Role of Natural Product in Cardiovascular Disease—2nd Edition

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Drug Discovery, Development and Delivery".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 764

Special Issue Editor

Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street, SE, Atlanta, GA 30303, USA
Interests: vascular biology; cardiovascular disease; metabolic diseases; evaluation of bioactive agents from natural sources
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cardiovascular disease (CVD), generally referring to a group of disorders of the heart and vessels as well as their associated adverse conditions, has been the leading cause of morbidity and mortality worldwide. The majority of CVD is caused by physiological or metabolic risk factors that can be controlled, modified or treated, such as hyperlipidemia, blood viscosity, atherosclerosis, hypertension, obesity and diabetes. Currently, the common therapeutical medication strategies of CVD have largely depended on lipid-lowering statins, blood thinners, and beta blockers. However, some patients do not achieve ideal effects from these traditional therapeutics. Therefore, there is still an unmet medical need to seek new therapeutic modalities for CVD treatment.

Natural products have been emerged as a novel source of leading compounds for cardiovascular drug discovery, because of their broad spectrum of pharmacological and biological activities, including lipid-lowering, antioxidant, anti-inflammatory, anti-thrombotic and immunomodulatory effects. Thus, in this Special Issue, we invite full-length research and review articles associated with the biological effect of natural products in preventing/counteracting cardiovascular diseases. This special issue only includes research “with defined molecular compound”.

The proposed topics of interest include, but are not limited to:

  • Clinical or preclinical studies investigating natural products in the treatment of CVD;
  • The role of natural products in preventing/counteracting vascular remodeling;
  • The role of natural products in preventing/counteracting cardiac metabolic dysfunction;
  • The use of natural products as leading compounds in drug discovery for the treatment of CVD;
  • Pathogenesis and novel risk factors of CVD;
  • Potential therapeutic targets of CVD.

Dr. Jian Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nature products
  • phytochemicals
  • biological and pharmacological activity
  • cardiovascular disease (CVD) pathogenesis of CVD
  • risk factors of CVD
  • metabolic symptom
  • clinical or preclinical studies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2645 KiB  
Article
A Deep Learning Methodology for Screening New Natural Therapeutic Candidates for Pharmacological Cardioversion and Anticoagulation in the Treatment and Management of Atrial Fibrillation
by Tim Dong, Rhys D. Llewellyn, Melanie Hezzell and Gianni D. Angelini
Biomedicines 2025, 13(6), 1323; https://doi.org/10.3390/biomedicines13061323 - 28 May 2025
Abstract
Background: The treatment and management of atrial fibrillation poses substantial complexity. A delicate balance in the trade-off between the minimising risk of stroke without increasing the risk of bleeding through anticoagulant optimisations. Natural compounds are often associated with low-toxicity effects, and their effects [...] Read more.
Background: The treatment and management of atrial fibrillation poses substantial complexity. A delicate balance in the trade-off between the minimising risk of stroke without increasing the risk of bleeding through anticoagulant optimisations. Natural compounds are often associated with low-toxicity effects, and their effects on atrial fibrillation have yet to be fully understood. Whilst deep learning (a subtype of machine learning that uses multiple layers of artificial neural networks) methods may be useful for drug compound interaction and discovery analysis, graphical processing units (GPUs) are expensive and often required for deep learning. Furthermore, in limited-resource settings, such as low- and middle-income countries, such technology may not be easily available. Objectives: This study aims to discover the presence of any new therapeutic candidates from a large set of natural compounds that may support the future treatment and management of atrial fibrillation anywhere using a low-cost technique. The objective is to develop a deep learning approach under a low-resource setting where suitable high-performance NVIDIA graphics processing units (GPUs) are not available and to apply to atrial fibrillation as a case study. Methods: The primary training dataset is the MINER-DTI dataset from the BIOSNAP collection. It includes 13,741 DTI pairs from DrugBank, 4510 drug compounds, and 2181 protein targets. Deep cross-modal attention modelling was developed and applied. The Database of Useful Decoys (DUD-E) was used to fine-tune the model using contrastive learning. This application and evaluation of the model were performed on the natural compound NPASS 2018 dataset as well as a dataset curated by a clinical pharmacist and a clinical scientist. Results: the new model showed good performance when compared to existing state-of-the-art approaches under low-resource settings in both the validation set (PR AUC: 0.8118 vs. 0.7154) and test set (PR AUC: 0.8134 vs. 0.7206). Tenascin-C (TNC; NPC306696) and deferoxamine (NPC262615) were identified as strong natural compound interactors of the arrhythmogenic targets ADRB1 and HCN1, respectively. A strong natural compound interactor of the bleeding-related target Factor X was also identified as sequoiaflavone (NPC194593). Conclusions: This study presented a new high-performing model under low-resource settings that identified new natural therapeutic candidates for pharmacological cardioversion and anticoagulation. Full article
(This article belongs to the Special Issue Role of Natural Product in Cardiovascular Disease—2nd Edition)
Show Figures

Figure 1

22 pages, 7308 KiB  
Article
Inulin Diet Alleviates Abdominal Aortic Aneurysm by Increasing Akkermansia and Improving Intestinal Barrier
by Shuang Guo, Fen Yang, Jiyu Zhang, Yuhan Liao, Ni Xia, Tingting Tang, Chaolong Wang, Qing K. Wang, Chen Chen, Desheng Hu, Zhilei Shan and Xiang Cheng
Biomedicines 2025, 13(4), 920; https://doi.org/10.3390/biomedicines13040920 - 9 Apr 2025
Viewed by 471
Abstract
Background/Objectives: Previous studies have shown varying efficacy of high-fiber diets containing different ingredients in abdominal aortic aneurysms (AAAs). This study aimed to identify which high-fiber diet protects against AAA in mice and elucidate the underlying mechanisms. Methods: This study compared inulin, [...] Read more.
Background/Objectives: Previous studies have shown varying efficacy of high-fiber diets containing different ingredients in abdominal aortic aneurysms (AAAs). This study aimed to identify which high-fiber diet protects against AAA in mice and elucidate the underlying mechanisms. Methods: This study compared inulin, cellulose, and chow diets in terms of their impact on aneurysm enlargement, elastin degradation, matrix metalloproteinase 2 and 9 expressions, CD3+ T cell and CD68+ macrophage infiltration, and macrophage differentiation. It also examined gut microbiota composition, focusing on Akkermansia, and evaluated intestinal barrier function and systemic inflammatory response. Results: The inulin diet, but not the cellulose diet, compared with the chow diet, reduced aneurysm enlargement, elastin degradation, matrix metalloproteinase 2 and 9 expressions, CD3+ T cell and CD68+ macrophage infiltration, and skewed macrophage towards M2 differentiation. The inulin diet enriched Akkermansia in both the small and large intestine. The inulin diet also enhanced the intestinal barrier by augmenting goblet cells, upregulating the gene related to the epithelial barrier and antibacterial peptides in the small intestine, and reducing circulating lipopolysaccharide and interleukin-1β levels. The inulin diet lowered the proportion of Ly6Chi monocytes and C-C chemokine receptor 2 expression on these cells in the bone marrow, reducing aneurysm infiltration. Administering Akkermansia to AAA mice decreased intestinal permeability and mitigated AAA. Conclusions: A diet rich in fermentable fiber inulin, as opposed to cellulose, alleviates AAA in mice. This beneficial effect is attributed to the enhanced presence of Akkermansia bacteria and improvement of the intestinal barrier. Full article
(This article belongs to the Special Issue Role of Natural Product in Cardiovascular Disease—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop