State-of-the-Art Molecular and Translational Medicine in USA

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Molecular and Translational Medicine".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 4940

Special Issue Editors


E-Mail Website
Guest Editor
Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
Interests: environmental pollutants; endocrine disrupting chemicals; cancer
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Thoracic Surgery and Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
Interests: immunotherapy; genetics; personalized medicine; cancer epidemiology; molecular epidemiology; translational research
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Molecular and translational research represents a multidisciplinary field at the intersection of basic science and clinical application. It focuses on understanding biological processes at the molecular level and translating these insights into practical medical advancements, including diagnostics, therapeutics, and preventative strategies.

Key areas of molecular research include genomics, proteomics, metabolomics, and cellular biology, which aim to unravel the mechanisms underlying diseases. Translational research builds on this foundation, emphasizing the "bench-to-bedside" approach—bridging laboratory discoveries with clinical implementation. This process involves identifying molecular targets, developing experimental therapies, and validating these interventions in preclinical and clinical studies.

This field plays a pivotal role in precision medicine, which involves tailoring treatments based on individual genetic and molecular profiles. Innovations such as gene editing, biomarker discovery, and immunotherapies are direct outcomes of this research. Collaboration among biologists, clinicians, bioinformaticians, and pharmaceutical industries is essential for advancing this field and improving patient outcomes.

Molecular and translational research continues to evolve, driven by advancements in technology such as CRISPR, next-generation sequencing, and artificial intelligence, promising new frontiers in disease management and healthcare innovation.

For this Special Issue, we are seeking submissions of original research articles or reviews presenting impactful advances in the field of molecular and translational medicine in the USA.

Dr. Maaike van Gerwen
Dr. Stephanie J. Tuminello
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • diagnostics
  • therapeutics
  • prevention
  • cellular biology
  • disease mechanisms
  • precision medicine
  • biomarker discovery
  • immunotherapies
  • bioinformatics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 1609 KB  
Article
Magnetic Resonance Imaging and Cerebrospinal Fluid Biomarker Clustering Defines Biological Subtypes of Alzheimer’s Disease
by Rafail C. Christodoulou, Georgios Vamvouras, Maria Daniela Sarquis, Vasileia Petrou, Platon S. Papageorgiou, Ludwing Rivera, Celimar Morales, Gipsany Rivera, Evros Vassiliou, Elena E. Solomou and Sokratis G. Papageorgiou
Biomedicines 2025, 13(11), 2632; https://doi.org/10.3390/biomedicines13112632 - 27 Oct 2025
Viewed by 716
Abstract
Background/Objectives: Alzheimer’s disease (AD) exhibits clinical and biological variability. This study aimed to identify MRI-defined subtypes reflecting distinct biological pathways of neurodegeneration and cognitive decline. Methods: We applied principal component analysis followed by k-means clustering (k = 3) on volumetric MRI [...] Read more.
Background/Objectives: Alzheimer’s disease (AD) exhibits clinical and biological variability. This study aimed to identify MRI-defined subtypes reflecting distinct biological pathways of neurodegeneration and cognitive decline. Methods: We applied principal component analysis followed by k-means clustering (k = 3) on volumetric MRI data from 924 participants and validated clusters using cerebrospinal fluid (CSF) biomarkers (Aβ42, total tau, p-tau, CTRED, MAPres, glucose, CTWHITE). Results: Three major phenotypes emerged: (1) a tau/vascular limbic subtype with pronounced hippocampal and amygdala atrophy and elevated tau and CTRED levels; (2) a volume-preserved, low-amyloid subtype consistent with early-stage or cognitively resilient AD; and (3) a diffuse-atrophy subtype with high amyloid and tau burden and ventriculomegaly. Comparative analysis revealed progressive biological shifts from amyloid accumulation to tau aggregation and vascular compromise across these clusters. Conclusions: MRI-based clustering validated by CSF biomarkers delineates biologically meaningful AD endophenotypes. The results suggest a gradual cognitive decline driven by amyloid–tau–vascular interactions, supporting multimodal phenotyping as a practical approach for precision staging and intervention. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular and Translational Medicine in USA)
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 514 KB  
Review
What Is the Impact of Glyphosate on the Thyroid? An Updated Review
by Lomesh Choudhary, Mathilda Monaghan, Rebecca Schweppe, Aime T. Franco, Whitney Goldner and Maaike van Gerwen
Biomedicines 2025, 13(10), 2402; https://doi.org/10.3390/biomedicines13102402 - 30 Sep 2025
Viewed by 1172
Abstract
Background/Objectives: Thyroid dysfunction (hypo- and hyperthyroidism) and cancer incidence have increased over the past decades, possibly linked to environmental contributions from endocrine disrupting chemicals (EDCs). Glyphosate is one of the most widely used herbicides globally and has endocrine-disruptive properties. Because of the [...] Read more.
Background/Objectives: Thyroid dysfunction (hypo- and hyperthyroidism) and cancer incidence have increased over the past decades, possibly linked to environmental contributions from endocrine disrupting chemicals (EDCs). Glyphosate is one of the most widely used herbicides globally and has endocrine-disruptive properties. Because of the sensitivity of the thyroid gland to endocrine disruption and the increased glyphosate exposure worldwide, this comprehensive review aimed to summarize studies investigating the link between glyphosate/glyphosate-based herbicides (GBHs) and thyroid dysfunction in human, animal, and in vitro studies. Methods: PubMed, Scopus, and Embase were used to search for original studies assessing glyphosate or GBH exposure and thyroid-related outcomes through December 2024. Data were extracted on study design, population or model, exposure, and thyroid outcomes. A total of 28 studies, including 9 human, 3 in vitro, and 16 animal studies were included. Results: Human studies showed mixed findings with some suggesting associations between glyphosate exposure and altered thyroid hormone levels, while others found no significant effects. Animal studies, particularly in rodents and amphibians, showed thyroid hormone disruption and altered gene expression, especially after perinatal or developmental exposure. In vitro studies reported changes in thyroid-related gene transcription and cell viability, however at concentrations exceeding those seen in humans. Conclusions: While there is some evidence that glyphosate may disrupt thyroid function, differences in study populations, exposure assessment methods, species models, and exposure doses complicated the comparison and summarization of the results. Further mechanistic and longitudinal studies are needed to clarify the thyroid-specific risks of glyphosate exposure. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular and Translational Medicine in USA)
Show Figures

Figure 1

27 pages, 1466 KB  
Review
Curative Therapies for Hemophilias and Hemoglobinopathies in Adults: Immune, Gene, and Stem Cell Approaches in a Global Context
by Ayrton Bangolo, Behzad Amoozgar, Lili Zhang, Sarvarinder Gill, Daniel Lushimba Milolo, Justin Ngindu Kankonde, Claude Mbuyi Batakamuna, Robert Tassan, Christina Cho, John Bukasa-Kakamba and Kelley Mowatt-Pesce
Biomedicines 2025, 13(8), 2022; https://doi.org/10.3390/biomedicines13082022 - 19 Aug 2025
Viewed by 2367
Abstract
Hemophilias and hemoglobinopathies—including hemophilias A and B, sickle cell disease (SCD), and β-thalassemia—are debilitating genetic disorders associated with significant global health burdens. While traditional management has centered on factor replacement and transfusions, these approaches remain palliative, with limited access and durability in many [...] Read more.
Hemophilias and hemoglobinopathies—including hemophilias A and B, sickle cell disease (SCD), and β-thalassemia—are debilitating genetic disorders associated with significant global health burdens. While traditional management has centered on factor replacement and transfusions, these approaches remain palliative, with limited access and durability in many regions. Recent advances in immune-based therapeutics (e.g., emicizumab, concizumab, crizanlizumab), viral vector-mediated gene addition (e.g., Roctavian, Hemgenix), and gene-modified autologous stem cell therapies (e.g., Zynteglo, Casgevy) have ushered in a new era of disease-modifying and potentially curative interventions. These therapies offer durable efficacy and improved quality of life, particularly in adult populations. However, implementation remains uneven across global health systems due to high costs, limited infrastructure, and regulatory heterogeneity. Additionally, ethical considerations such as long-term surveillance, informed consent in vulnerable populations, and social perceptions of genetic modification present ongoing challenges. Innovations such as multiplex genome editing, immune-evasive donor platforms, synthetic biology, and AI-driven treatment modeling are poised to expand therapeutic horizons. Equitable access, particularly in regions bearing the highest disease burden, will require collaborative funding strategies, regional capacity building, and inclusive regulatory frameworks. This review summarizes the current landscape of curative therapy, outlines implementation barriers, and calls for coordinated international action to ensure that transformative care reaches all affected individuals worldwide. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular and Translational Medicine in USA)
Show Figures

Figure 1

Back to TopTop