Poultry Farms as a Potential Source of Environmental Pollution by Pharmaceuticals
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Weather Conditions
2.1.2. Poultry House
2.2. Sample Handling
2.3. Analytical Procedure
2.3.1. Solvents and Standards
2.3.2. Sample Pretreatment
2.3.3. UPLC-MS/MS Analysis
2.3.4. Quality Assurance/Quality Control (QA/QC)
- calibration of the LC-MS/MS system,
- determination of the selected validation parameters based on calibration curves.
2.4. Antibiotic Resistance in Microorganisms Isolated from Soil
3. Results
3.1. Quality Assurance/Quality Control (QA/QC)
3.2. Analysis of Real Samples
3.2.1. Area A
3.2.2. Areas B and C
3.3. Analysis of Microbial Resistance in Soil Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Parliament and the Council of the European Union. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing DIRECTIVE 2001/82/EC; European Parliament and the Council of the European Union: Luxembourg, 2018; Volume L4, pp. 43–167. [Google Scholar]
- Tasho, R.P.; Cho, J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total Environ. 2016, 563–564, 366–376. [Google Scholar] [CrossRef]
- Caracciolo, A.B.; Topp, E.; Grenni, P. Pharmaceuticals in the environment: Biodegradation and effects on natural microbial communities. A review. J. Pharm. Biomed. Anal. 2015, 106, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Bártíková, H.; Podlipná, R.; Skálová, L. Veterinary drugs in the environment and their toxicity to plants. Chemosphere 2016, 144, 2290–2301. [Google Scholar] [CrossRef] [PubMed]
- Grenni, P.; Ancona, V.; Caracciolo, A.B. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Dahshan, H.; Abd-Elall, A.M.M.; Megahed, A.M.; Abd-El-Kader, M.A.; Nabawy, E.E. Veterinary antibiotic resistance, residues, and ecological risks in environmental samples obtained from poultry farms, Egypt. Environ. Monit. Assess. 2015, 187, 2. [Google Scholar] [CrossRef] [PubMed]
- Kaczala, F.; Blum, S.E. The Occurrence of Veterunary Pharmaceuticals in the Environment: A Review. Curr. Anal. Chem. 2016, 12, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Furtula, V.; Farrell, E.G.; Diarrassouba, F.; Rempel, H.; Pritchard, J.; Diarra, M.S. Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials. Poult. Sci. 2010, 89, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Farrell, D. Poultry Development Review; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Carvalho, I.T.; Santos, L. Antibiotics in the aquatic environments: A review of the European scenario. Environ. Int. 2016, 94, 736–757. [Google Scholar] [CrossRef]
- Braykov, N.P.; Eisenberg, J.N.S.; Grossman, M.; Zhang, L.; Vasco, K.; Cevallos, W.; Muñoz, D.; Acevedo, A.; Moser, K.A.; Marrs, C.F.; et al. Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador. mSphere 2016, 1, 1–15. [Google Scholar] [CrossRef]
- Skóra, J.; Matusiak, K.; Wojewódzki, P.; Nowak, A.; Sulyok, M.; Ligocka, A.; Okrasa, M.; Hermann, J.; Gutarowska, B. Evaluation of microbiological and chemical contaminants in poultry farms. Int. J. Environ. Res. Public Health 2016, 13, 192. [Google Scholar] [CrossRef]
- Maheshwari, S. Environmental Impacts of Poultry Production. Poultry Fish. Wildl. Sci. 2013, 1, 1–2. [Google Scholar] [CrossRef]
- Viegas, S.; Faísca, V.M.; Dias, H.; Clérigo, A.; Carolino, E.; Viegas, C. Occupational exposure to poultry dust and effects on the respiratory system in workers. J. Toxicol. Environ. Heal.—Part A Curr. Issues 2013, 76, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Price, G.W.; Jamieson, R.; Burton, D.; Khosravi, K. Sorption and desorption of selected non-steroidal anti-inflammatory drugs in an agricultural loam-textured soil. Chemosphere 2017, 174, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhou, Q.; Luo, Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ. Pollut. 2010, 158, 2992–2998. [Google Scholar] [CrossRef]
- AVEC. Annual Report of the Assiciation of Poultry Processors and Poultry Trade in the EU Countries; AVEC: Brussels, Belgium, 2018. [Google Scholar]
- Supreme Audit Office. Supervision of the Functioning of Animal Farm; Supreme Audit Office: Warsaw, Poland, 2014. [Google Scholar]
- Supreme Audit Office. Antibiotics Use in Animal Production in Lubuskie Voivodeship; Supreme Audit Office: Warsaw, Poland, 2017. [Google Scholar]
- Supreme Audit Office. Supervision of the Marketi ng and Use of Products Containing Anabolic, Hormonal, Incuring and Psychotropical Substances in Animal Treatment, Including Accompanying Products; Supreme Audit Office: Warsaw, Poland, 2018. [Google Scholar]
- Kasperowicz, A.; Wacław, B.; Wasilewski, T. Environment protection program for the Nidzica district for the years 2018–2021, with a perspective for 2022–2025. 2017. Available online: http://www.bip.powiatnidzicki.pl/system/obj/8640_8.3.1.Program_Ochrony_Srodowiska_Powiatu_Nidzickiego.pdf (accessed on 24 February 2020).
- Golovko, O.; Koba, O.; Kodesova, R.; Fedorova, G.; Kumar, V.; Grabic, R. Development of fast and robust multiresidual LC-MS/MS method for determination of pharmaceuticals in soils. Environ. Sci. Pollut. Res. 2016, 23, 14068–14077. [Google Scholar] [CrossRef]
- Baert, K.; de Baere, S.; Croubels, S.; de Backer, P. Pharmacokinetics and Oral Bioavailability of Sulfadiazineand Trimethoprim in Broiler Chickens. J. Vet. Pharmacol. Ther. 2003, 27, 301–309. [Google Scholar]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef]
- Wei, R.; Gec, F.; Zhangb, L.; Houb, X.; Caoa, Y.; Gongb, L.; Chenb, M.; Wangb, R.; Bao, E. Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China. Chemosphere 2016, 144, 2377–2383. [Google Scholar] [CrossRef]
- An, J.; Chen, H.; Wei, S.; Gu, J. Antibiotic contamination in animal manure, soil, and sewage sludge in Shenyang, northeast China. Environ. Earth Sci. 2015, 74, 5077–5086. [Google Scholar] [CrossRef]
- Metoclopramide for Chickens and Ducks. Available online: http://www.poultrydvm.com/drugs/metoclopramide (accessed on 2 February 2020).
- Celiz, M.D.; Tso, J.; Aga, D.S. Pharmaceutical metabolites in the environment: Analytical challenges and ecological risks. Environ. Toxicol. Chem. 2009, 28, 2473–2484. [Google Scholar] [CrossRef]
- Zaugg, S.; Zhang, X.; Sweedler, J.; Thormann, W. Determination of salicylate, gentisic acid and salicyluric acid in human urine by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. B Biomed. Sci. Appl. 2001, 752, 17–31. [Google Scholar] [CrossRef]
- Ternes, T.A. Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 1998, 32, 3245–3260. [Google Scholar] [CrossRef]
- Carrara, C.; Ptacek, C.J.; Robertson, W.D.; Blowes, D.W.; Moncur, M.C.; Sverko, E.; Backus, S. Fate of pharmaceutical and trace organic compounds in three septic system plumes, Ontario, Canada. Environ. Sci. Technol. 2008, 42, 2805–2811. [Google Scholar] [CrossRef] [PubMed]
- Comeau, F.; Surette, C.; Brun, G.L.; Losier, R. The occurrence of acidic drugs and caffeine in sewage effluents and receiving waters from three coastal watersheds in Atlantic Canada. Sci. Total Environ. 2008, 396, 132–146. [Google Scholar] [CrossRef]
- Gibson, R.; Becerril-Bravo, E.; Silva-Castro, V.; Jiménez, B. Determination of acidic pharmaceuticals and potential endocrine disrupting compounds in wastewaters and spring waters by selective elution and analysis by gas chromatography-mass spectrometry. J. Chromatogr. A 2007, 1169, 31–39. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Hu, H.W.; Gou, M.; Wang, J.T.; Chen, D.; He, J.Z. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environ. Pollut. 2017, 231, 1621–1632. [Google Scholar] [CrossRef]
- Awad, Y.M.; Kim, S.-C.; El-Azeem, S.A.M.A.; Kim, K.-H.; Kim, K.-R.; Kim, K.; Jeon, C.; Lee, S.S.; Ok, Y.S. Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environ. Earth Sci. 2014, 71, 1433–1440. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Parameters for the Monitored Ion Transition | ||||||
---|---|---|---|---|---|---|
Name | Short | Polarity | Parent Ion > Fragment Ion | Q1 Pre Bias [V] | CE [V] | Q3 Pre Bias [V] |
acetylsalicylic acid | ASA | − | 179.10 > 136.95 | 13 | 11 | 24 |
ampicillin | AMP | + | 349.9 > 106.05 | 20 | 25 | 20 |
caffeine | CAF | + | 194.90 > 138.00 | 20 | 20 | 20 |
carbamazepine | CBZ | + | 237.05 > 194.00 | 20 | 20 | 20 |
ciprofloxacin | CIP | + | 322.00 > 314.10 | 20 | 21 | 20 |
diclofenac | DIC | − | 294.05 > 249.90 | 15 | 12 | 16 |
enrofloxacin | ENR | + | 360.10 > 316.10 | 20 | 20 | 20 |
ibuprofen | IB | − | 205.00 > 161.20 | 14 | 9 | 16 |
metoclopramide | NIM | − | 307.05 > 228.95 | 16 | 17 | 20 |
metoprolol | MTC | + | 300.05 > 227.00 | 20 | 20 | 20 |
nimesulide | MET | + | 268.15 > 116.00 | 20 | 20 | 20 |
paracetamol | PAR | + | 152.00 > 110.10 | 17 | 18 | 21 |
propranolol HCl | PROP | + | 260.10 > 116.10 | 20 | 19 | 20 |
salicylic acid | SA | − | 137.30 > 93.15 | 10 | 17 | 20 |
spectinomycin | SPEC | + | 332.80 > 98.10 | 16 | 29 | 14 |
streptomycin | STREP | + | 582.00 > 263.20 | 28 | 33 | 11 |
sulfacetamide Na | SFC | + | 214.95 > 92.05 | 11 | 23 | 21 |
sulfacarbamide | SCA | + | 216.00 > 92.05 | 30 | 25 | 30 |
sulfadiazine | SDA | + | 251.00 > 92.05 | 18 | 26 | 19 |
sulfaguanidine | SGA | + | 214.95 > 92.05 | 15 | 26 | 21 |
sulfanilamide | SNA | + | 172.9 > 86.15 | 19 | 16 | 13 |
sulfamerazine | SMA | + | 264.95 > 92.05 | 13 | 29 | 14 |
sulfamethazine | SMZ | + | 278.50 > 186.50 | 14 | 19 | 27 |
sulfamethoxazole | SMX | + | 253.95 > 92.00 | 20 | 30 | 20 |
sulfathiazole | STA | + | 255.90 > 156.00 | 20 | 15 | 20 |
tetracycline | TET | + | 445.00 > 409.95 | 20 | 20 | 20 |
trimethoprim | TMP | + | 291.05 > 230.10 | 20 | 25 | 20 |
MS/MS Operation Parameters | ||||||
Interface Temperature (°C) | 300 | |||||
Desolvation LineTemperature (°C) | 250 | |||||
Nebulizing Gas Flow (L/min) | 3 | |||||
Heating Gas Flow (L/min) | 9 | |||||
Heating Block (°C) | 350 | |||||
Drying Gas Flow (L/min) | 10 |
Pharmaceuticals | Short | Coefficient of Calibration Curve (y = ax + b) | Linearity | Limits | Repeatability | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | Regression Coefficient R2 | min–max (ng/mL) | LOD (ng/mL) | LOQ (3 × LOD) (ng/mL) | MDL (ng/g) | MQL (ng/g) | CV (%) | U (k = 2) | ||
acetylsalicylic acid | ASA | 107058 | −1301 | 0.9931 | 176.57–5000 | 58.86 | 176.57 | 14.72 | 44.15 | 2.5–2.8 | 0.95 |
ampicillin | AMP | 663156 | 2850 | 0.9996 | 14.25–5000 | 4.75 | 14.25 | 1.19 | 3.56 | 1.1–3.9 | 0.78 |
caffeine | CAF | 29004046 | 128181 | 0.999 | 3.9–500 | 0.75 | 2.25 | 0.19 | 0.56 | 0.79–3.9 | 0.98 |
carbamazepine | CMZ | 17335651 | 9152 | 0.9991 | 8.8–500 | 2.93 | 8.80 | 0.73 | 2.20 | 1.0–11 | 0.65 |
ciprofloxacin | CIP | 2687453 | 1143 | 0.9982 | 9.9–5000 | 3.3 | 9.9 | 0.8 | 2.5 | 1.9–11.0 | 1.4 |
diclofenac | DIC | 6826340 | 130246 | 0.9984 | 8.86–1000 | 2.89 | 8.68 | 0.72 | 2.17 | 0.71–9.6 | 0.64 |
enrofloxacin | ENR | 12634935 | −64163 | 0.9974 | 22.4–1000 | 7.5 | 22.4 | 1.9 | 5.6 | 1.4–5.1 | 1.4 |
ibuprofen | IB | 10369 | 16715 | 0.9912 | 384.37–5000 | 316.8 | 950.4 | 79.2 | 237.6 | 2.2–3.8 | 1.1 |
metoclopramide | MTC | 14227180430 | 1348134 | 0.998 | 0.39 × 10−3 | 0.13 × 10−3 | 0.39 × 10−3 | 0.03 × 10−3 | 0.09 × 10−3 | 0.24–8.4 | 0.39 |
metoprolol | MET | 8726542 | 10467 | 0.9991 | 3.3–1000 | 1.1 | 3.3 | 0.3 | 0.8 | 0.41–4.4 | 1.5 |
nimesulide | NIM | 134064871 | 3435909 | 0.9934 | 12.62–500 | 4.21 | 12.62 | 1.05 | 3.16 | 1.6–7.5 | 0.60 |
paracetamol | PAR | 1696703 | 1073 | 0.9993 | 14.01–5000 | 4.67 | 14.01 | 1.17 | 3.50 | 0.76–9.9 | 0.87 |
propranolol HCl | PROP | 12583700 | 38410 | 0.9993 | 2.8–1000 | 0.92 | 2.8 | 0.2 | 0.7 | 0.26–4.6 | 1.2 |
salicylic acid | SA | 585092 | 90750 | 0.9964 | 49.06–5000 | 15.80 | 47.43 | 3.95 | 11.85 | 2.4–8.9 | 0.89 |
sulfacetamide Na | SFC | 1590160 | 1393 | 0.9989 | 8.7–5000 | 2.9 | 8.7 | 0.7 | 2.2 | 1.2–7.6 | 1.4 |
spectinomycin | SPEC | 55623 | −8960 | 0.998 | 173.2–5000 | 57.8 | 173.2 | 14.5 | 43.4 | 0.64–7.0 | 1.3 |
streptomycin | STREP | 20759 | −23309 | 0.9983 | 533.4–5000 | 177.8 | 533.4 | 44.5 | 133.4 | 0.60–6.3 | 1.4 |
sulfacarbamide | SFC | 41286 | −8452 | 0.9966 | 2.07–5000 | 0.69 | 2.07 | 0.17 | 0.52 | 2.1–3.3 | 0.40 |
sulfadiazine | SDA | 5002325 | −12328 | 0.9995 | 19.39–1000 | 6.46 | 19.39 | 1.62 | 4.85 | 0.36–5.7 | 0.89 |
sulfaguanidine | SGA | 1264343 | −1292 | 0.999 | 10.03–5000 | 3.34 | 10.03 | 0.84 | 2.51 | 0.80–12 | 0.87 |
sulfamerazine | SMA | 7308819 | −14598 | 0.9998 | 8.45–1000 | 2.82 | 8.45 | 0.71 | 2.12 | 0.84–6.1 | 0.66 |
sulfamethazine | SMZ | 583452 | 2984 | 0.9863 | 0.08–5000 | 0.03 | 0.08 | 0.01 | 0.02 | 1.0–8.8 | 0.75 |
sulfamethoxazole | SMX | 8078106 | 2984 | 0.9995 | 0.38–1000 | 0.13 | 0.38 | 0.03 | 0.10 | 1.7–8.2 | 0.89 |
sulfanilamide | SNA | 53617 | −25963 | 0.9973 | 1500.6–5000 | 502.9 | 1508.6 | 125.7 | 377.2 | 0.39–2.7 | 1.4 |
sulfathiazole | STA | 4356784 | 615 | 0.9996 | 6.5–1000 | 2.2 | 6.5 | 0.6 | 1.7 | 0.64–6.0 | 1.1 |
tetracycline | TET | 2063937 | −33350 | 0.9990 | 57.2–1000 | 19.1 | 57.2 | 4.8 | 14.3 | 0.50–10 | 1.6 |
trimethoprim | TMP | 26514921 | 74017 | 0.9994 | 2.9–500 | 0.98 | 2.9 | 0.2 | 0.7 | 1.7–3.7 | 1.1 |
Soil Samples Localization | A | B | C | |
---|---|---|---|---|
N. of Strains Tested | 66 | 15 | 4 | |
Antibiotics | CIP | 29.0 ± 7.5 | 28.8 ±5.2 | 28.0 ± 4.0 |
SPEC | 6.8 ± 8.0 | 6.2 ± 8.6 | 0.0 | |
SMZ | 2.5 ± 7.1 | 0.0 | 0.0 | |
TET | 13.1 ± 11.2 | 12.6 ± 10.1 | 9.5 ± 7.0 | |
TMP | 2.7 ± 8.2 | 3.7 ± 9.8 | 0.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wychodnik, K.; Gałęzowska, G.; Rogowska, J.; Potrykus, M.; Plenis, A.; Wolska, L. Poultry Farms as a Potential Source of Environmental Pollution by Pharmaceuticals. Molecules 2020, 25, 1031. https://doi.org/10.3390/molecules25051031
Wychodnik K, Gałęzowska G, Rogowska J, Potrykus M, Plenis A, Wolska L. Poultry Farms as a Potential Source of Environmental Pollution by Pharmaceuticals. Molecules. 2020; 25(5):1031. https://doi.org/10.3390/molecules25051031
Chicago/Turabian StyleWychodnik, Katarzyna, Grażyna Gałęzowska, Justyna Rogowska, Marta Potrykus, Alina Plenis, and Lidia Wolska. 2020. "Poultry Farms as a Potential Source of Environmental Pollution by Pharmaceuticals" Molecules 25, no. 5: 1031. https://doi.org/10.3390/molecules25051031
APA StyleWychodnik, K., Gałęzowska, G., Rogowska, J., Potrykus, M., Plenis, A., & Wolska, L. (2020). Poultry Farms as a Potential Source of Environmental Pollution by Pharmaceuticals. Molecules, 25(5), 1031. https://doi.org/10.3390/molecules25051031