Deicing and Anti-Icing of Aircraft (Volume IV)

A special issue of Aerospace (ISSN 2226-4310). This special issue belongs to the section "Aeronautics".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 6589

Special Issue Editors


E-Mail Website
Guest Editor
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
Interests: pressure- and temperature-sensitive paint technique; advanced flow diagnostics by luminescent imaging; micro-fiber coating as chemical flow control; ice-phobic coating for anti- and de-icing; unsteady aerodynamics; wind tunnel testing (low-speed, transonic-speed, high-speed, and high Reynolds-number flows); two phase flows; heat transfer in hypersonic flow; fluid-thermal-structure interactions; environmental and energy engineering; biomedical and biological applications
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Laboratory of Fundamental Science on Ergonomics and Environmental Control, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
Interests: aircraft icing; anti-icing and de-icing system; heat and mass transfer; thermal management
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Aircraft icing is still a critical issue in aircraft operations. In recent years, multidisciplinary approaches have been attempted to tackle to this problem. One of the outcomes is the development of icephobic coating; nevertheless, there are many challenges that need to be overcome to fix aircraft icing from a fundamental to application basis. This Special Issue aims to provide an overview of recent advances in deicing and anti-icing of aircraft. Authors are invited to submit full research articles and review manuscripts addressing (but not limited to) the following topics:

  • Novel experimental methods to simulation droplet icing, ice accretion and practical applications
  • Novel numerical methods in droplet icing, ice accretion, and practical applications
  • Icephobic coating
  • Hybrid system for deicing and anti-icing of aircraft

Dr. Hirotaka Sakaue
Dr. Xiaobin Shen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Aerospace is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • deicing
  • anti-icing
  • ice accretion
  • ice adhesion
  • ice cohesion

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

24 pages, 2107 KB  
Article
An Experimental Study on Pitot Probe Icing Protection with an Electro-Thermal/Superhydrophobic Hybrid Strategy
by Haiyang Hu, Faisal Al-Masri and Hui Hu
Aerospace 2025, 12(10), 862; https://doi.org/10.3390/aerospace12100862 - 24 Sep 2025
Viewed by 414
Abstract
A series of experiments were carried out to evaluate different anti-/de-icing approaches for a Pitot probe. Using the Iowa State University Icing Research Tunnel (ISU-IRT), this study compared the performance of a traditional electrically heated system with that of a hybrid concept combining [...] Read more.
A series of experiments were carried out to evaluate different anti-/de-icing approaches for a Pitot probe. Using the Iowa State University Icing Research Tunnel (ISU-IRT), this study compared the performance of a traditional electrically heated system with that of a hybrid concept combining reduced-power electrical heating and a superhydrophobic surface (SHS) coating. The effectiveness and energy efficiency of both methods were assessed. High-speed imaging was employed to capture the transient ice accretion and removal phenomena on the probe model under a representative glaze icing condition, while infrared thermography provided surface temperature distributions to characterize the unsteady heat transfer behavior during the protection process. Results indicated that, due to the placement of the internal resistive heating elements, ice deposits on the total pressure tube were easier to shed than those on the supporting structure. Relative to the conventional approach of maintaining a fully heated probe, the hybrid technique achieved comparable anti-/de-icing performance with substantially reduced power requirements—showing up to ~50% savings during anti-icing operation and approximately 30% lower energy use with 24% faster removal during de-icing. These findings suggest that the hybrid strategy is a promising alternative for improving Pitot probe icing protection. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume IV))
Show Figures

Figure 1

29 pages, 10522 KB  
Article
Numerical Simulation of Hot Air Anti-Icing Characteristics for Intake Components of Aeronautical Engine
by Shuliang Jing, Yaping Hu and Weijian Chen
Aerospace 2025, 12(9), 753; https://doi.org/10.3390/aerospace12090753 - 22 Aug 2025
Viewed by 469
Abstract
A three-dimensional numerical simulation of hot air anti-icing was conducted on the full-annular realistic model of engine intake components, comprising the intake ducts, intake casing, struts, axial flow casing, and zero-stage guide vanes, based on the intermittent maximum icing conditions and the actual [...] Read more.
A three-dimensional numerical simulation of hot air anti-icing was conducted on the full-annular realistic model of engine intake components, comprising the intake ducts, intake casing, struts, axial flow casing, and zero-stage guide vanes, based on the intermittent maximum icing conditions and the actual engine operating parameters. The simulation integrated multi-physics modules, including air-supercooled water droplet two-phase flow around components, water film flow and heat transfer on anti-icing surfaces, solid heat conduction within structural components, hot air flow dynamics in anti-icing cavities, and their coupled heat transfer interactions. Simulation results indicate that water droplet impingement primarily localizes at the leading edge roots and pressure surfaces of struts, as well as the leading edges and pressure surfaces of guide vanes. The peak water droplet collection coefficient reaches 4.2 at the guide vane leading edge. Except for the outlet end wall of the axial flow casing, all anti-icing surfaces of intake components maintain temperatures above the freezing point, demonstrating effective anti-icing performance. The anti-icing characteristics of the intake components are governed by two critical factors: cumulative heat loss along the hot air flow path and heat load consumption for heating and evaporating impinging water droplets. The former induces a 53.9 °C temperature disparity between the first and last struts in the heating sequence. For zero-stage guide vanes, the latter factor exerts a more pronounced influence. Notable temperature reductions occur on the trailing edges of three struts downstream of the hot air flow and at the roots of zero-stage guide vanes. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume IV))
Show Figures

Graphical abstract

26 pages, 5023 KB  
Article
Structural-Integrated Electrothermal Anti-Icing Components for UAVs: Interfacial Mechanisms and Performance Enhancement
by Yanchao Cui, Ning Dai and Chuang Han
Aerospace 2025, 12(8), 719; https://doi.org/10.3390/aerospace12080719 - 13 Aug 2025
Viewed by 800
Abstract
Icing represents a significant hazard to the flight safety of unmanned aerial vehicles (UAVs), particularly affecting critical aerodynamic surfaces such as air intakes, wings, and empennages. While conventional adhesive electrothermal de-icing systems are straightforward to operate, they present safety concerns, including a 15–25% [...] Read more.
Icing represents a significant hazard to the flight safety of unmanned aerial vehicles (UAVs), particularly affecting critical aerodynamic surfaces such as air intakes, wings, and empennages. While conventional adhesive electrothermal de-icing systems are straightforward to operate, they present safety concerns, including a 15–25% increase in system weight, elevated anti-/de-icing power consumption, and the risk of interlayer interface delamination. To address the objectives of reducing weight and power consumption, this study introduces an innovative electrothermal–structural–durability co-design strategy. This approach successfully led to the development of a glass fiber-reinforced polymer (GFRP) component that integrates anti-icing functionality with structural load-bearing capacity, achieved through an embedded hot-pressing process. A stress-damage cohesive zone model was utilized to accurately quantify the threshold of mechanical performance degradation under electrothermal cycling conditions, elucidating the evolution of interfacial stress and the mechanism underlying interlayer failure. Experimental data indicate that this novel component significantly enhances heating performance compared to traditional designs. Specifically, the heating rate increased by approximately 202%, electrothermal efficiency improved by about 13.8% at −30 °C, and interlayer shear strength was enhanced by approximately 30.5%. This research offers essential technical support for the structural optimization, strength assessment, and service life prediction of UAV anti-icing and de-icing systems in the aerospace field. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume IV))
Show Figures

Figure 1

16 pages, 8895 KB  
Article
Influence of Ice Growth Mode on the Ice Thickness and Shape Prediction of Two-Dimensional Airfoil
by Xiaobin Shen, Jingyu Zhao, Zekun Ye, Huanfa Wang and Guiping Lin
Aerospace 2024, 11(12), 1010; https://doi.org/10.3390/aerospace11121010 - 8 Dec 2024
Viewed by 1138
Abstract
Computational results of aircraft icing and predictions of ice shape are not only determined by the solutions of air-supercooled droplet two-phase flow and icing thermodynamic models of surface water film, but are also influenced by the growth mode of the ice layer. Two [...] Read more.
Computational results of aircraft icing and predictions of ice shape are not only determined by the solutions of air-supercooled droplet two-phase flow and icing thermodynamic models of surface water film, but are also influenced by the growth mode of the ice layer. Two ice growth modes were established in a two-dimensional (2D) icing process simulation framework to calculate the ice thickness and ice shape, depending on whether surface deformation of the icing process was considered. Ice accretion simulations were performed with the two ice growth modes for an NACA0012 airfoil under rime ice and mixed ice conditions, and the results of ice amount, ice thickness, and ice shape were compared and analyzed. Under the same amount of ice formation, the ice thickness and ice shape obtained using different ice growth modes vary. The ice thickness and the ice shape size are relatively large without considering surface deformation, whereas the results with growth correction show a certain degree of reduction, which is more noticeable around the leading edge and the ice horns. However, the degrees of difference in ice thickness and ice shape are not the same, and the deviation in ice thickness is more obvious. Furthermore, the ice thickness and ice shape obtained using the ice growth correction mode are more consistent with experimental data and commercial software results, verifying the accuracy of the ice simulation method and the necessity of considering ice surface deformation. This paper is an essential guide for understanding the icing mechanism and accurately predicting two-dimensional ice shape. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume IV))
Show Figures

Figure 1

20 pages, 4479 KB  
Article
Prediction of Temperature Distribution on an Aircraft Hot-Air Anti-Icing Surface by ROM and Neural Networks
by Ziying Chu, Ji Geng, Qian Yang, Xian Yi and Wei Dong
Aerospace 2024, 11(11), 930; https://doi.org/10.3390/aerospace11110930 - 11 Nov 2024
Cited by 2 | Viewed by 1461
Abstract
To address the inefficiencies and time-consuming nature of traditional hot-air anti-icing system designs, reduced-order models (ROMs) and machine learning techniques are introduced to predict anti-icing surface temperature distributions. Two models, AlexNet combined with Proper Orthogonal Decomposition (POD-AlexNet) and multi-CNNs with GRU (MCG), are [...] Read more.
To address the inefficiencies and time-consuming nature of traditional hot-air anti-icing system designs, reduced-order models (ROMs) and machine learning techniques are introduced to predict anti-icing surface temperature distributions. Two models, AlexNet combined with Proper Orthogonal Decomposition (POD-AlexNet) and multi-CNNs with GRU (MCG), are proposed by comparing several classic neural networks. Design variables of the hot-air anti-icing cavity are used as inputs of the two models, and the corresponding surface temperature distribution data serve as outputs, and then the performance of these models is evaluated on the test set. The POD-AlexNet model achieves a mean prediction accuracy of over 95%, while the MCG model reaches 96.97%. Furthermore, the proposed model demonstrates a prediction time of no more than 5.5 ms for individual temperature samples. The proposed models not only provide faster predictions of anti-icing surface temperature distributions than traditional numerical simulation methods but also ensure acceptable accuracy, which supports the design of aircraft hot-air anti-icing systems based on optimization methods such as genetic algorithms. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume IV))
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 2448 KB  
Review
A Literature Review on Numerical Simulation of Thermal Anti-Icing
by Ningli Chen, Xian Yi, Qiang Wang, Delin Chai and Cong Li
Aerospace 2025, 12(2), 83; https://doi.org/10.3390/aerospace12020083 - 24 Jan 2025
Cited by 1 | Viewed by 1678
Abstract
This paper reviews the numerical simulation method for thermal anti-icing. Typically, the numerical study of an anti-icing system involves a coupled simulation of various physical processes: airflow, droplet flow, thin water film flow on the wall, and heat conduction within the solid wall. [...] Read more.
This paper reviews the numerical simulation method for thermal anti-icing. Typically, the numerical study of an anti-icing system involves a coupled simulation of various physical processes: airflow, droplet flow, thin water film flow on the wall, and heat conduction within the solid wall. Airflow is commonly simulated using the Reynolds-Averaged Navier–Stokes method, while droplet flow can be modeled using either the Eulerian or Lagrangian approach. For simulating water film flow, there are three primary models: the Messinger model, the SWIM model, and the Myers model. The heat transfer process within the solid wall can be coupled with the external air/droplet and film flow using either a tight-coupling or a loose-coupling method. When simulating an electrothermal anti-icing system, methods such as the equivalent heat conductivity scheme or shell conduction method are employed to handle heat conduction in multi-layer thin walls. To improve the accuracy of thermal anti-icing simulations, additional research is still necessary, focusing on studies on rivulet flow, bead flow, and the heat convection coefficient on the system’s wall. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume IV))
Show Figures

Figure 1

Back to TopTop