Cold-Pressing Olive Oil in the Presence of Cryomacerated Leaves of Olea or Citrus: Nutraceutical and Sensorial Features
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Compositions
2.2. Chemical Characterization of the Leaf Olive Oils
2.2.1. Quality Parameters
2.2.2. Phenolic Content, Free-radical scavenging capacity, Total Carotenoid, and Total Chlorophylls
2.2.3. Phenolic Compounds
2.2.4. Tocopherols
2.3. Control’s and LOOs’ Headspaces
2.4. Sensory Quality
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Essential Oil Extractions
4.3. Headspace Solid Phase Microextractions (HS-SPME)
4.4. Gas Chromatography–Mass Spectrometry Analyses and Peak Identification
4.5. Leaf Olive Oil Extraction
4.6. Sample Collection
4.7. Leaf Olive Oil Chemical Analyses
4.7.1. Quality Parameters
4.7.2. Analysis of Phenolic Content
4.7.3. HPLC Analysis of Phenolic Compounds
4.7.4. Free-radical scavenging capacity (FRSC)
4.7.5. Intensity of Bitterness (IB) Determination
4.7.6. Pigment Determination
4.7.7. Extraction and Detection of Tocopherols (Vitamin E)
4.8. Leaf Olive Oil Sensory Analysis
4.9. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Ginter, E.; Simko, V. Recent data on Mediterranean diet, cardiovascular disease, cancer, diabetes and life expectancy. Bratisl. Lek. Listy. 2015, 116, 346–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosso, G.; Mistretta, A.; Frigiola, A.; Gruttadauria, S.; Biondi, A.; Basile, F.; Vitaglione, P.; D’Orazio, N.; Galvano, F. Mediterranean diet and cardiovascular risk factors: A systematic review. Crit. Rev. Food Sci. Nutr. 2014, 54, 593–610. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Abbate, R.; Gensini, G.; Casini, A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. Am. J. Clin. Nutr. 2010, 92, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, R.; Della Medaglia, D.; Paduano, A.; Caporaso, N. Characterisation of lemon-flavoured olive oils. LWT 2017, 79, 326–332. [Google Scholar] [CrossRef]
- Campestre, C.; Angelini, G.; Gasbarri, C.; Angerosa, F. The Compounds Responsible for the Sensory Profile in Monovarietal Virgin Olive Oils. Molecules 2017, 22, 1833. [Google Scholar] [CrossRef] [PubMed]
- Vitaglione, P.; Savarese, M.; Paduano, A.; Scalfi, L.; Fogliano, V.; Sacchi, R. Healthy virgin olive oil: A matter of bitterness. Crit. Rev. Food Sci. Nutr. 2015, 55, 1808–1818. [Google Scholar] [CrossRef]
- López-Miranda, J.; Pérez-Jiménez, F.; Ros, E.; De Caterina, R.; Badimón, L.; Covas, M.I.; Escrich, E.; Ordovás, J.M.; Soriguer, F.; Abiá, R.; et al. Olive oil and health: Summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 284–294. [Google Scholar] [CrossRef]
- Battino, M.; Forbes-Hernández, T.Y.; Gasparrini, M.; Afrin, S.; Cianciosi, D.; Zhang, J.; Manna, P.P.; Reboredo-Rodríguez, P.; Varela Lopez, A.; Quiles, J.L.; et al. Relevance of functional foods in the Mediterranean diet: The role of olive oil, berries and honey in the prevention of cancer and cardiovascular diseases. Crit. Rev. Food Sci. Nutr. 2019, 59, 893–920. [Google Scholar] [CrossRef]
- Fitó, M.; De la Torre, R.; Covas, M.I. Olive oil and oxidative stress. Mol. Nutr. Food Res. 2007, 51, 1215–1224. [Google Scholar] [CrossRef]
- Frankel, E.N. Nutritional and biological properties of extra virgin olive oil. J. Agric. Food Chem. 2011, 59, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Servili, M.; Esposto, S.; Fabiani, R.; Urbani, S.; Taticchi, A.; Mariucci, F.; Mariucci, F.; Selvaggini, R.; Montedoro, G.F. Phenolic compounds in olive oil: Antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology 2009, 17, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Bayram, B.; Esatbeyoglu, T.; Schulze, N.; Ozcelik, B.; Frank, J.; Rimbach, G. Comprehensive analysis of polyphenols in 55 extra virgin olive oils by HPLCECD and their correlation with antioxidant. Plant Foods Hum. Nutr. 2012, 67, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Sanmartin, C.; Venturi, F.; Sgherri, C.; Nari, A.; Macaluso, M.; Flamini, G.; Quartacci, M.F.; Taglieri, I.; Andrich, G.; Zinnai, A. The effects of packaging and storage temperature on the shelf-life of extra virgin olive oil. Heliyon 2018, 4, e00888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanmartin, C.; Venturi, F.; Macaluso, M.; Nari, A.; Quartacci, M.F.; Sgherri, C.; Flamini, G.; Taglieri, I.; Ascrizzi, R.; Andrich, G.; et al. Preliminary Results About the Use of Argon and Carbon Dioxide in the Extra Virgin Olive Oil (EVOO) Storage to Extend Oil Shelf Life: Chemical and Sensorial Point of View. Eur. J. Lipid Sci. Technol. 2018, 120, 1800156. [Google Scholar] [CrossRef]
- Taghvaei, M.; Jafari, S.M. Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. J. Food Sci. Technol. 2015, 52, 1272–1282. [Google Scholar] [CrossRef] [PubMed]
- Venturi, F.; Sanmartin, C.; Taglieri, I.; Nari, A.; Andrich, G.; Terzuoli, E.; Donnini, S.; Nicolella, C.; Zinnai, A. Development of Phenol-Enriched Olive Oil with Phenolic Compounds Extracted from Wastewater Produced by Physical Refining. Nutrients 2017, 9, 916. [Google Scholar] [CrossRef] [PubMed]
- Tarchoune, I.; Sgherri, C.; Eddouzi, J.; Zinnai, A.; Quartacci, M.F.; Zarrouk, M. Olive Leaf Addition Increases Olive Oil Nutraceutical Properties. Molecules 2019, 24, 545. [Google Scholar] [CrossRef]
- Ascrizzi, R.; Taglieri, I.; Sgherri, C.; Flamini, G.; Macaluso, M.; Sanmartin, C.; Venturi, F.; Quartacci, M.F.; Pistelli, L.; Zinnai, A. Nutraceutical Oils Produced by Olives and Citrus Peel of Tuscany Varieties as Sources of Functional Ingredients. Molecules 2019, 24, 65. [Google Scholar] [CrossRef]
- Venturi, F.; Sanmartin, C.; Taglieri, I.; Andrich, G.; Zinnai, A. A simplified method to estimate Sc-CO2 extraction of bioactive compounds from different matrices: Chili pepper vs. tomato by-products. Appl. Sci. 2017, 7, 361. [Google Scholar] [CrossRef]
- Venturi, F.; Bartolini, S.; Sanmartin, C.; Orlando, M.; Taglieri, I.; Macaluso, M.; Lucchesini, M.; Trivellini, A.; Zinnai, A.; Mensuali, A. Potato Peels as a Source of Novel Green Extracts Suitable as Antioxidant Additives for Fresh-Cut Fruits. Appl. Sci. 2019, 9, 2431. [Google Scholar] [CrossRef]
- Dekanski, D.S.; Janićijević-Hudomal, V.; Tadić, G.; Marković, I.; Arsić, D.; Mitrović, M. Phytochemical analysis and gastroprotective activity of an olive leaf extract. J. Serb. Chem. Soc. 2009, 74, 367–377. [Google Scholar] [CrossRef]
- Caponio, F.; Difonzo, G.; Calasso, M.; Cosmai, L.; De Angelis, M. Effects of olive leaf extract addition on fermentative and oxidative processes of table olives and their nutritional properties. Food Res. Int. 2019, 116, 1306–1317. [Google Scholar] [CrossRef]
- Difonzo, G.; Russo, A.; Trani, A.; Paradiso, V.M.; Ranieri, M.; Pasqualone, A.; Summo, C.; Tamma, G.; Silletti, R.; Caponio, F. Green extracts from Coratina olive cultivar leaves: Antioxidant characterization and biological activity. J. Funct. Foods 2017, 31, 63–70. [Google Scholar] [CrossRef]
- Sabry, O.M.M. Beneficial Health Effects of Olive Leaves Extracts. J. Nat. Sci. Res. 2014, 4, 1–9. [Google Scholar]
- Palazzolo, E.; Laudicina, V.A.; Germanà, M.A. Current and Potential Use of Citrus Essential Oils. Curr. Org. Chem. 2013, 17, 3042–3049. [Google Scholar] [CrossRef]
- Figueiredo, C.A.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Rafiq, S.; Kaul, R.; Sofi, S.A.; Bashir, N.; Nazir, F.; Nayik, G.A. Citrus peel as a source of functional ingredient: A review. J. Saudi Soc. Agric. Sci. 2018, 17, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Khettal, B.; Kadri, N.; Tighilet, K.; Adjebli, A.; Dahmoune, F.; Maiza-Benabdeslam, F. Phenolic compounds from Citrus leaves: Antioxidant activity and enzymatic browning inhibition. J. Complement. Integr. Med. 2017, 14, 20160030. [Google Scholar] [CrossRef]
- Konoz, E.; Abbasi, A.; Moazeni-Pourasil, R.S.; Parastar, H.; Jalali-Heravi, M. Chemometrics-assisted gas chromatographic-mass spectrometric analysis of volatile components of olive leaf oil. J. Iran. Chem. Soc. 2012, 10, 169–179. [Google Scholar] [CrossRef]
- Brahmi, F.; Flamini, G.; Issaoui, M.; Dhibi, M.; Dabbou, S.; Mastouri, M.; Hammami, M. Chemical composition and biological activities of volatile fractions from three Tunisian cultivars of olive leaves. Med. Chem. Res. 2012, 21, 2863–2872. [Google Scholar] [CrossRef]
- Malheiro, R.; Ortiz, A.; Casal, S.; Baptista, P.; Pereira, J.A. Electrophysiological response of Bactrocera oleae (Rossi) (Diptera: Tephritidae) adults to olive leaves essential oils from different cultivars and olive tree volatiles. Ind. Crops Prod. 2015, 77, 81–88. [Google Scholar] [CrossRef]
- Flamini, G.; Cioni, P.L.; Morelli, I. Volatiles from Leaves, Fruits, and Virgin Oil from Olea europaea Cv. Olivastra Seggianese from Italy. J. Agric. Food Chem. 2003, 51, 1382–1386. [Google Scholar] [CrossRef]
- Vekiari, S.A.; Protopapadakis, E.E.; Papadopoulou, P.; Papanicolaou, D.; Panou, C.; Vamvakias, M. Composition and Seasonal Variation of the Essential Oil from Leaves and Peel of a Cretan Lemon Variety. J. Agric. Food Chem. 2002, 50, 147–153. [Google Scholar] [CrossRef]
- Saxena Pal, R.; Pal, Y.; Singh, V. Isolation and chemical characterization of volatile constituents of leaves of Citrus limon (Linn.). Int. J. Pharm. Technol. 2016, 8, 25126–25132. [Google Scholar]
- Hojjati, M.; Barzegar, H. Chemical Composition and Biological Activities of Lemon (Citrus limon) Leaf Essential Oil. Nutr. Food Sci. Res. 2017, 4, 15–24. [Google Scholar] [CrossRef]
- Lota, M.-L.; de Rocca Serra, D.; Jacquemond, C.; Tomi, F.; Casanova, J. Chemical variability of peel and leaf essential oils of sour orange. Flavour Fragr. J. 2001, 16, 89–96. [Google Scholar] [CrossRef]
- De Pasquale, F.; Siragusa, M.; Abbate, L.; Tusa, N.; De Pasquale, C.; Alonzo, G. Characterization of five sour orange clones through molecular markers and leaf essential oils analysis. Sci. Hortic. (Amst.) 2006, 109, 54–59. [Google Scholar] [CrossRef]
- Boussaada, O.; Skoula, M.; Kokkalou, E.; Chemli, R. Chemical Variability of Flowers, Leaves, and Peels Oils of Four Sour Orange Provenances. J. Essent. Oil Bear. Plants 2007, 10, 453–464. [Google Scholar] [CrossRef]
- Sarrou, E.; Chatzopoulou, P.; Dimassi-Theriou, K.; Therios, I. Volatile Constituents and Antioxidant Activity of Peel, Flowers and Leaf Oils of Citrus aurantium L. Growing in Greece. Molecules 2013, 18, 10639–10647. [Google Scholar] [CrossRef]
- European Commission. Regulation 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis, and subsequent amendments. Off. J. Eur. Community 1991, L248, 1–102. [Google Scholar]
- Tamma, G.; Valenti, G. Evaluating the oxidative stress in renal diseases: What is the role for s-glutathionylation? Antioxid. Redox Signal. 2016, 25, 147–164. [Google Scholar] [CrossRef]
- Servili, M.; Selvaggini, R.; Esposto, S.; Taticchi, A.; Montedoro, G.F.; Morozzi, G. Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A 2004, 1054, 113–127. [Google Scholar] [CrossRef]
- Taamalli, A.; Gómez-Caravaca, A.M.; Zarrouk, M.; Seguira-Carretero, A.; Fernández-Gutiérez, A. Determination of apolar and minor polar compounds and other chemical parameters for the discrimination of six different varieties of Tunisian extra-virgin olive oil cultivated in their traditional growing area. Eur. Food Res. Technol. 2010, 231, 965–975. [Google Scholar] [CrossRef]
- Condelli, N.; Caruso, M.C.; Galgano, F.; Russo, D.; Milella, L.; Favati, F. Prediction of the antioxidant activity of extra virgin olive oils produced in the Mediterranean area. Food Chem. 2015, 177, 233–239. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–189. [Google Scholar] [CrossRef]
- Malheiro, R.; Casal, S.; Teixeira, H.; Bento, A.; Pereira, J.A. Effect of Olive Leaves Addition during the Extraction Process of Overmature Fruits on Olive Oil Quality. Food Bioprocess Technol. 2013, 6, 509–521. [Google Scholar] [CrossRef]
- Andjelkovic, M.; Van Camp, J.; Pedra, M.; Renders, K.; Socaciu, C.; Verhé, R. Correlations of the phenolic compounds and the phenolic content in some Spanish and French olive oils. J. Agric. Food Chem. 2008, 56, 5181–5187. [Google Scholar] [CrossRef]
- Rahmaniana, N.; Jafari, S.M.; Wani, T.A. Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends Food Sci. Tech. 2015, 42, 150–172. [Google Scholar] [CrossRef]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- Luna, G.; Morales, M.T.; Aparicio, R. Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chem. 2006, 98, 243–252. [Google Scholar] [CrossRef]
- Campeol, E.; Flamini, G.; Chericoni, S.; Catalano, S.; Cremonini, R. Volatile Compounds from Three Cultivars of Olea europaea from Italy. J. Agric. Food Chem. 2001, 49, 5409–5411. [Google Scholar] [CrossRef]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients, 6th ed.; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-1-4200-9077-2. [Google Scholar]
- Aparicio, R.; Luna, G. Characterisation of monovarietal virgin olive oils. Eur. J. Lipid Sci. Technol. 2002, 104, 614–627. [Google Scholar] [CrossRef]
- Mojet, J.; Vaessen, W. A sensory and Shelf-Life Study of Virgin Olive Oil; Internal report, Unilever Research: Vlaardigen, The Netherlands, 1991. [Google Scholar]
- Di Giovacchino, L.; Angerosa, F.; Di Giacinto, L. Effect of mixing leaves with olives on organoleptic quality of oil obtained by centrifugation. J. Am. Oil Chem. Soc. 1996, 73, 371–374. [Google Scholar] [CrossRef]
- Malheiro, R.; Rodrigues, N.; Bissaro, C.; Leimann, F.; Casal, S.; Ramalhosa, E.; Pereira, J.A. Improvement of sensorial and volatile profiles of olive oil by addition of olive leaves. Eur. J. Lipid Sci. Technol. 2017, 119, 1700177. [Google Scholar] [CrossRef]
- International Olive Oil Council Sensory Analysis of Olive Oil. Method for the Organoleptic Assessment of virgin Olive Oil; IOOC/T20/Doc. No 15/Rev. 4; IOOC: Madrid, Spain, 2011. [Google Scholar]
- European Commission. Regulation 432/2012 of 16 May 2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Community 2012, L136, 1–40. [Google Scholar]
- Clodoveo, M.L.; Camposeo, S.; Amirante, R.; Dugo, G.; Cicero, N.; Boskou, D. Research and Innovative Approaches to Obtain Virgin Olive Oils with a Higher Level of Bioactive Constituents. In Olive and Olive Oil Bioactive Constituents; AOCS Press: Urbana, IL, USA, 2015; pp. 179–215. ISBN 9781630670412. [Google Scholar]
- Omar, S.H. Oleuropein in Olive and its Pharmacological Effects. Sci. Pharm. 2010, 78, 133–154. [Google Scholar] [CrossRef] [Green Version]
- Sevim, D.; Tuncay, O.; Koseoglu, O. The Effect of Olive Leaf Addition on Antioxidant Content and Antioxidant Activity of “Memecik” Olive Oils at Two Maturity Stages. J. Am. Oil Chem. Soc. 2013, 90, 1359. [Google Scholar] [CrossRef]
- Silva, C.S.; Vannucchi, G.; Vannucchi, H. Antioxidant Treatment and Alcoholism. In Molecular Aspects of Alcohol and Nutrition of Alcohol and Nutrition. A Volume in the Molecular Nutrition Series, 1st ed.; Patel, V.B., Ed.; Elsevier, Academic Press: New York, NY, USA, 2016; pp. 119–131. [Google Scholar]
- Kinsella, L.J.; Riley, D.E. Nutritional Deficiencies and Syndromes Associated with Alcoholism. In Textbook of Clinical Neurology, 3rd ed.; Goetz, C.G., Ed.; Saunders, Elsevier: Philadelphia, PA, USA, 2007; pp. 897–917. [Google Scholar]
- Sgherri, C.; Kadlecova, Z.; Prdossi, A.; Navari-Izzo, F.; Izzo, R. Irrigation with Diluted Seawater Improves the Nutritional Value of Cherry Tomatoes. J. Agric. Food Chem. 2008, 56, 3391–3397. [Google Scholar] [CrossRef]
- Zinnai, A.; Venturi, F.; Quartacci, M.F.; Sanmartin, C.; Favati, F.; Andrich, G. Solid carbon dioxide to promote the extraction of extra-virgin olive oil. Grasas y Aceites 2016, 67, e121. [Google Scholar] [CrossRef] [Green Version]
- Zinnai, A.; Venturi, F.; Sanmartin, C.; Taglieri, I.; Andrich, G. The utilization of solid carbon dioxide in the extraction of extra-virgin olive oil: VOO/EVOO yield and quality as a function of extraction conditions adopted. Agro Food Ind. Hi Tech 2015, 26, 24–26. [Google Scholar]
- Zinnai, A.; Venturi, F.; Andrich, G. Time evolution of phenols extractions from Sangiovese grapes with and without the addition of solid carbon dioxide. Agrochimica 2011, 55, 193–202. [Google Scholar]
- National Research Council. Recommended Dietary Allowances, 10th ed.; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Rotondi, A.; Bendini, A.; Cerretani, L.; Mari, M.; Lercker, G.; Gallina-Toschi, G.T. Effect of Olive Ripening Degree on the Oxidative Stability and Organoleptic Properties of Cv. Nostrana di Brisighella Extra Virgin Olive Oil. J. Agric. Food Chem. 2004, 52, 3649–3654. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Talcott, S.T.; Howard, L.R. Phenolic autoxidation is responsible for color degradation in processed carrot puree. J. Agric. Food Chem. 1999, 47, 2109–2115. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Sgherri, C.; Micaelli, F.; Andreoni, N.; Baldanzi, M.; Ranieri, A. Retention of phenolic compounds and antioxidant properties in potato bread obtained from a dough enriched with a powder from the purple cv. Vitelotte. Agrochimica 2016, 60, 312–328. [Google Scholar]
- Fellegrini, N.; Ke, R.; Yang, M.; Rice-Evans, C. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,20-azinobis(3-ethylenebenzothiazoline-6-sulfonic acid radical cation decolorization assay. In Methods in Enzymology, 1st ed.; Academic Press: New York, NY, USA, 1999; Volume 299, pp. 379–389. [Google Scholar]
- Gutiérrez Rosales, F.; Perdiguero, S.; Gutiérrez, R.; Olias, J.M. Evaluation of the bitter taste in virgin olive oil. J. Am. Oil Chem. Soc. 1992, 69, 394–395. [Google Scholar] [CrossRef]
- Mínguez-Mosquera, M.I.; Rejano-Navarro, L.; Gandul-Rojas, B.; Sánchez-Gómez, A.H.; Garrido-Fernández, J. Color–Pigment Correlation in Virgin Olive Oil. J. Am. Oil Chem. Soc. 1991, 69, 332–336. [Google Scholar] [CrossRef]
- Gimeno, E.; Castellote, A.I.; Lamuela-Raventós, R.M.; de la Torre, M.C.; López-Sabater, M.C. Rapid determination of vitamin E in vegetable oils by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2000, 9, 251–254. [Google Scholar] [CrossRef]
- Galatro, A.; Simontacchi, M.; Puntarulo, S. Free radical generation and antioxidant content in chloroplasts from soybean leaves exposed to ultraviolet-B. Physiol. Plant. 2001, 113, 564–570. [Google Scholar] [CrossRef]
- Venturi, F.; Sanmartin, C.; Taglieri, I.; Xiaoguo, Y.; Andrich, G.; Zinnai, A. The influence of packaging on the sensorial evolution of white wine as a function of the operating conditions adopted during storage. Agrochimica 2016, 60, 150–160. [Google Scholar]
- Venturi, F.; Sanmartin, C.; Taglieri, I.; Xiaoguo, Y.; Andrich, G.; Zinnai, A. A kinetic approach to describe the time evolution of red wine as a function of packaging and storage conditions. Acta Aliment. 2017, 46, 336–345. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Not available. |
Compounds | Chemical Class a | L.R.I. b | Relative Abundance (%) | ||
---|---|---|---|---|---|
Olive Leaf Essential Oil (EO) | Lemon Leaf EO | Orange Leaf EO | |||
furfural | NT | 839 | 0.3 | - c | - |
(E)-3-hexen-1-ol | NT | 853 | 1.4 | - | - |
1-hexanol | NT | 871 | 0.3 | - | - |
heptanal | NT | 901 | 0.1 | - | - |
α-pinene | MH | 941 | - | 0.2 | 0.3 |
benzaldehyde | NT | 963 | 0.6 | - | - |
(Z)-2-heptenal | NT | 963 | 0.1 | - | - |
3-ethenyl pyridine | N-NT | 975 | 1.8 | - | - |
sabinene | MH | 976 | - | 0.7 | 0.6 |
1-octen-3-ol | NT | 980 | 0.1 | - | - |
β-pinene | MH | 982 | - | 5.8 | 3.9 |
6-methyl-5-hepten-2-one | NT | 985 | 0.2 | 0.2 | - |
2-pentyl furan | NT | 993 | 0.5 | - | - |
myrcene | MH | 993 | - | 0.2 | 4.5 |
octanal | NT | 1001 | 0.2 | - | - |
(E,E)-2,4-heptadienal | NT | 1012 | 1.0 | - | - |
α-terpinene | MH | 1018 | 1.1 | - | - |
p-cymene | MH | 1027 | 0.2 | - | - |
limonene | MH | 1032 | 0.4 | 6.3 | 1.4 |
1,8-cineole | OM | 1034 | - | 1.2 | - |
(Z)-β-ocimene | MH | 1042 | - | 0.2 | 2.1 |
phenyl acetaldehyde | NT | 1045 | 0.2 | - | - |
(E)-β-ocimene | MH | 1052 | - | 1.1 | 4.4 |
γ-terpinene | MH | 1062 | 0.3 | 0.2 | - |
(E)-2-octenal | NT | 1064 | 0.2 | - | - |
cis-sabinene hydrate | OM | 1070 | 0.9 | 0.2 | - |
n-octanol | NT | 1071 | 0.9 | - | - |
benzyl formate | NT | 1080 | 0.2 | - | - |
terpinolene | MH | 1088 | 0.7 | - | 1.3 |
rosefuran | OM | 1093 | - | 0.2 | - |
trans-sabinene hydrate | OM | 1095 | 0.8 | - | - |
linalool | OM | 1101 | 0.7 | 4.0 | 34.3 |
nonanal | NT | 1102 | 2.8 | - | - |
1,3,8-p-menthatriene | MH | 1113 | 0.3 | - | - |
trans-p-mentha-2,8-dien-1-ol | OM | 1121 | 1.5 | - | - |
trans-limonene oxide | OM | 1141 | 0.7 | - | - |
trans-p-menth-2-en-1-ol | OM | 1143 | 0.5 | - | - |
citronellal | OM | 1155 | - | 1.5 | - |
(E,Z)-2,6-nonadienal | NT | 1156 | - | - | 0.1 |
isoneral | OM | 1171 | - | 0.3 | - |
4-terpineol | OM | 1178 | 15.3 | 0.2 | 0.2 |
p-cymen-8-ol | OM | 1183 | 0.8 | - | - |
isogeranial | OM | 1184 | - | 0.3 | - |
α-terpineol | OM | 1189 | 1.1 | 1.2 | 13.8 |
methyl salicylate | NT | 1192 | 1.4 | - | - |
cis-piperitol | OM | 1195 | 1.0 | - | - |
trans-piperitol | OM | 1207 | 0.4 | - | - |
nerol | OM | 1230 | 0.6 | 8.0 | 2.6 |
neral | OM | 1240 | - | 4.2 | - |
geraniol | OM | 1257 | 0.6 | 1.7 | - |
linalyl acetate | OM | 1259 | - | - | 21.3 |
(E)-2-decenal | NT | 1260 | 1.1 | - | - |
geranial | OM | 1271 | - | 5.1 | - |
limonen-10-ol | OM | 1290 | 0.3 | - | - |
thymol | OM | 1292 | 0.5 | - | - |
dihydroedulan | NT | 1293 | 0.7 | - | - |
theaspirane I | AC | 1298 | 2.7 | - | - |
(E,E)-2,4-decadienal | NT | 1316 | 3.5 | - | - |
citronellyl acetate | OM | 1350 | - | 0.4 | - |
α-terpinyl acetate | OM | 1352 | - | - | 0.2 |
eugenol | PP | 1358 | 2.1 | - | - |
neryl acetate | OM | 1366 | - | 15.3 | 3.1 |
(E)-β-damascenone | AC | 1384 | 2.9 | - | - |
geranyl acetate | OM | 1385 | - | 5.1 | 5.5 |
γ-dihydroionone | AC | 1396 | 0.8 | - | - |
β-longipinene | SH | 1398 | 1.9 | - | - |
β-caryophyllene | SH | 1420 | 0.4 | 16.5 | 0.3 |
dihydrodehydro-β-ionone | AC | 1424 | 3.6 | - | - |
trans-α-bergamotene | SH | 1438 | - | 2.1 | - |
(E)-isoeugenol | PP | 1448 | 1.7 | - | - |
(E)-geranyl acetone | AC | 1455 | 0.6 | - | - |
α-humulene | SH | 1456 | - | 1.6 | - |
(E)-β-ionone | AC | 1490 | 1.6 | - | - |
bicyclogermacrene | SH | 1495 | - | 3.5 | - |
(Z)-α-bisabolene | SH | 1504 | - | 0.3 | - |
β-bisabolene | SH | 1509 | - | 3.6 | - |
δ-cadinene | SH | 1524 | - | 0.3 | - |
cis-sesquisabinene hydrate | OS | 1545 | 1.4 | - | - |
germacrene d-4-ol | OS | 1575 | - | 0.7 | - |
spathulenol | OS | 1576 | - | 3.2 | - |
caryophyllene oxide | OS | 1581 | - | 2.7 | - |
α-cedrene epoxide | OS | 1585 | 1.4 | - | - |
1,10-di-epi-cubenol | OS | 1614 | 0.8 | - | - |
humulane-1,6-dien-3-ol | OS | 1619 | 1.6 | - | - |
α-cadinol | OS | 1654 | - | 0.4 | - |
neointermedeol | OS | 1660 | 17.7 | - | - |
epi-α-bisabolol | OS | 1686 | - | 0.2 | - |
drimenol | OS | 1755 | 1.0 | - | - |
kaurene | DH | 2043 | 1.1 | - | - |
Monoterpene hydrocarbons | 2.8 | 14.6 | 18.6 | ||
Oxygenated monoterpenes | 25.7 | 48.9 | 81.0 | ||
Sesquiterpene hydrocarbons | 2.4 | 27.9 | 0.3 | ||
Oxygenated sesquiterpenes | 23.8 | 7.3 | - | ||
Diterpene hydrocarbons | 1.1 | - | - | ||
Apocarotenoids | 12.9 | - | - | ||
Nitrogen compounds | 1.8 | - | - | ||
Phenylpropanoids | 3.9 | - | - | ||
Other non-terpene derivatives | 15.0 | 0.2 | 0.1 | ||
Total identified (%): | 89.3 | 98.8 | 100.0 |
Reference EVOO | Control | Olive Leaf Olive Oil (LOO) | Lemon LOO | Orange LOO | |
---|---|---|---|---|---|
Free Acidity (g oleic acid/kg oil) | ≤ 0.80 | 0.74 b ± 0.01 | 0.65 c ± 0.01 | 0.80 a ± 0.01 | 0.66 c ± 0.01 |
Peroxide Value (meq O2/kg oil) | ≤ 20.00 | 8.90 a ± 0.17 | 7.20 b ± 0.01 | 9.00 a ± 0.01 | 9.00 a ± 0.01 |
K232 | ≤ 2.50 | 1.98 a ± 0.01 | 1.92 ab ± 0.01 | 1.86 b ± 0.01 | 1.92 ab ± 0.01 |
K270 | ≤ 0.22 | 0.14 ± 0.01 | 0.10 ± 0.01 | 0.12 ± 0.01 | 0.15 ± 0.01 |
ΔK | ≤ 0.10 | 0.00 | 0.00 | 0.00 | 0.00 |
Control | Olive LOO | Lemon LOO | Orange LOO | |
---|---|---|---|---|
Total phenols Content (TPC) (ppm gallic acid) | 144 a ± 4 | 150 a ± 1 | 115 b ± 3 | 142 a ± 1 |
Intensity of Bitterness (IB) | 0.85 d ± 0.01 | 1.95 b ± 0.02 | 1.64 c ± 0.01 | 2.11 a ± 0.01 |
Free-radical scavenging capacity (FRSCABTS) (μmol TEAC/mL) | 0.40 a ± 0.01 | 0.36 a ± 0.01 | 0.20 b ± 0.01 | 0.38 a ± 0.01 |
Free-radical scavenging capacity (FRSCDPPH) (μmol TEAC/mL) | 0.34 a ± 0.02 | 0.29 a ± 0.01 | 0.15 b ± 0.02 | 0.28 a ± 0.02 |
Total carotenoid (TC) (mg/kg of lutein) | 4.62 ± 0.01 | 4.58 ± 0.02 | 4.20 ± 0.01 | 4.20 ± 0.01 |
Total chlorophylls (TCH) (mg/kg of pheophytin) | 9.93 b ± 0.01 | 10.04 a ± 0.01 | 7.97 c ± 0.02 | 6.63 d ± 0.01 |
Control | Olive LOO | Lemon LOO | Orange LOO | |
---|---|---|---|---|
Phenolic Alcohols | ||||
Hydroxytyrosol | 0.057 ± 0.002 | 0.062 ± 0.020 | 0.063 ± 0.008 | 0.081 ± 0.010 |
Tyrosol | 2.730 a ± 0.136 | 2.553 ab ± 0.203 | 2.157 b ± 0.135 | 1.574 c ± 0.081 |
Phenolic Aldehydes | ||||
Vanillin | 0.293 b ± 0.011 | 0.354 a ± 0.026 | 0.345 a ± 0.027 | 0.373 a ± 0.038 |
Phenolic Acids | ||||
Vanillic acid | 0.142 a ± 0.009 | 0.124 ab ± 0.008 | 0.088 c ± 0.006 | 0.105 bc ± 0.002 |
Caffeic acid | 0.008 b ± 0.001 | 0.012 a ± 0.002 | 0.012 a ± 0.001 | 0.013 a ± 0.001 |
Syringic acid | 0.102 a ± 0.012 | 0.028 b ± 0.007 | 0.017 b ± 0.001 | 0.007 b ± 0.002 |
p-Coumaric acid | 0.001 b ± 0.000 | 0.141 a ± 0.008 | 0.154 a ± 0.014 | 0.173 a ± 0.015 |
Ferulic acid | 0.026 ± 0.003 | 0.028 ± 0.005 | 0.026 ± 0.003 | 0.034 ± 0.002 |
Secoiridoids | ||||
Oleuropein aglycone | 17.021 b ± 0.534 | 26.577 a ± 1.701 | 12.957 c ± 0.600 | 16.028 b ± 0.345 |
Vitamin E | Control | Olive LOO | Lemon LOO | Orange LOO |
---|---|---|---|---|
δ-tocopherol | 0.53 b ± 0.02 | 0.48 b ± 0.19 | 0.74 a ± 0.29 | 1.10 a ± 0.29 |
γ-tocopherol | 3.38 ± 0.51 | 2.93 ± 0.40 | 3.37 ± 0.04 | 3.60 ± 0.15 |
α-tocopherol | 117.09 c ± 3.33 | 122.37 bc ± 2.33 | 137.87 a ± 4.22 | 132.24 ab ± 4.58 |
Compounds | Chemical Class a | L.R.I. b | Relative Abundance (%) | |||
---|---|---|---|---|---|---|
Control | HS Olive LOO | HS Lemon LOO | HS Orange LOO | |||
(E)-2-hexenal | NT | 856 | 80.8 | 51.7 | - c | - |
α-pinene | MH | 941 | - | - | 1.1 | 0.8 |
β-pinene | MH | 982 | - | - | 12.2 | 0.7 |
myrcene | MH | 993 | - | - | - | 2.1 |
limonene | MH | 1032 | - | 17.8 | 41.5 | 91.9 |
(Z)-β-ocimene | MH | 1042 | - | 3.7 | - | - |
(E)-β-ocimene | MH | 1052 | - | - | 1.5 | 0.7 |
γ-terpinene | MH | 1062 | - | - | 1.6 | 0.1 |
n-octanol | NT | 1071 | - | - | - | 0.1 |
terpinolene | MH | 1088 | - | - | 0.3 | 0.1 |
linalool | OM | 1101 | - | - | 0.9 | 1.0 |
nonanal | NT | 1102 | 5.3 | 2.5 | 0.6 | - |
(E)-4,8-dimethylnona-1,3,7-triene | NT | 1116 | 3.9 | 12.4 | - | - |
citronellal | OM | 1155 | - | - | 0.7 | - |
iso-geranial | OM | 1184 | - | - | 0.1 | - |
α-terpineol | OM | 1189 | - | - | 0.3 | 0.1 |
decanal | NT | 1204 | - | - | 0.1 | 0.1 |
(E)-2-dodecene | NT | 1205 | 9.5 | 11.4 | - | - |
octyl acetate | NT | 1214 | - | - | - | 0.1 |
nerol | OM | 1230 | - | - | 5.7 | - |
neral | OM | 1240 | - | - | 12.3 | - |
geraniol | OM | 1257 | - | - | 2.2 | - |
linalyl acetate | OM | 1259 | - | - | - | 1.6 |
geranial | OM | 1271 | - | - | 15.0 | 0.1 |
eugenol | PP | 1358 | - | 0.2 | - | - |
neryl acetate | OM | 1366 | - | - | 1.7 | 0.1 |
geranyl acetate | OM | 1385 | - | - | 0.4 | 0.2 |
β-caryophyllene | SH | 1420 | - | - | 1.1 | 0.1 |
trans-α-bergamotene | SH | 1438 | - | - | 0.1 | - |
(E,E)-α-farnesene | SH | 1507 | 0.5 | 0.4 | 0.4 | - |
Monoterpene hydrocarbons | - | 21.5 | 58.2 | 96.4 | ||
Oxygenated monoterpenes | - | - | 39.3 | 3.1 | ||
Sesquiterpene hydrocarbons | 0.5 | 0.4 | 1.6 | 0.1 | ||
Phenylpropanoids | - | 0.2 | - | - | ||
Other non-terpene derivatives | 99.5 | 78.0 | 0.7 | 0.3 | ||
Total identified (%) | 100.0 | 100.0 | 99.8 | 99.9 |
Parameter | Olive Fruit Characterization |
---|---|
Ripeness Index (0:7) | 4.0 ± 0.2 |
Average Weight (g) | 1.50 ± 0.01 |
Average Volume (cm3) | 1.4 ± 0.1 |
Water Content (%) | 48.43 ± 0.02 |
Oil Content (% dry matter) | 19.70 ± 0.04 |
Sample Code | Description |
---|---|
Olive leaf EO | Essential oil extracted from Olea europaea L. leaves |
Lemon leaf EO | Essential oil extracted from Citrus limon L. leaf |
Orange leaf EO | Essential oil extracted from Citrus × aurantium L. leaves |
Control | Extra-virgin olive oil |
Olive LOO | Oil obtained by adding Olea europaea leaves to olive during olive oil extraction |
Lemon LOO | Oil obtained by adding Citrus limon L. leaves to olive during olive oil extraction |
Orange LOO | Oil obtained by adding Citrus × aurantium L. leaves to olive during olive oil extraction |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanmartin, C.; Taglieri, I.; Macaluso, M.; Sgherri, C.; Ascrizzi, R.; Flamini, G.; Venturi, F.; Quartacci, M.F.; Luro, F.; Curk, F.; et al. Cold-Pressing Olive Oil in the Presence of Cryomacerated Leaves of Olea or Citrus: Nutraceutical and Sensorial Features. Molecules 2019, 24, 2625. https://doi.org/10.3390/molecules24142625
Sanmartin C, Taglieri I, Macaluso M, Sgherri C, Ascrizzi R, Flamini G, Venturi F, Quartacci MF, Luro F, Curk F, et al. Cold-Pressing Olive Oil in the Presence of Cryomacerated Leaves of Olea or Citrus: Nutraceutical and Sensorial Features. Molecules. 2019; 24(14):2625. https://doi.org/10.3390/molecules24142625
Chicago/Turabian StyleSanmartin, Chiara, Isabella Taglieri, Monica Macaluso, Cristina Sgherri, Roberta Ascrizzi, Guido Flamini, Francesca Venturi, Mike Frank Quartacci, François Luro, Franck Curk, and et al. 2019. "Cold-Pressing Olive Oil in the Presence of Cryomacerated Leaves of Olea or Citrus: Nutraceutical and Sensorial Features" Molecules 24, no. 14: 2625. https://doi.org/10.3390/molecules24142625
APA StyleSanmartin, C., Taglieri, I., Macaluso, M., Sgherri, C., Ascrizzi, R., Flamini, G., Venturi, F., Quartacci, M. F., Luro, F., Curk, F., Pistelli, L., & Zinnai, A. (2019). Cold-Pressing Olive Oil in the Presence of Cryomacerated Leaves of Olea or Citrus: Nutraceutical and Sensorial Features. Molecules, 24(14), 2625. https://doi.org/10.3390/molecules24142625