 2025, 10(8), 498; https://doi.org/10.3390/biomimetics10080498 - 30 Jul 2025
Viewed by 1450
Abstract
Underwater propulsion systems are the fundamental functional modules of underwater robotics and are crucial in intricate underwater operational scenarios. This paper proposes a biomimetic underwater robot propulsion scheme that is motivated by the hindlimb movements of the bullfrog. A multi-linkage mechanism was developed [...] Read more.
Underwater propulsion systems are the fundamental functional modules of underwater robotics and are crucial in intricate underwater operational scenarios. This paper proposes a biomimetic underwater robot propulsion scheme that is motivated by the hindlimb movements of the bullfrog. A multi-linkage mechanism was developed to replicate the “kicking-and-retracting” motion of the bullfrog by employing motion capture systems to acquire biological data on their hindlimb movements. The FDM 3D printing and PC board engraving techniques were employed to construct the experimental prototype. The prototype’s biomimetic and motion characteristics were validated through motion capture experiments and comparisons with a real bullfrog. The biomimetic bullfrog hindlimb propulsion system was tested with six-degree-of-freedom force experiments to evaluate its propulsion capabilities. The system achieved an average thrust of 2.65 N. The effectiveness of motor drive parameter optimization was validated by voltage comparison experiments, which demonstrated a nonlinear increase in thrust as voltage increased. This design approach, which transforms biological kinematic characteristics into mechanical drive parameters, exhibits excellent feasibility and efficacy, offering a novel solution and quantitative reference for underwater robot design. Full article
Show Figures

Figure 1

Back to TopTop