Air Pollution in China (4th Edition)

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Air Quality".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 5914

Special Issue Editors


E-Mail Website
Guest Editor
School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Interests: environmental geochemistry and health; air pollution; atmospheric particulate matters; bioaerosols; emerging contaminants; nano-plastics; heavy metals; toxicology; risk assessments; climate change and health
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361024, China
Interests: atmospheric photochemical pollution; secondary organic aerosols (SOA); source apportionments of PM2.5 and O3

E-Mail
Guest Editor
Zhejiang Institute of Meteorological Sciences, 256 Guokang Road, Hangzhou 310050, China
Interests: atmospheric chemistry; air quality; greenhouse gases and tracers observation and data analysis; sources of carbon dioxide; haze and PM2.5 formation mechanism

Special Issue Information

Dear Colleagues,

This Special Issue is a follow-up of the Special Issue, titled ‘Air Pollution in China (3rd Edition)’ published in Atmosphere in 2025 and will cover all aspects of Chinese atmospheric-pollution issues.

In China, serious air pollution, caused by human activities and partly natural factors, has been apparent since around the 1990s. It is worth mentioning that local air quality has greatly improved in the past decade, mainly due to progress in institutional and technical measures since the 2010s. However, the trajectory of air pollution in China is changing at present due to the compound event of photochemical and aerosol pollution, and air pollution control has thus entered a new phase.

This Special Issue, ‘Air Pollution in China (4th Edition)’ invites submissions of innovative papers that will help with the development of the Chinese atmospheric environment and the implementation of effective air pollution control strategies in the future.

Prof. Dr. Xiao-San Luo
Dr. Youwei Hong
Dr. Honghui Xu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • air pollution and health in China
  • atmospheric fine particulate matters
  • aerosols
  • bioaerosols
  • micro/nano-plastics
  • ozone
  • emerging contaminants
  • toxicology and risk assessments
  • air pollution and climate change
  • air pollution observation in China
  • remote sensing of air pollution in China
  • numerical simulation of air pollution in China
  • air pollution prediction method in China
  • air quality management and pollution control in China

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 17672 KB  
Article
Event-Based Tracking of Spatiotemporally Contiguous PM2.5 Pollution Events in China
by Zhihua Zhu, Rongjian Li, Yiming Chen, Zhenlin Zhang, Yiying Guo, Bo Xiong and Yanhui Zheng
Atmosphere 2025, 16(10), 1182; https://doi.org/10.3390/atmos16101182 - 14 Oct 2025
Viewed by 259
Abstract
PM2.5 pollution events evolve continuously through spatiotemporal diffusion. However, their three-dimensional spatiotemporal variation characteristics are often overlooked, and the interactions among key characteristics (e.g., duration, maximum concentration) have not yet been systematically analyzed. This study established a three-dimensional (longitude, latitude, and time) [...] Read more.
PM2.5 pollution events evolve continuously through spatiotemporal diffusion. However, their three-dimensional spatiotemporal variation characteristics are often overlooked, and the interactions among key characteristics (e.g., duration, maximum concentration) have not yet been systematically analyzed. This study established a three-dimensional (longitude, latitude, and time) spatiotemporal framework for identifying contiguous PM2.5 pollution events based on the high-resolution ChinaHighAirPollutants (CHAP) dataset (1 km spatial and 1-day temporal resolution). The framework applied the meteorological event tracking algorithm (i.e., the Forward-in-Time method) to track PM2.5 pollution events. Based on this framework, we systematically tracked and characterized the spatiotemporal evolution of PM2.5 events across China from 2013 to 2021, quantified the relationships among key event characteristics, and tracked their transport pathways. The results show that: (1) The combination of the FiT algorithm and CHAP dataset enables effective tracking and identification of the three-dimensional spatiotemporal evolution of PM2.5 pollution events across China. (2) Event PM2.5 totals, average totals per event and pollution events exhibit a distinct right-inclined “T”-shaped pattern, with hotspots located in Xinjiang, the Beijing-Tianjin-Hebei (BTH) region, Shandong, and Henan, where annual event frequency exceeds 15. (3) Event PM2.5 totals show strong correlations with average duration per event and average maximum concentration per event, particularly in heavily polluted areas where the Pearson correlation coefficient is close to 1. (4) PM2.5 pollution events are mainly characterized by short durations of 1 day or 2–3 days, accounting for over 80% of occurrences. Long-duration events are mostly concentrated in areas with severe pollution problems, and their persistence is closely linked to spatial coverage, terrain barrier effects, and meteorological conditions. (5) PM2.5 pollution events consistently exhibit a west-to-east transport pattern. Short-duration events propagate slower across the inland northwest, whereas long-duration events show a pronounced increase in meridional transport speeds along the eastern coastal areas. This study elucidates the continuous spatiotemporal evolution and intrinsic drivers of PM2.5 pollution events, offering scientific insights to support air quality improvement and the development of targeted management strategies. Full article
(This article belongs to the Special Issue Air Pollution in China (4th Edition))
Show Figures

Graphical abstract

13 pages, 2217 KB  
Article
Characteristics and Sources of Atmospheric Formaldehyde in a Coastal City in Southeast China
by Yiling Lin, Qiaoling Chen, Youwei Hong, Yanting Chen, Liqian Yin, Jinfang Chen, Gongren Hu, Dan Liao and Ruilian Yu
Atmosphere 2025, 16(10), 1131; https://doi.org/10.3390/atmos16101131 - 26 Sep 2025
Viewed by 375
Abstract
Atmospheric formaldehyde (HCHO) is a major component of oxygenated volatile organic compounds (OVOCs) and plays an important role in O3 formation and atmospheric oxidation capacity. In this study, seasonal observations of gaseous pollutants (HCHO, O3, peroxyacetyl nitrate (PAN), CO, NOx, [...] Read more.
Atmospheric formaldehyde (HCHO) is a major component of oxygenated volatile organic compounds (OVOCs) and plays an important role in O3 formation and atmospheric oxidation capacity. In this study, seasonal observations of gaseous pollutants (HCHO, O3, peroxyacetyl nitrate (PAN), CO, NOx, and VOCs) and ambient conditions (JHCHO, JNO2, solar radiation, temperature, relative humidity, wind speed, and wind direction) were conducted in a coastal city in southeast China. The average HCHO concentrations were 2.54 ppbv, 3.38 ppbv, 2.53 ppbv, and 1.98 ppbv in spring, summer, autumn, and winter, respectively. Diurnal variations were high in the daytime and low in the nighttime, and the peak times varied in different seasons. The correlation between HCHO and O3 was not significant in spring and winter, which is likely related to the effects of photochemical reactions and diffusion conditions. The contributions of background (23.0%), primary (47.6%), and secondary (29.4%) sources to HCHO were quantified using multiple linear regression (MLR) models, revealing that secondary formation was the most significant contributor in summer, whereas primary emissions were predominant in spring. These findings help to improve the understanding of the influence of atmospheric formaldehyde on photochemical pollution control in coastal cities. Full article
(This article belongs to the Special Issue Air Pollution in China (4th Edition))
Show Figures

Figure 1

19 pages, 4701 KB  
Article
Temporal Dynamics and Source Apportionment of PM2.5 in a Coastal City of Southeastern China: Insights from Multiyear Analysis
by Liliang Chen, Jing Wang, Qiyuan Wang, Youwei Hong, Xinhua Wang, Wen Yang, Bin Han, Mazhan Zhuang and Zhipeng Bai
Atmosphere 2025, 16(10), 1119; https://doi.org/10.3390/atmos16101119 - 24 Sep 2025
Viewed by 460
Abstract
Xiamen, a rapidly developing coastal metropolis and tourist hub in southeastern China, faces air quality challenges due to its dense population and tourism reliance. This study investigates PM2.5 sources and temporal variations during autumn 2013–2017 via chemical characterization, mass reconstruction, and receptor [...] Read more.
Xiamen, a rapidly developing coastal metropolis and tourist hub in southeastern China, faces air quality challenges due to its dense population and tourism reliance. This study investigates PM2.5 sources and temporal variations during autumn 2013–2017 via chemical characterization, mass reconstruction, and receptor modeling. The Positive Matrix Factorization (PMF) model identified five sources: secondary sulfate (31%), coal/vehicle emissions (28%), industrial emissions with secondary organic aerosols (SOA, 20%), ship emissions (14%), and fugitive dust (7%). Interannual variations in source contributions highlighted impacts of anthropogenic activities, meteorology, power plant upgrades, and stricter vehicle standards. PM2.5 declined 19% (2013–2017), driven by emission controls, while SOA surged 42% (2015–2017) due to VOC oxidation and lower temperatures. Backward trajectory and Potential Source Contribution Function (PSCF) analyses revealed significant regional transport from northern industrial zones (32% contribution) and maritime activities. Ship emissions, which have remained relatively stable over the years, underscore the need for stricter marine regulations. Fugitive dust peaked in 2015 (25.8% of PM2.5), linked to urban construction. The findings emphasize the interplay of local emissions and regional transport in shaping PM2.5 pollution, providing a scientific basis for targeted control strategies in coastal cities with similar socioeconomic and geographic contexts. Full article
(This article belongs to the Special Issue Air Pollution in China (4th Edition))
Show Figures

Figure 1

17 pages, 10829 KB  
Article
Vertical Profiling of PM1 and PM2.5 Dynamics: UAV-Based Observations in Seasonal Urban Atmosphere
by Zhen Zhao, Yuting Pang, Bing Qi, Chi Zhang, Ming Yang and Xuezhu Ye
Atmosphere 2025, 16(8), 968; https://doi.org/10.3390/atmos16080968 - 15 Aug 2025
Cited by 1 | Viewed by 3425
Abstract
Urban particulate matter (PM) pollution critically impacts public health and climate. However, traditional ground-based monitoring fails to resolve vertical PM distribution, limiting understanding of transport and stratification-coupled mechanisms. Vertical profiles collected by an unmanned aerial vehicle (UAV) over Hangzhou, a core megacity in [...] Read more.
Urban particulate matter (PM) pollution critically impacts public health and climate. However, traditional ground-based monitoring fails to resolve vertical PM distribution, limiting understanding of transport and stratification-coupled mechanisms. Vertical profiles collected by an unmanned aerial vehicle (UAV) over Hangzhou, a core megacity in China’s Yangtze River Delta, reveal the spatiotemporal heterogeneity and multi-scale drivers of regional PM pollution during two intensive ten-day campaigns capturing peak pollution scenarios (winter: 17–26 January 2019; summer: 21–30 August 2019). Results show stark seasonal differences: winter PM1 and PM2.5 averages were 2.6- and 2.7-fold higher (p < 0.0001) than summer. Diurnal patterns were bimodal in winter and unimodal (single valley) in summer. Vertically consistent PM1 and PM2.5 distributions featured sharp morning (08:00) concentration increases within specific layers (winter: 250–325 m; summer: 350–425 m). Analysis demonstrates multi-scale coupling of synoptic systems, boundary layer processes, and vertical wind structure governing pollution. Key mechanisms include a winter “Transport-Accumulation-Reactivation” cycle driven by cold air, and summer typhoon circulation influences. We identify hygroscopic growth triggered by inversion-high humidity coupling and sea-breeze-driven secondary aerosol formation. Leveraging UAV-based vertical profiling over Hangzhou, this study pioneers a three-dimensional dissection of layer-coupled PM dynamics in the Yangtze River Delta, offering a scalable paradigm for aerial–ground networks to achieve precision stratified control strategies in megacities. Full article
(This article belongs to the Special Issue Air Pollution in China (4th Edition))
Show Figures

Figure 1

23 pages, 1622 KB  
Article
The Beneficial Spatial Spillover Effects of China’s Carbon Emissions Trading System on Air Quality
by Diwei Zheng and Daxin Dong
Atmosphere 2025, 16(7), 819; https://doi.org/10.3390/atmos16070819 - 5 Jul 2025
Viewed by 788
Abstract
Between 2013 and 2020, China had implemented a pilot cap-and-trade carbon emissions trading system (ETS) in some cities. Previous research has reported that this policy significantly reduces air pollution in the policy-implementing districts. However, whether and to what extent there are spatial spillover [...] Read more.
Between 2013 and 2020, China had implemented a pilot cap-and-trade carbon emissions trading system (ETS) in some cities. Previous research has reported that this policy significantly reduces air pollution in the policy-implementing districts. However, whether and to what extent there are spatial spillover effects of this policy on air pollution in other regions has not been sufficiently analyzed. The research objective of this study is to quantitatively assess the spatial spillover effects of China’s carbon ETS on air pollution. Based on data from 288 Chinese cities between 2005 and 2020, this study employs a multiple linear regression approach to estimate the policy effects. Our study finds that the policy significantly reduces the concentrations of black carbon (BC), nitrogen dioxide (NO2), organic carbon (OC), particulate matter less than 1 micron in size (PM1), fine particulate matter (PM2.5), and particulate matter less than 10 microns in size (PM10) in non-ETS regions. This indicates that the carbon ETS has beneficial impacts on air quality beyond the areas where the policy was implemented. The heterogeneity tests reveal that the beneficial spatial spillover effects of the ETS can be observed across cities with different levels of industrialization, population density, economic development, resource endowments, and geographical locations. Further mechanism analyses show that although the policy does not affect the degree of environmental regulation in other regions, it promotes green innovation, low-carbon energy transition, and industrial structure upgrading there, which explains the observed spatial spillover effects. Full article
(This article belongs to the Special Issue Air Pollution in China (4th Edition))
Show Figures

Figure 1

Back to TopTop