Special Issue "Modern Cereal Varieties or Feed Additives—Is There a Winner for the Health and Welfare of Animals?"

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Animal Nutrition".

Deadline for manuscript submissions: 31 December 2020.

Special Issue Editor

Assoc. Prof. Piotr Dobrowolski
Website1 Website2 Website3
Guest Editor
Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka St. 19, Lublin, Poland
Interests: histology; histomorphometry; connective tissue and epithelia; bone and skeleton development and metabolism; gastrointestinal tract structure, development and regeneration; gut-bone axis; animal feed; nutrition; functional food; procollagen amino acids and their precursors and derivatives; prenatal programming; postnatal development; probiotics; biostatistics

Special Issue Information

Dear Colleagues,

Law regulations, climate change, and even sociological and political factors across numerous countries enforce the search for new sources of energy and proteins in livestock feeding. At the same time, the matter of food production safety and animal welfare is becoming important in highly developed countries. Furthermore, genetically modified cereal crops still raise many concerns across the public opinion. Thus, there is a rising need for modern cereal crops with high yield, profitability, potential for increasing production, and confirmed value as the feeding component for animals. Nevertheless, low levels of anti-nutrient substances and resistance to fungal contamination are also very desirable. On the other hand, many feed additives based on minerals, microelements, herbs, and lately, probiotics, are constantly introduced to the market, aiming to stimulate or regulate metabolism, improve health status, or increase the digestibility and absorption of nutrients. Both approaches have their pros and cons. So, combining these approaches seems to be a good idea. However, in many cases the specific mechanisms of interactions of especially modern cereals and feed additives—particularly with the gut microbiome or intestinal structures—are not fully known. These interactions may affect other organs or systems in the organism. Moreover, recent findings underline the ambiguity of so-called anti-nutrients from wheat and rye, which are commonly cultivated in Europe and used as a partial energy replacement of corn. It appears that maybe we should search for a balance between some minor decrease in the performance parameters in livestock caused by, for example, non-starch polysaccharides in the raw materials of traditional feed, in favor of the recently reported health benefits contributed by other substances present in, for example, rye. Rye has a great potential for increasing production and confirmed value as a feeding component for animals.

Taking all the above into consideration I would like to propose this Special Issue. Papers from different research areas of animal science, veterinary medicine, biology, biotechnology and other related fields are invited to contribute to this Special Issue which aims to cover all topics regarding the new and in-depth insight into the effects of modern cereals and feed additives on livestock organs, productivity, and health status. I am hoping that we all together will assemble original studies that address any aspects of structural changes in gut, bone, skin, and other organs or systems, animal development and maintenance, as well as productivity in view of the raised question. Review articles that address all aspects of postnatal growth and development in laboratory and livestock animals concerning the topic are also welcomed. Topics of special interest also include hormonal balance, supplements, nutritional factors, as well as nutrition in general in relation to the occurrence of anti-nutritional or toxic factors.

Assoc. Prof. Piotr Dobrowolski

Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Feedstuff
  • Livestock
  • Cereals
  • Nutrition
  • Antinutrients
  • Organ structure and function
  • Animal welfare
  • Hormonal factors
  • Metabolism and development

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Effects of Microencapsulated Blends of Organics Acids (OA) and Essential Oils (EO) as a Feed Additive for Broiler Chicken. A Focus on Growth Performance, Gut Morphology and Microbiology
Animals 2020, 10(3), 442; https://doi.org/10.3390/ani10030442 - 06 Mar 2020
Abstract
The goal of the trial was testing the effects of a blend of organic acids and essential oils dietary supplementation on growth performance and gut healthiness in broiler chickens. In total, 420 male Ross 308 chicks (1-day old) were randomly assigned to two [...] Read more.
The goal of the trial was testing the effects of a blend of organic acids and essential oils dietary supplementation on growth performance and gut healthiness in broiler chickens. In total, 420 male Ross 308 chicks (1-day old) were randomly assigned to two dietary treatments: basal (BD) and organic acids and essential oils (OA&EO) diets (three replicates/treatment; 70 broilers/replicate). BD group received commercial diets whereas OA&EO group basal diets + 5 g/kg of microencapsulated organic acids and essential oils. OA&EO treatment improved the average daily gain (p < 0.01) and feed conversion ratio at 37–47 days compared to BD treatment. OA&EO treatment improved gut morphology mostly at ileum and duodenum levels in terms of villi height, crypt depth, number of villi, mucosa thickness and villi area at 24 and 34 sampling days. A certain selective action against Clostridium perfringens in ileum of OA&EO group was shown at 33 (p = 0.053) and 46 days (p = 0.09) together with lower median values for Enterobacteriaceae, Enterococci, Mesophilic bacteria and Clostridium perfringens at ceca level. Overall, organic acids and essential oils supplementation improved growth performance in the final growth stage and some morphological gut traits and reduced to a certain extent Clostridium perfringens count in ileum. Full article
Show Figures

Figure 1

Open AccessArticle
Diet Supplementation with a Bioactive Pomace Extract from Olea europaea Partially Mitigates Negative Effects on Gut Health Arising from a Short-Term Fasting Period in Broiler Chickens
Animals 2020, 10(2), 349; https://doi.org/10.3390/ani10020349 - 22 Feb 2020
Abstract
The effects of supplementing chicken diets with an olive pomace extract (OE) from Olea europaea on performance and gut health after a challenge of intestinal permeability (IP) increase were studied. Treatments included a control diet with no additives (CF), and diets supplemented with [...] Read more.
The effects of supplementing chicken diets with an olive pomace extract (OE) from Olea europaea on performance and gut health after a challenge of intestinal permeability (IP) increase were studied. Treatments included a control diet with no additives (CF), and diets supplemented with 100 ppm of monensin (MF) or with 500 (OE500F) and 1500 ppm (OE1500F) of an OE. At 14 d, all birds, except those allocated in a control group (CNF), were submitted to a 15.5 h short-term fasting period to induce IP increase. Fasting increased (p < 0.05) lactulose/mannitol ratio and Alpha 1 Acid Glycoprotein concentration, and reduced (p < 0.001) villus/crypt ratio. Moreover, a down-regulation of Claudin-1 (p < 0.05), an up-regulation of TLR4 and IL-8 (p < 0.05) ileal gene expression was observed in CF birds compared to CNF. OE500F treatment reduced duodenal crypt depth compared to CF (p < 0.05; OE linear effect). Mannitol concentration and ileal IL-8 expression were reduced in OE500F compared to CF and OE1500F (p = 0.05). Fasting challenge induced an increase in IP triggering an inflammatory response. Supplementation of OE up to 1500 ppm did not affect growth performance and alleviated some of the negative effects of the fasting challenge. Full article
Open AccessArticle
Effect of Antimicrobial Peptide Microcin J25 on Growth Performance, Immune Regulation, and Intestinal Microbiota in Broiler Chickens Challenged with Escherichia coli and Salmonella
Animals 2020, 10(2), 345; https://doi.org/10.3390/ani10020345 - 21 Feb 2020
Abstract
The purpose of this study was to investigate the effects of antimicrobial peptide microcin J25 (MccJ25) on growth performance, immune regulation, and intestinal microbiota in broilers. A total of 3120 one-day-old male Arbor Acres (AA) broilers were randomly allocated to five groups (12 [...] Read more.
The purpose of this study was to investigate the effects of antimicrobial peptide microcin J25 (MccJ25) on growth performance, immune regulation, and intestinal microbiota in broilers. A total of 3120 one-day-old male Arbor Acres (AA) broilers were randomly allocated to five groups (12 replicates, 52 chickens per replicate). The treatments were control, challenge (0 mg/kg MccJ25), different dosages of antimicrobial peptide (AMP) (0.5 and 1mg/kg MccJ25), and antibiotic groups (20 mg/kg colistin sulfate). The MccJ25 groups increased the body weight gain (starter and overall) that was reduced in the challenge group. The overall (day 1 to day 42) feed-to-gain ratio (G:F) was significantly decreased in AMP groups compared with the challenge group. Birds fed AMP had a decreased population of total anaerobic bacteria (day 21 and day 42) and E. coli (day 21 and day 42) in feces, as well as a lower Salmonella infection rate (day 21 and day 42) compared with birds in the challenge group. The villus height of the duodenum, jejunum, and ileum, as well as the villus height/crypt depth of the duodenum and jejunum were greater in AMP groups than birds in the challenge group. Moreover, MccJ25 linearly improved the villus height of the duodenum and jejunum. The addition of MccJ25 decreased the concentration of TNF-α, IL-1β, and IL-6 compared with challenge group. At d 21, MccJ25 linearly reduced the level of IL-6. In conclusion, dietary supplemented MccJ25 effectively improved performance, systematic inflammation, and improved fecal microbiota composition of the broilers. Full article
Show Figures

Figure 1

Open AccessArticle
Dietary Supplementation with Phytase and Protease Improves Growth Performance, Serum Metabolism Status, and Intestinal Digestive Enzyme Activities in Meat Ducks
Animals 2020, 10(2), 268; https://doi.org/10.3390/ani10020268 - 08 Feb 2020
Abstract
Two experiments were conducted to investigate the effects of dietary supplementation with protease and phytase on growth performance, serum physiochemical parameters, and activities of digestive enzymes in jejunal digesta of meat ducks. Experiment 1 was carried out to determine the effects of different [...] Read more.
Two experiments were conducted to investigate the effects of dietary supplementation with protease and phytase on growth performance, serum physiochemical parameters, and activities of digestive enzymes in jejunal digesta of meat ducks. Experiment 1 was carried out to determine the effects of different protease or phytase on growth performance, serum physiochemical parameter, and activities of digestive enzymes in jejunal digesta of meat ducks to select the optimal phytase or protease. According to the hatching age and initial weight, a total of 5040 Cherry Valley ducks (15 days of age) were randomly assigned into six treatments. Treatments included a basal control diet (CON) and 5 basal diets supplemented with different enzyme preparations, which were phytase preparation A (PA, 160 g/t), phytase preparation B (PB, 800 g/t), protease preparation A (PTA, 80 g/t), protease preparation B (PTB, 300 g/t) and protease preparation C (PTC, 200 g/t). The enzyme activities were as follows: Phytase A and B as well as protease A, B, and C were 50,000, 10,000, 250,000, 50,000, and 60,000 U/g, respectively. Each treatment had 7 replicates with 120 meat ducks per replicate. Experiment 1 lasted for 28 days. The results showed that: compared with the CON group, the PA group significantly decreased contents of serum phosphorus and calcium (p < 0.05), and the PTA, PTB, and PTC groups had higher activities of trypsin in jejunal digesta (p < 0.05), and the activity of jejunal chymotrypsin in PTA group was greater (p < 0.05). Experiment 2 was carried out to determine the effects of dietary supplementation with protease and phytase in low-energy and low-protein diet on growth performance, serum physiochemical parameters, and activities of digestive enzymes in jejunal digesta of meat ducks. According to the hatching age and initial weight, a total of 5760 Cherry Valley ducks (15 days of age) were randomly assigned into four treatments on the basis of a trial of 2 × 2 factorial design. Treatments included a basal control diet (PC), basal diet supplemented with enzymes (PCE), low-energy and low-protein diet (LEP), and low-energy and low-protein diet supplemented with enzymes (LEPE), the nutrient levels of energy and CP of basal diet were 2747.2 cal·ME/kg and 16.80%, respectively, and the nutrient levels of energy and CP of low-energy and low-protein diet decreased 45.90 kcal·ME/kg and 0.52% on the basis of basal diet, respectively. According to the results of experiment 1, phytase A and protease A were determined as the optimal enzyme combination of Experiment 2, and additional dosage of which were identical with Experiment 1. Each treatment had 6 replicates with 240 meat ducks per replicate. Experiment 2 lasted for 28 days. The results showed that: compared with PC and LEP groups, PCE and LEPE groups had higher final weight and average daily gain (ADG) (p < 0.05), higher activities of trypsin and chymotrypsin in jejunal digesta (p < 0.05), lower contents of serum calcium and phosphorus as well as higher levels of high-density lipoprotein in the serum (p < 0.05). In conclusion, dietary supplementation with phytase and protease in different energy and protein diets could increase digestive enzymes in jejunal digesta, effect serum physiochemical parameters, improve metabolic status, and increase the growth performance of meat ducks. Meanwhile, with the dietary supplementation with phytase and protease in the lower energy and protein diet, the growth performance could reach to the degree of the higher energy and increased protein diet, but without the addition of phytase and protease. Full article
Open AccessArticle
Nisin as a Novel Feed Additive: The Effects on Gut Microbial Modulation and Activity, Histological Parameters, and Growth Performance of Broiler Chickens
Animals 2020, 10(1), 101; https://doi.org/10.3390/ani10010101 - 08 Jan 2020
Cited by 1
Abstract
Two independent experiments were performed to evaluate the effect of nisin alone or with monensin on gut microbiota, gut microbial activities, and histomorphology (exp 1) and the effect of nisin application in a dose‒response manner on the growth performance of broiler chickens (exp [...] Read more.
Two independent experiments were performed to evaluate the effect of nisin alone or with monensin on gut microbiota, gut microbial activities, and histomorphology (exp 1) and the effect of nisin application in a dose‒response manner on the growth performance of broiler chickens (exp 2). A total of 900 one-day-old female Ross 308 chicks (400, exp 1; 500, exp 2) were randomly distributed to four groups (exp 1; 10 replicate pens per treatment with 10 birds each), i.e., NA, no additives; MON, monensin (100 ppm); NIS, nisin (2700 IU/kg diet); and MON + NIS, a mixture of monensin (100 ppm) and nisin (2700 IU/kg diet); or 5 treatments (exp 2), NA, no additives; NIS100, nisin (100 IU/kg diet); NIS200, nisin (200 IU/kg diet); NIS400, nisin (400 IU/kg diet); and NIS800, nisin (800 IU/kg diet). Nisin supplementation positively affected the microbiota of the gut by reducing potentially pathogenic bacterial populations in the jejunum and ceca. The bacterial fermentation in the jejunum was significantly lowered by nisin addition. The addition of nisin from 100 IU to 800 IU decreased the FCR value over the entire experimental period. According to the results, nisin can be considered a natural dietary supplement for broiler chickens. Full article
Back to TopTop